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A B S T R A C T   

Background and Purpose: A wide range of quantitative measures are available to facilitate clinical implementation 
of auto-contouring software, on-going Quality Assurance (QA) and interobserver contouring variation studies. 
This study aimed to assess the variation in output when applying different implementations of the measures to 
the same data in order to investigate how consistently such measures are defined and implemented in radiation 
oncology. 
Materials and Methods: A survey was conducted to assess if there were any differences in definitions of contouring 
measures or their implementations that would lead to variation in reported results between institutions. This 
took two forms: a set of computed tomography (CT) image data with “Test” and “Reference” contours was 
distributed for participants to process using their preferred tools and report results, and a questionnaire regarding 
the definition of measures and their implementation was completed by the participants. 
Results: Thirteen participants completed the survey and submitted results, with one commercial and twelve in- 
house solutions represented. Excluding outliers, variations of up to 50% in Dice Similarity Coefficient (DSC), 
50% in 3D Hausdorff Distance (HD), and 200% in Average Distance (AD) were observed between the participant 
submitted results. Collaborative investigation with participants revealed a large number of bugs in imple
mentation, confounding the understanding of intentional implementation choices. 
Conclusion: Care must be taken when comparing quantitative results between different studies. There is a need for 
a dataset with clearly defined measures and ground truth for validation of such tools prior to their use.   

1. Introduction 

Contouring of both targets and organs-at-risk (OARs) plays an 
important role in radiotherapy planning. Consequently, the study of 
accuracy of such contouring is relatively commonplace, whether for 
assessing inter-observer variation [1,2] or the accuracy of auto- 
contouring [3,4], and quantitative measures of assessing contouring 
are required for such studies [5,6]. 

During the last few years, auto-contouring of OARs has evolved from 
a “nice-to-have” to a “must-have” for radiotherapy clinics. The devel
opment of deep learning-based algorithms, performing much better than 
previous methods such as atlas-based auto-segmentation, has pushed 
this technology towards the clinic [4]. In order to facilitate clinical 
implementation of auto-contouring software, a lot of recent work has 

been done on commissioning and pre-deployment quality assurance 
(QA) of such systems [7]. Possible tests comprise qualitative and 
quantitative measurements, where the latter can be subdivided into 
geometric, dosimetric, and time-saving measures [6,8], amongst others. 
Such approaches remain useful for on-going QA of auto-contouring post- 
deployment [9]. These measures are also relevant for studying inter- 
observer variation to investigate contouring differences (e.g. [10]) and 
help define guidelines (e.g. [11,12]). 

While geometric measures such as the Dice Similarity Coefficient 
(DSC) [13] or Hausdorff Distance (HD) and Average Distance (AD) 
[14,15] might seem very simple, objective and deterministic, caution 
needs to be exercised [8]. The first limitation of these measures is that 
they are defined with respect to a “ground truth”, most often manual 
contouring done by an expert clinical observer. This paradigm does not 
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take into account intra- and inter-observer variation, and thus the pos
sibility that for some instances, the test contour might be of higher 
quality than the reference. 

In addition, geometric measures of overlap and distance are not 
necessarily clinically meaningful [5,6,16]. To assess the efficiency of 
auto-contouring, measures developed more recently such as Added Path 
Length (APL) [17] and Surface Dice [18] might be valuable because they 
have been shown to correlate with time-saving. Dosimetric evaluation 
can also add to clinical interpretation (e.g. [19]), although attention 
should be paid to the most relevant combination of contours and plans to 
examine [8]. 

Finally, if geometric measures are the desired evaluation method, it 
is important to use them in a consistent and accurate way. Results can be 
very sensitive to different choices made when implementing the mea
sures, for instance whether calculations are performed in 2D or 3D, and 
what kind of contour representation is used. Furthermore, multiple 
definitions exist for some measures. 

In this study, possible differences in software used in radiotherapy 
research and by radiotherapy institutes were investigated, using a 
questionnaire and benchmarking dataset, building on a provisional 
survey conducted prior to the ESTRO 2022 conference [20], to establish 
the level of variation existing in the field of radiotherapy when calcu
lating measures for comparing contours. 

2. Material and methods 

A survey was conducted to assess what contouring measures were 
used and if there were any differences in their implementation that lead 
to variation in results reported between institutions. This survey took 
two forms: (1) a questionnaire regarding the definition of metrics and 
their implementation was completed by each of the participants, and (2) 
a set of CT image data with “Test” and “Reference” contours was 
distributed for participants to process and report results using their 
preferred tools. 

Participation was encouraged through personal invitation (n = 14), 
word-of-mouth, and informal promotion within appropriate society 
networks, such as the Dutch medical physics, deep learning in radio
therapy communities and the ESTRO physics workshop groups. The 
survey was further advertised at ESTRO 2022 during a presentation of 
the results of a preliminary survey [20]. The survey was open to 
participation for six months from 30 Jan 2022 to 30 Jun 2022. 

2.1. Questionnaire 

The questionnaire focused on expected areas of variation in defini
tion and implementation of measures following a preliminary study that 
considered the results of 6 participants from 6 different centers [20]. The 
questionnaire composed 6 sections; (1) the participant, institution, and 
software, (2) high-level implementation and internal shape representa
tion of the structures, (3) the range of measurements available, (4) 
implementation of shape representation conversion and tolerances, (5) 
distance measure definitions and implementation, (6) results upload and 
additional information. 

This questionnaire was intended to facilitate the analysis of whether 
reported differences in definitions and analysis existed within radiation 
oncology and to assist in understanding of the quantitative results sub
mitted, rather than for performing statistical analysis (e.g. the preva
lence of each measure). The full questionnaire is provided in 
Supplementary Material 1. 

2.2. Dataset 

The dataset consisted of two studies: a synthetic set with analytical 
geometric shapes and a clinical set with real anatomical shapes. Both 
studies were in DICOM format, with contours stored as Radiotherapy 
Structure Sets (RTSS), the format used in clinical practice. 

The first study set contained a synthetic CT image of 0.977 mm ×
0.977 mm in-plane resolution and 2 mm slice spacing, with 126 slices of 
512 × 512 voxels. The synthetic CT was filled with random uniform 
noise from − 1024 to 2975 HU, since the comparison of the contours 
should not depend on the image content. The analytical shapes consisted 
of cuboids (4 pairs, shapes A-D), spheres and octahedrons (2 pairs, 
shapes E and F). The main variation in the data was in how the control 
points of the polygons were sampled in the RTSS. The table in Supple
mentary Material 2 provides a detailed description of the shapes 
defined. The geometric nature of the shapes was intended to simplify the 
interpretation of any definition and implementation differences between 
contouring assessment tools. The synthetic data was created in python 
(v3.8.10), writing DICOM with the pydicom (v2.1.2) library. 

The second study was taken from the AAPM 2017 Thoracic Auto- 
Segmentation Challenge dataset [3,21], case LTCSC-Test-S1-201. This 
data consists of a thoracic CT image, in radiotherapy treatment position, 
with reference contours for lungs, esophagus, heart and spinal cord. The 
“ground truth” contours available with this data were used as “Refer
ence”, and contours from a deep learning-based auto-contouring system 
(DLCExpert with model Thorax_CT_NL007_MO, Workflow Box 2.6, 
Mirada Medical Ltd, Oxford, UK) were used as the “Test”. These shapes 
were intended to evaluate the impact that any variation in definition or 
implementation of measurements could have in a scenario of clinical 
commissioning or assessment of auto-contouring. Note, the purpose was 
not to assess the accuracy of the auto-contouring system. 

The dataset has been made publicly available [22]. 

2.3. Analysis and participant follow-up 

The quantitative results submitted, based on the common dataset, 
were reviewed by plotting variation against the median result for each 
measure and structure. The median result was chosen since the survey 
was conducted to determine the presence and causes of variation in 
results, rather than to assess tools against a predefined “right” answer. 
Analysis of the reported values was only made for measures for which 
five or more participants submitted results. The causes of variations in 
results were investigated by considering the questionnaire responses. 
Follow-up discussions were held with participants individually, during 
the analysis of the results, to fully understand any differences in 
implementation observed in the results that could not be explained by 
the questionnaire answers. 

3. Results 

Twenty-one individuals from 18 institutions registered interest in 
participation. Of these, 13 participants from ten different institutions 
subsequently completed the full survey and submitted results. Of the 14 
personal invitations to participate, 11 registered interest and six 
participated. One registered individual indicated that they felt unable to 
complete the questionnaire on account of insufficient knowledge of the 
methods used in implementation. 

3.1. Questionnaire findings 

The full results of the questionnaire are available in the Supple
mentary Material 1. 

The majority of participants, 12 out of 13, reported using “home- 
made” or open-source software or a combination of the two. Only one 
participant reported using commercial software. Although seven of the 
participants reported academic publications relating to the measures 
[8,17,18] or their use [23–25], no participants reported studies which 
actually demonstrated the accuracy of the implementation used. 

A range of choices in implementation design were found, as shown in 
Fig. 1. Three different methods of conversion from RTSS to a voxel mask 
were used by ten participants, and a further two responses expressed 
uncertainty in the implementation details. Seven different approaches 
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were taken to the method of sampling the surface when calculating 
distance measures. Four definitions of the one-way average distance 
were used and five definitions for symmetric average distance were re
ported. Several participants made use of the “other” option when filling 
out responses to implementation choice questions, including as a 
method of expressing uncertainty as to their implementation’s details. 

Of the twelve participants using a voxel-based representation for at 
least one measure, all but two used the CT image resolution as the basis 
for the voxel grid of the mask. One participant calculated the measures 
on an arbitrarily chosen resolution of 0.5 mm isotropic volume, and a 
second used 1 mm isotropic sampling. 

3.2. Comparison of quantitative results 

Twenty different measures were reported as available by more than 
one respondent, with the frequency of each measure shown in Fig. 2. A 
further 47 different measures were reported by only one respondent. 
The full list of measures is available in the Supplementary Material 3. 
Only four measures, Dice Similarity Coefficient (DSC), 3D Hausdorff 
Distance (HD), 3D 95% Hausdorff Distance (95% HD), Average Distance 
(AD) (sometimes reported as “Mean Distance to Agreement”), were re
ported by more than five participants. While five results were reported 
for Surface DSC by four participants (one participant submitted results at 
two different tolerances), the different acceptance tolerances used 
meant that comparison was not performed. A spreadsheet of submitted 

Fig. 1. Survey questions showing the greatest variation in implementation details (4.2, 5.1) and measurement definitions (5.2, 5.3). Note for question 4.2 the use of 
“I think”. 

Fig. 2. Frequency of measures reported as available by participants. A further 47 measures were reported by only one participant.  
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values is available in Supplementary Material 4. 
On the synthetic data, minor variations in DSC results, of around 1% 

of the median, were observed. However, as can be seen in Fig. 3, larger 
variation can be observed in the real data for the long thin structures of 
the spinal cord and esophagus, with a maximum variation of − 9% with 
respect to the median result being seen for the spinal cord. All but two 
respondents reported using a voxel mask representation. However, no 
clear correlation was observed between the reported method of voxeli
zation and the variation in DSC. 

The 3D HD was reported by all but one of the respondents. Wide 
variation was observed in the reported HD values, with several outliers. 
The largest outlier was over 3000% greater than the median, occurred 
for synthetic shape B, with the same implementation having a large 
outlier of around 350% greater than the median for synthetic shape C. A 
further implementation also reported large values of around 350% 
greater than the median for synthetic shapes C & D. Fig. 4 shows the 
range of HD reported as a percentage of the median values. Two sub- 
figures vary the range of the y-axis to illustrate the range of variation 
given the significant outliers found. The following-up with participants 
found a number of ‘bugs’ in implementation. These are indicated in the 
figure by circles. Notwithstanding implementation bugs, the observed 
variation was up to 40%, as shown in the lower plot of Fig. 4. 

Participants where a bug was found in the analysis of HD were 
excluded from the analysis of 95% HD if the bug was likely to impact the 
accuracy of the result. This is reflected in the upper plot of Fig. 5, with 
the maximum variation from the median being about 40%. The varia
tion in the AD, excluding likely bugs, is shown in the lower plot of Fig. 5. 
For the synthetic shapes A and B, variation of up to 50%, is seen. Larger 
percentage variation is observed in the clinical structures, with varia
tions larger than 50% with respect to the median value for three 
participants. 

3.3. Participant follow-up 

Investigation of outliers was performed with seven of the 13 

participants. One participant had submitted full code, so investigation 
could be performed without direct follow-up discussion. Bugs impacting 
DSC, HD, 95% HD and AD were found for one, five, two, one imple
mentations respectively. 

4. Discussion 

The results show that there can be substantial variation in values 
reported for the most commonly used measures. It would be reasonable 
to assume that such variation also extends to those less commonly re
ported. This variation has implications both for the comparison of values 
reported in different studies where different implementations may have 
been used to assess contouring performance, but also in the clinic for 
commissioning an auto-contouring system, for example. That there are 
differences is concerning, but it is necessary to understand from where 
these differences arose to be able to address this challenge. 

A major part of the questionnaire focused on the definition of mea
surements, as a result of prior observation that there is some variation. 
For instance, the open-source Plastimatch [26] defines the symmetric 
95% HD as the mean of one-way 95% HDs, whereas the open-source 
EvaluateSegmentation [14] defines it as the maximum of the one-way 
95% HDs. Further variation was seen within this survey, with some 
participants calculating the percentile or mean over the set one-way 
distances and then combining these results by taking the maximum or 
mean respectively, while other participants performed calculations after 
combining two sets of one-way distances into a single set. Although, 
these different definitions did not have a major influence on the values 
reported in this study, their impact will be larger in circumstances where 
the sets of one-way differences for the reference and test shapes have 
different sizes and there are differences in the tails of the distributions of 
one-way distances. 

In addition to the variation in definitions, a range of implementation 
choices were evident. The definition of the DSC was consistent between 
all participants, yet some variation is still observed in the results. The 
main factor that could affect the DSC was how implementations 

Fig. 3. Variation in Dice Similarity Coefficient as a percentage of the median value of participants’ submissions for each structure. The largest variation appears for 
long thin structures. The different point shapes represent the different method of conversion of the RTSS to a voxel-array (or not), prior to calculation of DSC, as 
reported by the participants. Corresponding colors in Figures 2-4 indicate the same participant. 
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Fig. 4. Variation in Hausdorff Distance as a percentage of the median Hausdorff Distance reported. (Upper) Full range of reported values, dominated by one outlier. 
(Lower) Rescaled y-axis to remove outliers >100%. Circles indicate implementations where bugs were discovered during the analysis and through discussion with the 
participant. Corresponding colors in Figures 2-4 indicate the same participant. 

Fig. 5. Variation in distance measures from the median results. Results of participants where a bug was found in the 100% Hausdorff Distance have been excluded if 
the bug was likely to impact the accuracy of the plotted distance result. (Upper) Variation in 95% Hausdorff Distance as a percentage of the median of results. (Lower) 
Variation in Average Distance as a percentage of the median result reported. Corresponding colors in Figures 2-4 indicate the same participant. 
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interpreted the RTSS polygon when rasterizing to a voxel array. While 
the self-reported methods of conversion did not correlate with the 
scoring, as observed in Fig. 3, many of the values could be reproduced by 
varying this choice and by applying rounding when converting from real 
world coordinates to voxel indices (see Supplementary Material 5 for 
details). The lack of apparent correspondence between results reported 
and the method reported by the participant, may indicate the partici
pants were not fully aware of how the libraries they used operated. 

For distance-based measures the implementation choices expand 
considerably. 3D distance calculations require converting to a 3D shape 
representation, either voxel-based (whether a binary mask or implicit 
function) or mesh-based, where creation of a voxel-representation was a 
prior step in creating a mesh representation, thus inheriting any inac
curacy in the rasterization process. Calculation of sets of distances from 
these can be performed in a number of ways; directly from mesh vertices 
or voxel locations or via distance transforms from either the meshes or 
the voxel arrays. Distances must then be sampled to the other surface, 
leading to choices on the density and method of sampling. The majority 
of the residual variation in HD observed, after bugs were excluded, can 
be explained by variations induced by the choice of voxelization 
method, suggesting other factors have negligible impact on this single 
extreme value. However, the quantization induced by rasterization to a 
binary mask, together with choice of surface sampling method, can have 
a large impact on AD and 95% HD. When using a binary mask-based 
representation, the quantization can result in up to one voxel error 
(see Supplementary Material 6 for details). 

The investigation of outliers revealed bugs in five of the 13 imple
mentations. Bugs related to an incorrect assumption of dense RTSS 
control point spacing, failure to correctly account for image resolution 
(during rasterization), and incorrect rasterization of the surface. While 
medical device regulations should ensure adequate testing of clinical 
software, higher risk exists where home-made tools are being used for 
research. Importantly, accuracy of such tools must be ensured where 
they are used in the commissioning of medical devices. 

Only one participant used commercial software and therefore no 
assessment can be made as to the degree of variation in definitions or 
implementations of contouring measure between commercial products. 
However, these findings still reveal the challenges and problems for 
assessing contouring with off-the-shelf tooling. It was notable that one 
participant felt unable to complete the survey as they were not aware of 
the implementation choices in the application used and several of the 
responses also indicated uncertainty about the exact behavior of the 
software used. The lack of detailed implementation information avail
able for commercial software may have been a cause of the under- 
representation of such systems in this survey. 

The informal invitation and voluntary participation approach taken 
for this study is a limitation and may therefore not reflect the wider 
experience with quantitative measures in the radiotherapy field. This 
self-selecting nature may have biased the results to those who have 
implemented the measures for themselves (as reflected in the survey) 
and those who are particularly interested in the evaluation of contouring 
from the perspective of contouring research publication or development 
and commissioning of auto-contouring. 

This study has highlighted the variation and potential inaccuracy of 
implementation in common quantitative measurements for assessing 
contouring in radiotherapy. While measures should be robust to 
implementation with precise definition, this should not form the basis of 
choice of measurements used; rather measure should be selected on the 
basis of their ability to provide useful information. Variation in defini
tion for measures means that care must be taken in reporting the results 
of studies evaluating contouring. Such studies should clearly state the 
definition of any measurement used. However, even where definitions 
agree, variation in algorithmic implementation choices between 
different tools can result in substantial variations in the output mea
surements. Therefore, care must be taken when comparing results from 
different studies – even where the same approach appears to have been 

used. Furthermore, this study helped in identifying bugs in imple
mentations having an impact on the quantitative measurements. This 
points to a need for careful testing of such tools. Provision of a DICOM 
dataset with known ground truth answers would assist in the validation 
of such tools and ensure greater consistency when assessing contouring. 
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