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Abstract
End-to-side nerve coaptation brings regenerating axons from the donor to the recipient

nerve. Several techniques have been used to perform coaptation: microsurgical sutures

with and without opening a window into the epi(peri)neurial connective tissue; among these,

window techniques have been proven more effective in inducing axonal regeneration. The

authors developed a sutureless model of end-to-side coaptation in the rat upper limb. In 19

adult Wistar rats, the median and the ulnar nerves of the left arm were approached from the

axillary region, the median nerve transected and the proximal stump sutured to the pectoral

muscle to prevent regeneration. Animals were then randomly divided in two experimental

groups (7 animals each, 5 animals acting as control): Group 1: the distal stump of the tran-

sected median nerve was fixed to the ulnar nerve by applying cyanoacrylate solution;

Group 2: a small epineurial window was opened into the epineurium of the ulnar nerve, car-

ing to avoid damage to the nerve fibres; the distal stump of the transected median nerve

was then fixed to the ulnar nerve by applying cyanoacrylate solution. The grasping test for

functional evaluation was repeated every 10–11 weeks starting from week-15, up to the

sacrifice (week 36). At week 36, the animals were sacrificed and the regenerated nerves

harvested and processed for morphological investigations (high-resolution light microscopy

as well as stereological and morphometrical analysis). This study shows that a) cyanoacry-

late in end-to-side coaptation produces scarless axon regeneration without toxic effects; b)

axonal regeneration and myelination occur even without opening an epineurial window, but
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c) the window is related to a larger number of regenerating fibres, especially myelinated and

mature, and better functional outcomes.

Introduction
A number of experimental [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] as well as clinical
[18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] studies have shown that end-to-
side nerve coaptation is able to induce collateral sprouting from donor nerve’s axons, allowing
for significant repopulation of the distal nerve stump.

The injury to the donor nerve due to microsurgical suture in end-to-side coaptation, seems
to be the starter of axonal growth and reinnervation in distal stump of receiving damaged
nerve. However, it has been observed that this procedure results in the loss (“escape”) of nerve
fibres from the donor nerve, acting as a restricting factor in the surgeon’s mind when choosing
the technique for nerve repair [38,39,40,41,42].

In this study we evaluate the possibility that this kind of reinnervation may be obtained
without microsurgical procedure and, consequently, without the loss of nerve fibres in the
donor nerve.

In an experimental model the receiving (cut) median nerve was coapted to the donor
healthy ulnar nerve, by means of only adhesive biocompatible substance, butyl
2-cyanoacrylate.

Cyanoacrylates are a group of substances well-known and tested for their gluing properties
and to date available for clinical use [43,44,45,46,47,48]. Restrictions to their use in nerve coap-
tation have been registered by some authors [43,48], who detected that uncontrolled contami-
nation by the gluing agent of the coapted nerve surfaces could produce local inflammation and
a scar wall stopping nerve fibre regeneration. However, their findings have been questioned by
other studies, demonstrating that a transient inflammatory effect produced by cyanoacrylate in
the coaptation zone is capable to stimulate local ingrowth of Schwann cells and connective tis-
sue, creating the way for axonal sprouting [44,45,46,47].

The aim of this study was thus 1) to develop a sutureless, less traumatic, simple and fast
technique for coaptation of the distal stump of a dissected nerve onto a nearby health donor
nerve with end-to-side reinnervation model and 2) to prove that the growth of axons is possible
only through the biological events associated with the tropism of the receiving damaged nerve
and the corresponding target organ.

The chosen experimental model was the rat upper limb, which allows a detailed analysis on
functional recovery by grasping test [49,50] followed by morphological evaluation of donor
and receiving nerves [51,52].

Materials and Methods

Surgery
For this study, 19 adult female Wistar rats, weighing approximately 200g, were utilized. Experi-
mental surgery was carried out at the microsurgical laboratory of the Ecole de Chirurgie in
Paris (Institutional license from the “Direction départementale de la protection des popula-
tions”, DDPP number C-75-05-23) according to the French law on experimental animal
research (law no. 87–848, October 19, 1987). All the surgeries were carried out in the period
between January 2012 and March 2013 by expert surgeons certified by the “Service protection
et santé animals de le Ministère de l’Agriculture”.
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All animals were housed in plastic cages with a 12/12 light/dark cycle, and water and food
were available ad libitum. Adequate and standard measures were taken to minimize pain and
discomfort taking into account human endpoints for animal suffering and distress.

After deep anesthesia induced with ketamine (40 mg/250g) and cloropromazine (3.75 mg/
250g), the median and the ulnar nerves of the left upper limb were approached under operating
microscope magnification (ZEISS OPMI 7, magnification 0.4/0.63/1.0/1.6/2.5) from the axil-
lary region and carefully exposed. A 10-mm long segment of the median nerve was dissected
and cut, and the proximal nerve stump was sutured to the pectoral muscle to prevent regenera-
tion. Animals were then randomly divided in two experimental groups:

1. Group 1 (N-butyl-2-cyanoacrylate w/o epineurial window): the distal stump of the tran-
sected median nerve was fixed to the ulnar nerve by applying N-butyl-2-cyanoacrylate solu-
tion (7 animals);

2. Group 2 (N-butyl-2-cyanoacrylate with epineurial window): a small epineurial window was
opened into the epineurium of the ulnar nerve, trying to avoid damage to the nerve fibres
below; the distal stump of the transected median nerve was then fixed to the ulnar nerve by
applying N-butyl-2-cyanoacrylate solution (7 animals).

The skin was then sutured and the animals were allowed to recover.
Five animals were used as un-injured controls (i.e. without sham operation).

Functional assessment
Functional evaluation of median nerve recovery was assessed by the grasping test, as previously
described [50]. Briefly, this test consists of holding the rat by its tail and lowering the animal
towards the device. Then, when the animal grips the grid, it is pulled upward until it loses it.
The balance records the maximum weight that the animal is able to hold up before losing the
grip. Animals were tested every 10–11 weeks starting from week-15, up to the sacrifice (week
36); each animal was tested three times and the average value was recorded. The day before sur-
gery, the function of the left median nerve was assessed to have the control values.

Morphology, stereology and morphometry
36 weeks after surgery, animals were subjected to deep anesthesia (ketamine, 40 mg/250g and
cloropromazine, 3.75 mg/250g) and the median nerve was approached. From each animal, the
regenerated nerve was harvested. Animals were then euthanized with overdose of anesthetic
and animal death was confirmed by exsanguination (abdominal aorta resection).

Nerve specimens were fixed by immediate immersion in 2.5% glutaraldehyde in 0.1 M PBS
pH 7.4 for up to 6 h at 4°C, washed in Sorensen phosphate buffer 0.1M (pH 7.4) with 1.5%
sucrose, and post-fixed in 2% osmium tetroxide for 2 h. Samples were then carefully dehydrated
in passages in ethanol from 30% to 100%, cleared in propylene oxide and embedded in Glauerts’
embedding mixture of resins consisting in equal parts of Araldite M and Araldite Harter, HY 964
(Merck, Darmstadt, Germany), containing 0.5% of the plasticizer dibutylphthalate and 1–2% of
the accelerator 964, DY 064 (Merck, Darmstadt, Germany).

For high-resolution light microscopy, semi-thin transverse sections (2.5 μm thick) were cut
starting from the distal stump of each nerve specimen, using an Ultracut UCT ultramicrotome
(Leica Microsystems, Wetzlar, Germany) and stained with 1% toluidine blue.

For stereological and morphometrical analysis, design-based quantitative morphology was
performed [53,54]. One toluidine-blue section was randomly selected and the cross-sectional
area of the whole nerve section was measured. On the same image, 10–12 sampling fields were
selected using a systematic random sampling protocol [53,55,56]. In each sampling field, the
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"edge effect" was avoided by employing a two-dimensional dissector method which is based on
counting the "tops" of the myelinated fibers. The total number of myelinated fibers, as well as
different size parameters (fiber and axon diameter and myelin thickness) were then calculated.

Statistical analysis
Quantitative data are presented as mean + Standard Error. All data were statistically analyzed
using one-way analysis of variance (SPSS software).

Results

Functional assessment
To investigate whether N-butyl-2-cyanoacrylate solution and the presence or not of the epi-
neurial window can interfere with the regeneration, we first evaluated motor functional recov-
ery after end-to-side coaptation, obtained at the time of the first evaluation (pre-operative) and
after 15, 25 and 36 weeks from the repair. Results are presented in Fig 1. 15 weeks after nerve
repair, only two animals of Group 1 (N-butyl-2-cyanoacrylate w/o epineurial window) started
to recover motor function (Fig 1A), whereas in Group 2 (N-butyl-2-cyanoacrylate with epi-
neurial window) already five animals reached this result (Fig 1B). This discrepancy between
the two experimental groups is more detectable after 25 and 36 weeks: all the animals of group
2, but only three animals of Group 1, recovered motor function at the end of the experiment
(36 weeks). The remaining four animals of Group 1 did not recovered active digit flexion even
36 weeks after nerve repair. However, both experimental groups were statistically different
(p� 0.05) compared to control, also after 36 weeks.

Morphological analysis
We compared semi-thin sections of the regenerated nerves harvested 36 weeks after end-to-
side coaptation. In Fig 2, representative images taken from the distal part of the median nerve
are shown. Since Group 1 (N-butyl-2-cyanoacrylate w/o epineurial window) showed only a

Fig 1. Performance of rats in the grasping test following end-to-side neurorrhaphy. A: N-butyl-2-cyanoacrylate w/o epineurial window group (group 1);
B: N-butyl-2-cyanoacrylate with epineurial window group (group 2). A predominately number of animals of group 2 has recovered motor function (five animals
after 15 weeks and all the seven animals after 36 weeks), compared to group 1 (only two animals recovered motor function activity after 15 weeks, and three
animals after 36 weeks). Data are presented as scatterplots showing individual animal values with integrated mean and variance values.

doi:10.1371/journal.pone.0148443.g001
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partial functional recovery (some animals recovered and some animals did not), we displayed
representative pictures of both conditions (Fig 2B–2B’, Group 1 with functional recovery; 2C–
2C’, Group 1 without functional recovery).

Low power images of whole cross-section of regenerated nerves showed that, in accordance
with functional results, animals belonging to Group 1 that did not recovered functional activity
(Fig 2C), have a smaller cross-sectional area compared to animals of Group 1 which recovered
functional activity (Fig 2B) and to animals of Group 2 (N-butyl-2-cyanoacrylate with epineur-
ial window) (Fig 2D).

Moreover, high magnification pictures showed that regenerating fibres are present in all
experimental group, but animals belonging to Group 1 without functional recovery (Fig 2C’),
have fewer, smaller and with thinner myelin thickness fibres compared to animals of Group 1
which recovered functional activity (Fig 2B’) and to animals of Group 2 (Fig 2D’). Among
Group 1, animals with functional recovery showed regenerated fibres comparable to those of
animals belonging to Group 2 from a morphological point of view.

Stereological and morphometric analysis
Quantitative stereological evaluations for axon numbers, and morphometrical analysis for
axon and fibre diameter and thickness of the myelin sheath, were performed in the distal part
of the median nerve in both experimental groups, and compared to control values (Fig 3).

Also in this case we divided the results of Group 1 (N-butyl-2-cyanoacrylate w/o epineurial
window) into two parts: animal which displayed functional recovery (n = 3) and animals which
did not (n = 4).

Distal to the end-to-side coaptation, the number of myelinated axons was significantly
decreased (p�0.01) in both experimental groups (Group 1, both conditions and Group 2) com-
pared to control nerve. Moreover, Group 1_without functional recovery showed significantly
less (p�0.01) myelinated fibre number compared to Group 2. Intriguingly, no significant dif-
ferences were present between Group 1_with functional recovery and Group 2 (Fig 3A).

With regard to size parameters, both experimental groups (Group 1, both conditions and
Group 2) showed smaller axon and fibre diameters compared to control (p�0.01). Moreover,
Group 1_without functional recovery, showed significantly smaller (p�0.05) axon and fibre
diameters compared to Group 1_ with functional recovery. No significant differences were

Fig 2. High resolution light microscopic images of a control median nerve (A-A’) and median nerves 36 weeks after end-to-side coaptation. B-B’: N-
butyl-2-cyanoacrylate w/o epineurial window group, animal with functional recovery; C-C’: N-butyl-2-cyanoacrylate w/o epineurial window group, animal
without functional recovery; D-D’: N-butyl-2-cyanoacrylate with epineurial window group. Both experimental groups show regenerating fibres, but animals
which did not recover functional activity of Group 1 (C-C’) show smaller nerve cross sectional area with fewer and smaller fibres compared to both Group
1_with functional recovery (B-B’) and Group 2 (D-D’). Bars: A-D: 100 μm; A’D’: 10 μm.

doi:10.1371/journal.pone.0148443.g002
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present between Group 1_with functional recovery and Group 2. Finally, also myelin thickness
was decreased after end-to-side repair compared to control, but the two experimental groups
showed comparable values (Fig 3B).

Discussion

1) Why nerve fibers sprout throughout end-to-side coaptation sites?
Several studies have investigated the starting mechanism of end-to-side nerve repair; in their
accurate and original review, Bontioti and Dahlin [57] proposed three basic mechanisms

Fig 3. Histograms showing the results of stereological andmorphometric evaluations. Data of Group 1
(N-butyl-2-cyanoacrylate w/o epineurial window) are divided into two parts: animal which displayed functional
recovery (n = 3) and animals which did not (n = 4). Group 2 (N-butyl-2-cyanoacrylate with epineurial window)
shows more myelinated fibres compared to animals of Group 1 (N-butyl-2-cyanoacrylate w/o epineurial
window) without functional recovery. Significant differences are detectable for the analyzed size parameters
between animals of Group 1_with functional recovery and animals of Group 1_without functional recovery.
Values in the graphics are expressed as mean+standard error. $: p�0.001 between control and both the
experimental groups; **: p�0.01; *: p�0.05.

doi:10.1371/journal.pone.0148443.g003
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consisting in a) contamination from axons regenerating from the proximal stump of the recipi-
ent nerve, b) true collateral sprouting from healthy fibres of the donor nerve and c) true axonal
regeneration from damaged fibres of the donor nerve (“terminal sprouting”).

a) Contamination can be a problem and must be taken into account, especially when the
site of end-to-side coaptation is near the site of recipient nerve lesion: traditional technique of
treatment of neuroma can help.

b) Collateral sprouting from healthy fibres does not need donor nerve trauma: simple coap-
tation with the chemical call from the degenerated distal stump and from the distal effector is
capable to induce axonal ingrowth from the donor trunk’s healthy fibres [58,59,60].

The origin of the axons has been demonstrated with double label techniques from Ranvier’s
nodes proximal to coaptation site [61], but the level has been questioned, with some authors
believing the closest Ranvier nodes to be involved [62] and other papers [11,63] claiming for a
role played by more proximal structures. Maybe these different opinions have been produced
by different techniques and methods of investigation, as just noted [64]: the former study [62]
had been conducted on an epineurial window model (see below c) and using electrophysiologi-
cal registration, and the latter by simple suture (see below c) to the donor nerve and double ret-
rograde labelling technique [11] or epineurial window ad suturing (see below c), microtearing
and histomorphometric analysis [63]. A role of interneuronal signalling in dorsal root ganglia
had been claimed [65] and the hypothesis of a Central Nervous System origin has been recently
regained [64].

Moreover, the efficacy of simple coaptation has been questioned [57,60] as far as it concerns
axon number, myelination and functional results and other concerns have been introduced
regarding the influence of axons ingrowing into the recipient nerve, whether motor
[66,67,68,69,70], sensory [42,71,72] or even autonomic [73] in this kind of regeneration. Motor
axons seem to need injury to start regeneration, whereas sensory axons can sprout spontane-
ously [42,57,72,74,75,76]. Finally, neuronal plasticity from pruning, including also assessment
of agonistic donors to be selected [38,77,78] to brain involvement has also been investigated
[57,79,80,81,82].

c) Trauma to the donor nerve is the cause of the third mechanism evoked by Bontioti and
Dahlin [57]: terminal sprouting can be produced either opening a window in the trunk connec-
tive, or passing classical suture stitches.

As regards opening a window, several papers claim a window to be opened in the donor
trunk; in particular, some clinical studies [38] show that a more complex and harder connective
structure envelopes the nerve trunks and an epiperineurial window is needed to start end-to-
side axonal regeneration; these data have confirmed previous experiences in rats and rabbits
respectively [83,84]. On the other hand, in rats, a simple epineurial window seems enough
[85,86,87]. A variant opening a larger epineurial window has also been proposed by Yan et al
[88,89].

As regards suture without window, several authors suggest that coaptation without a win-
dow is capable to attract axons from the intact donor nerve trunk [1,4,6,11]. Interestingly,
some authors [90] described a model of end-to-side coaptation without any window but with
perineurial suture as more effective in producing axon regeneration than the same model with
epineurial suture. Kelly et al [59] have also risen the question for a role played by pressure pro-
duced by the sutures as well as associated bleeding and inflammation.

The most popular technique, however, consists in passing stitches after opening an epineur-
ial or an epiperineurial window (that is, coupling the two modalities of donor nerve trauma
above mentioned) and results with this last technique are recognized by most authors as the
best as far as it concerns number and myelination of axons and functional efficaciousness
[10,14,59,72,80,91,92,93,94,95,96,97].
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2) Glues in nerve reconstruction
Glues deserve separate considerations; in basic experiences, fibrin glue has been shown to be a
good sealant in end-to-end nerve repair [98,99,100], and starting from Palazzi’s data [98], it
has also been investigated as an interesting conduit for nerve regeneration, but its role has been
questioned as not effective in end-to-side nerve regeneration [5]; however, these data have
been questioned and fibrin’s role reconsidered [101,102].

Introduction of cyanoacrylates in both experimental and clinical practice has stimulated
researchers’ curiosity, and has been applied to end-to-side nerve repair, but with debatable out-
comes, whether questioned [43,48] or not [44,45,46,47]. Some recent experiences [103] are
based on the debatable premise that cyanoacrylate produce inflammation and scar in the coap-
tation site.

a) Why end-to-side coaptation with glue?. All the experiences with glues have reported
coupling gluing to opening an epineurial window. Indeed, even if some observations and
hypotheses coming from basic sciences have been coupled with all these technique, no data but
morphological analyses have been added to the biology of end-to-side nerve repair.

In fact, the role of Schwann cells and chemical signals (growth factors, cytokines from the
distal stump products of Wallerian degeneration and reorganization, and also exocytosis prod-
ucts from the distal effector) has been suggested in attracting axons through a nerve injury or a
gap [60], but not yet investigated in case of pure end-to side coaptation.

Both functional and morphological outcomes in our study confirm that end-to-side repair
is followed by axonal regeneration in each group of animals, showing that axonal regeneration
as well as myelination occurs both after opening an epineurial window and after simple coapta-
tion of the distal stump of the cut nerve to the trunk of the healthy donor nerve. That is, from a
qualitative point of view speaking, the event “regeneration” occurs whether the epineurium is
disrupted or not. These data confirm the previous hypothesis from Viterbo [1] and Lundborg
[6] that an important call comes from the distal stump to attract axons and can be explained
with recent data from in vitro and experimental studies, as this same role speculated in case of
end-to-end and/or graft or tubule repair [60] could be applied to our model.

Our study, however, demonstrates a marked and statistically significant difference between
end-to-side axonal regeneration with epineurial window with respect to the group without
window; indeed, not all the animals in the group without window showed functional recovery,
whereas all the animals in the group with window recovered; this was also reflected from a
morphological and morphoquantitative point of view, where the epineurial window spread out
more axons and fibres. These data confirm previous evidences
[10,14,59,72,80,91,92,93,94,95,96,97] that a trauma such as opening a window in the nerve
trunk connective and passing a suture stitch stimulates axonal growth into the distal stump.

b) Is gluing with cyanoacrylates safe and does it produce nerve regeneration in the end-
to-side model?. Our study shows that gentle applying of small quantities of cyanoacrylates
on the coaptation site is enough to produce regeneration through this site, according to other
experiences [44,45,46,47]. We did not experience either toxic local effects nor scar impeding
regeneration, reported in other papers [43,48]. Indeed, neither fibrous tissue reaction nor other
harmful effects on axonal regeneration were observed from a histologic evaluation. Dealing
with toxicity through blood-nerve barrier, cyanoacrylate has recently been used in a rat model
in a specific nanoparticle form to vehicle peptides into brain targets; no toxicity neither inflam-
mation have been shown [104].

In our opinion, safe gluing with cyanoacrylates can be simply and carefully obtained and
there is no need for isolating the coaptation site with a biological chamber [103], nor the stimu-
lus by suture stitches is needed to obtain regeneration through end-to-side coaptation [90]. In
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this last case, axons sprouting occurs in a sutureless model, and our results demonstrate that it
is detectable, even if it looks poorer, with a simple coaptation, but more evident and significant
when coaptation is coupled to opening a window in the donor trunk, even if with the “escape”
effect [36,38,39,40,41,42] that is with a reduction of axons, fibres and myelination in the donor
trunk. This important side effect seems to occur whatever the coaptation method after opening
a window in the nerve connective, even that it has been questioned by some important clinical
papers [94,105], it still represents to date a major concern for clinical application of end-to-side
coaptation [42,72].

Conclusions
We can conclude that although regeneration per se applies to end-to-side repair after sutureless
coaptation, an epineurial window is needed to achieve a significant number and quality of mye-
linated fibres as well as effective functional recovery. The use of cyanoacrylate glue provides to
the microsurgeon a valid alternative to suturing for end-to-side nerve coaptation.

Author Contributions
Conceived and designed the experiments: IP SG LMMRC. Performed the experiments: IP MR
GR NV. Analyzed the data: IP SG GR NV. Contributed reagents/materials/analysis tools: SG
MRC. Wrote the paper: IP LMMR GR NV SGMRC.

References
1. Viterbo F, Trindade JC, Hoshino K, Mazzoni Neto A (1992) Latero-terminal neurorrhaphy without

removal of the epineural sheath. Experimental study in rats. Rev Paul Med 110: 267–275. PMID:
1341024

2. Gurney ME, Yamamoto H, Kwon Y (1992) Induction of motor neuron sprouting in vivo by ciliary neuro-
trophic factor and basic fibroblast growth factor. J Neurosci 12: 3241–3247. PMID: 1494954

3. Viterbo F, Trindade JC, Hoshino K, Mazzoni Neto A (1994) End-to-side neurorrhaphy with removal of
the epineurial sheath: an experimental study in rats. Plast Reconstr Surg 94: 1038–1047. PMID:
7972457

4. McCallister WV, Tang P, Trumble TE (1999) Is end-to-side neurorrhaphy effective? A study of axonal
sprouting stimulated from intact nerves. J Reconstr Microsurg 15: 597–603; discussion 603–594.
PMID: 10608741

5. Bertelli JA, dos Santos AR, Calixto JB (1996) Is axonal sprouting able to traverse the conjunctival lay-
ers of the peripheral nerve? A behavioral, motor, and sensory study of end-to-side nerve anastomosis.
J Reconstr Microsurg 12: 559–563. PMID: 8951126

6. Lundborg G, Zhao Q, Kanje M, Danielsen N, Kerns JM (1994) Can sensory and motor collateral
sprouting be induced from intact peripheral nerve by end-to-side anastomosis? J Hand Surg Br 19:
277–282. PMID: 8077808

7. Mennen U (1998) End-to-side nerve suture in the primate (chacma baboon). Hand Surg 3: 1–6.

8. Tham SK, MorrisonWA (1998) Motor collateral sprouting through an end-to-side nerve repair. J Hand
Surg Am 23: 844–851. PMID: 9763260

9. Matsumoto M, Hirata H, Nishiyama M, Morita A, Sasaki H, Uchida A (1999) Schwann cells can induce
collateral sprouting from intact axons: experimental study of end-to-side neurorrhaphy using a Y-
chamber model. J Reconstr Microsurg 15: 281–286. PMID: 10363551

10. Giovanoli P, Koller R, Meuli-Simmen C, Rab M, Haslik W, Mittlböck M, et al. (2000) Functional and
morphometric evaluation of end-to-side neurorrhaphy for muscle reinnervation. Plast Reconstr Surg
106: 383–392. PMID: 10946937

11. Kanje M, Arai T, Lundborg G (2000) Collateral sprouting from sensory and motor axons into an end to
side attached nerve segment. Neuroreport 11: 2455–2459. PMID: 10943703

12. Yamauchi T, Maeda M, Tamai S, Tamai M, Yajima H, Takakura Y, et al. (2000) Collateral sprouting
mechanism after end-to-side nerve repair in the rat. Med Electron Microsc 33: 151–156. PMID:
11810473

Epineurial Window in a Sutureless Model of End-to-Side Nerve Repair

PLOS ONE | DOI:10.1371/journal.pone.0148443 February 12, 2016 9 / 13

http://www.ncbi.nlm.nih.gov/pubmed/1341024
http://www.ncbi.nlm.nih.gov/pubmed/1494954
http://www.ncbi.nlm.nih.gov/pubmed/7972457
http://www.ncbi.nlm.nih.gov/pubmed/10608741
http://www.ncbi.nlm.nih.gov/pubmed/8951126
http://www.ncbi.nlm.nih.gov/pubmed/8077808
http://www.ncbi.nlm.nih.gov/pubmed/9763260
http://www.ncbi.nlm.nih.gov/pubmed/10363551
http://www.ncbi.nlm.nih.gov/pubmed/10946937
http://www.ncbi.nlm.nih.gov/pubmed/10943703
http://www.ncbi.nlm.nih.gov/pubmed/11810473


13. McCallister WV, Tang P, Smith J, Trumble TE (2001) Axonal regeneration stimulated by the combina-
tion of nerve growth factor and ciliary neurotrophic factor in an end-to-side model. J Hand Surg Am
26: 478–488. PMID: 11418911

14. Hayashi A, Yanai A, Komuro Y, Nishida M, Inoue M, Seki T (2004) Collateral sprouting occurs follow-
ing end-to-side neurorrhaphy. Plast Reconstr Surg 114: 129–137. PMID: 15220580

15. Cederna PS, Kalliainen LK, Urbanchek MG, Rovak JM, KuzonWM Jr (2001) "Donor" muscle structure
and function after end-to-side neurorrhaphy. Plast Reconstr Surg 107: 789–796. PMID: 11310430

16. Papalia I, Geuna S, D'Alcontres FS, Tos P (2007) Origin and history of end-to-side neurorrhaphy.
Microsurgery 27: 56–61. PMID: 17205577

17. Geuna S, Papalia I, Tos P (2006) End-to-side (terminolateral) nerve regeneration: a challenge for neu-
roscientists coming from an intriguing nerve repair concept. Brain Res Rev 52: 381–388. PMID:
16766038

18. Mennen U (1999) End-to-side nerve suture—a technique to repair peripheral nerve injury. S Afr Med J
89: 1188–1194. PMID: 10599301

19. Kostakoglu N (1999) Motor and sensory reinnervation in the hand after an end-to-side median to ulnar
nerve coaptation in the forearm. Br J Plast Surg 52: 404–407. PMID: 10618985

20. Battiston B, Lanzetta M (1999) Reconstruction of high ulnar nerve lesions by distal double median to
ulnar nerve transfer. J Hand Surg Am 24: 1185–1191. PMID: 10584939

21. Kayikcioglu A, Karamursel S, Agaoglu G, Kecik A, Celiker R, Cetin A (2000) End-to-side neurorrha-
phies of the ulnar and median nerves at the wrist: report of two cases without sensory or motor
improvement. Ann Plast Surg 45: 641–643. PMID: 11128764

22. Al-Qattan MM (2001) Terminolateral neurorrhaphy: review of experimental and clinical studies. J
Reconstr Microsurg 17: 99–108. PMID: 11310757

23. Al-Qattan MM (2002) End-to-side nerve repair. J Hand Surg Am 27: 739; author reply 739–740.
PMID: 12132105

24. Tung TH, Mackinnon SE (2001) Flexor digitorum superficialis nerve transfer to restore pronation: two
case reports and anatomic study. J Hand Surg Am 26: 1065–1072. PMID: 11721252

25. Mennen U, van der Westhuizen MJ, Eggers IM (2003) Re-innervation of M. biceps by end-to-side
nerve suture. Hand Surg 8: 25–31. PMID: 12923931

26. Tung TH, Novak CB, Mackinnon SE (2003) Nerve transfers to the biceps and brachialis branches to
improve elbow flexion strength after brachial plexus injuries. J Neurosurg 98: 313–318. PMID:
12593617

27. Frey M, Giovanoli P (2003) End-to-side neurorrhaphy of motor nerves: reinnervation of free muscle
transplants—first clinical application. Eur J Plast Surg 26: 89–94.

28. Frey M, Giovanoli P (2003) End-to-side neurorrhaphy of sensory nerves. Eur J Plast Surg 26: 85–88.

29. Bertelli JA, Ghizoni MF (2003) Nerve repair by end-to-side coaptation or fascicular transfer: a clinical
study. J Reconstr Microsurg 19: 313–318. PMID: 14506579

30. Yuksel F, Peker F, Celikoz B (2004) Two applications of end-to-side nerve neurorrhaphy in severe
upper-extremity nerve injuries. Microsurgery 24: 363–368. PMID: 15378581

31. Amr SM, Moharram AN (2005) Repair of brachial plexus lesions by end-to-side side-to-side grafting
neurorrhaphy: experience based on 11 cases. Microsurgery 25: 126–146. PMID: 15389968

32. Millesi H, Schmidhammer R (2008) Nerve fiber transfer by end-to-side coaptation. Hand Clin 24:
461–483, vii. doi: 10.1016/j.hcl.2008.04.007 PMID: 18928894

33. Viterbo F, Amr AH, Stipp EJ, Reis FJ (2009) End-to-side neurorrhaphy: past, present, and future.
Plast Reconstr Surg 124: e351–358. doi: 10.1097/PRS.0b013e3181bf8471 PMID: 19952703

34. Tos P, Geuna S, Papalia I, Conforti LG, Artiaco S, Battiston B (2011) Experimental and clinical
employment of end-to-side coaptation: our experience. Acta Neurochir Suppl 108: 241–245. doi: 10.
1007/978-3-211-99370-5_37 PMID: 21107966

35. Terzis JK, Tzafetta K (2009) "Babysitter" procedure with concomitant muscle transfer in facial paraly-
sis. Plast Reconstr Surg 124: 1142–1156. doi: 10.1097/PRS.0b013e3181b2b8bc PMID: 19935298

36. Magdi Sherif M, Amr AH (2010) Intrinsic hand muscle reinnervation by median-ulnar end-to-side
bridge nerve graft: case report. J Hand Surg Am 35: 446–450. doi: 10.1016/j.jhsa.2009.10.033 PMID:
20060231

37. Colonna M, Russo A, Galeano M, Delia G, Pajardi G, d'Alcontres FS (2016) “Baby sitting” procedures
in proximal nerve trunk injuries: A review of graft bridging techniques at the level of forearm and a per-
sonal approach. Plast Aesth Res. In Press.

Epineurial Window in a Sutureless Model of End-to-Side Nerve Repair

PLOS ONE | DOI:10.1371/journal.pone.0148443 February 12, 2016 10 / 13

http://www.ncbi.nlm.nih.gov/pubmed/11418911
http://www.ncbi.nlm.nih.gov/pubmed/15220580
http://www.ncbi.nlm.nih.gov/pubmed/11310430
http://www.ncbi.nlm.nih.gov/pubmed/17205577
http://www.ncbi.nlm.nih.gov/pubmed/16766038
http://www.ncbi.nlm.nih.gov/pubmed/10599301
http://www.ncbi.nlm.nih.gov/pubmed/10618985
http://www.ncbi.nlm.nih.gov/pubmed/10584939
http://www.ncbi.nlm.nih.gov/pubmed/11128764
http://www.ncbi.nlm.nih.gov/pubmed/11310757
http://www.ncbi.nlm.nih.gov/pubmed/12132105
http://www.ncbi.nlm.nih.gov/pubmed/11721252
http://www.ncbi.nlm.nih.gov/pubmed/12923931
http://www.ncbi.nlm.nih.gov/pubmed/12593617
http://www.ncbi.nlm.nih.gov/pubmed/14506579
http://www.ncbi.nlm.nih.gov/pubmed/15378581
http://www.ncbi.nlm.nih.gov/pubmed/15389968
http://dx.doi.org/10.1016/j.hcl.2008.04.007
http://www.ncbi.nlm.nih.gov/pubmed/18928894
http://dx.doi.org/10.1097/PRS.0b013e3181bf8471
http://www.ncbi.nlm.nih.gov/pubmed/19952703
http://dx.doi.org/10.1007/978-3-211-99370-5_37
http://dx.doi.org/10.1007/978-3-211-99370-5_37
http://www.ncbi.nlm.nih.gov/pubmed/21107966
http://dx.doi.org/10.1097/PRS.0b013e3181b2b8bc
http://www.ncbi.nlm.nih.gov/pubmed/19935298
http://dx.doi.org/10.1016/j.jhsa.2009.10.033
http://www.ncbi.nlm.nih.gov/pubmed/20060231


38. Mackinnon SE, Dellon AL, O'Brien JP (1991) Changes in nerve fiber numbers distal to a nerve repair
in the rat sciatic nerve model. Muscle Nerve 14: 1116–1122. PMID: 1745287

39. Cederna PS, Youssef MK, Asato H, Urbanchek MG, KuzonWM Jr (2000) Skeletal muscle reinnerva-
tion by reduced axonal numbers results in whole muscle force deficits. Plast Reconstr Surg 105:
2003–2009; discussion 2010–2001. PMID: 10839398

40. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. (2000) Imaging neuro-
nal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41–51.
PMID: 11086982

41. Myckatyn TM, Mackinnon SE, Hunter DA, Brakefield D, Parsadanian A (2004) A novel model for the
study of peripheral-nerve regeneration following common nerve injury paradigms. J Reconstr Micro-
surg 20: 533–544. PMID: 15534781

42. Dvali LT, Myckatyn TM (2008) End-to-side nerve repair: review of the literature and clinical indications.
Hand Clin 24: 455–460, vii. doi: 10.1016/j.hcl.2008.04.006 PMID: 18928893

43. Wieken K, Angioi-Duprez K, Lim A, Marchal L, Merle M (2003) Nerve anastomosis with glue: compar-
ative histologic study of fibrin and cyanoacrylate glue. J Reconstr Microsurg 19: 17–20. PMID:
12582962

44. Choi BH, Kim BY, Huh JY, Lee SH, Zhu SJ, Jung JH, et al. (2004) Microneural anastomosis using cya-
noacrylate adhesives. Int J Oral Maxillofac Surg 33: 777–780. PMID: 15556326

45. Landegren T, Risling M, Brage A, Persson JK (2006) Long-term results of peripheral nerve repair: a
comparison of nerve anastomosis with ethyl-cyanoacrylate and epineural sutures. Scand J Plast
Reconstr Surg Hand Surg 40: 65–72. PMID: 16537251

46. Landegren T, Risling M, Persson JK (2007) Local tissue reactions after nerve repair with ethyl-cyano-
acrylate compared with epineural sutures. Scand J Plast Reconstr Surg Hand Surg 41: 217–227.
PMID: 17886134

47. Landegren T, Risling M, Persson JK, Sonden A (2010) Cyanoacrylate in nerve repair: transient cyto-
toxic effect. Int J Oral Maxillofac Surg 39: 705–712. doi: 10.1016/j.ijom.2010.03.008 PMID: 20434310

48. Gencer ZK, Ozkiris M, Saydam L, Daglioglu YK, Sakallioglu O, Kuyucu Y, et al. (2014) The compari-
son of histological results of experimentally created facial nerve defects repaired by 2 different anasto-
mosis techniques: classic suture technique or tissue adhesives for nerve anastomosis? J Craniofac
Surg 25: 652–656. doi: 10.1097/SCS.0000000000000605 PMID: 24621715

49. Bertelli JA, Mira JC (1995) The grasping test: a simple behavioral method for objective quantitative
assessment of peripheral nerve regeneration in the rat. J Neurosci Methods 58: 151–155. PMID:
7475220

50. Papalia I, Tos P, Stagno d'Alcontres F, Battiston B, Geuna S (2003) On the use of the grasping test in
the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function
recovery. J Neurosci Methods 127: 43–47. PMID: 12865147

51. Fox IK, Brenner MJ, Johnson PJ, Hunter DA, Mackinnon SE (2012) Axonal regeneration and motor
neuron survival after microsurgical nerve reconstruction. Microsurgery 32: 552–562. doi: 10.1002/
micr.22036 PMID: 22806696

52. Kovacic U, Tomsic M, Sketelj J, Bajrovic FF (2007) Collateral sprouting of sensory axons after end-to-
side nerve coaptation—a longitudinal study in the rat. Exp Neurol 203: 358–369. PMID: 17045263

53. Geuna S, Tos P, Battiston B, Guglielmone R (2000) Verification of the two-dimensional disector, a
method for the unbiased estimation of density and number of myelinated nerve fibers in peripheral
nerves. Ann Anat 182: 23–34. PMID: 10668555

54. Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130: 813–831.
PMID: 15652981

55. Larsen JO (1998) Stereology of nerve cross sections. J Neurosci Methods 85: 107–118. PMID:
9874147

56. Piskin A, Kaplan S, Aktas A, Ayyildiz M, Raimondo S, Aliç T, et al. (2009) Platelet gel does not improve
peripheral nerve regeneration: an electrophysiological, stereological, and electron microscopic study.
Microsurgery 29: 144–153. doi: 10.1002/micr.20599 PMID: 19031394

57. Bontioti E, Dahlin LB (2009) Chapter 12: Mechanisms underlying the end-to-side nerve regeneration.
Int Rev Neurobiol 87: 251–268. doi: 10.1016/S0074-7742(09)87012-8 PMID: 19682641

58. Chen YG, Brushart TM (1998) The effect of denervated muscle and Schwann cells on axon collateral
sprouting. J Hand Surg Am 23: 1025–1033. PMID: 9848553

59. Kelly EJ, Jacoby C, Terenghi G, Mennen U, Ljungberg C, Wiberg M (2007) End-to-side nerve coapta-
tion: a qualitative and quantitative assessment in the primate. J Plast Reconstr Aesthet Surg 60: 1–
12. PMID: 17126261

Epineurial Window in a Sutureless Model of End-to-Side Nerve Repair

PLOS ONE | DOI:10.1371/journal.pone.0148443 February 12, 2016 11 / 13

http://www.ncbi.nlm.nih.gov/pubmed/1745287
http://www.ncbi.nlm.nih.gov/pubmed/10839398
http://www.ncbi.nlm.nih.gov/pubmed/11086982
http://www.ncbi.nlm.nih.gov/pubmed/15534781
http://dx.doi.org/10.1016/j.hcl.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18928893
http://www.ncbi.nlm.nih.gov/pubmed/12582962
http://www.ncbi.nlm.nih.gov/pubmed/15556326
http://www.ncbi.nlm.nih.gov/pubmed/16537251
http://www.ncbi.nlm.nih.gov/pubmed/17886134
http://dx.doi.org/10.1016/j.ijom.2010.03.008
http://www.ncbi.nlm.nih.gov/pubmed/20434310
http://dx.doi.org/10.1097/SCS.0000000000000605
http://www.ncbi.nlm.nih.gov/pubmed/24621715
http://www.ncbi.nlm.nih.gov/pubmed/7475220
http://www.ncbi.nlm.nih.gov/pubmed/12865147
http://dx.doi.org/10.1002/micr.22036
http://dx.doi.org/10.1002/micr.22036
http://www.ncbi.nlm.nih.gov/pubmed/22806696
http://www.ncbi.nlm.nih.gov/pubmed/17045263
http://www.ncbi.nlm.nih.gov/pubmed/10668555
http://www.ncbi.nlm.nih.gov/pubmed/15652981
http://www.ncbi.nlm.nih.gov/pubmed/9874147
http://dx.doi.org/10.1002/micr.20599
http://www.ncbi.nlm.nih.gov/pubmed/19031394
http://dx.doi.org/10.1016/S0074-7742(09)87012-8
http://www.ncbi.nlm.nih.gov/pubmed/19682641
http://www.ncbi.nlm.nih.gov/pubmed/9848553
http://www.ncbi.nlm.nih.gov/pubmed/17126261


60. WoodMD, Mackinnon SE (2015) Pathways regulating modality-specific axonal regeneration in
peripheral nerve. Exp Neurol 265: 171–175. doi: 10.1016/j.expneurol.2015.02.001 PMID: 25681572

61. Zhang F, Fischer KA (2002) End-to-side neurorrhaphy. Microsurgery 22: 122–127. PMID: 11992500

62. Tanigawa N, Saito T, Ogawa K, Iida H (2005) Origin of regenerated axons in nerve bypass grafts. J
Neurotrauma 22: 605–612. PMID: 15892604

63. Zhu QT, Zhu JK, Chen GY (2008) Location of collateral sprouting of donor nerve following end-to-side
neurorrhaphy. Muscle Nerve 38: 1506–1509. doi: 10.1002/mus.21116 PMID: 18816625

64. Kim JK, Chung MS, Baek GH (2011) The origin of regenerating axons after end-to-side neurorrhaphy
without donor nerve injury. J Plast Reconstr Aesthet Surg 64: 255–260. doi: 10.1016/j.bjps.2010.04.
033 PMID: 20580334

65. Bajrovic F, Kovacic U, Pavcnik M, Sketelj J (2002) Interneuronal signalling is involved in induction of
collateral sprouting of nociceptive axons. Neuroscience 111: 587–596. PMID: 12031346

66. Brushart TM (1988) Preferential reinnervation of motor nerves by regenerating motor axons. J Neu-
rosci 8: 1026–1031. PMID: 3346713

67. Gordon T, Yang JF, Ayer K, Stein RB, Tyreman N (1993) Recovery potential of muscle after partial
denervation: a comparison between rats and humans. Brain Res Bull 30: 477–482. PMID: 8457897

68. Brushart TM (1993) Motor axons preferentially reinnervate motor pathways. J Neurosci 13: 2730–
2738. PMID: 8501535

69. Bontioti EN, Kanje M, Dahlin LB (2003) Regeneration and functional recovery in the upper extremity
of rats after various types of nerve injuries. J Peripher Nerv Syst 8: 159–168. PMID: 12904237

70. Bontioti E, Kanje M, Lundborg G, Dahlin LB (2005) End-to-side nerve repair in the upper extremity of
rat. J Peripher Nerv Syst 10: 58–68. PMID: 15703019

71. Tam SL, Gordon T (2003) Neuromuscular activity impairs axonal sprouting in partially denervated
muscles by inhibiting bridge formation of perisynaptic Schwann cells. J Neurobiol 57: 221–234.
PMID: 14556287

72. Pannucci C, Myckatyn TM, Mackinnon SE, Hayashi A (2007) End-to-side nerve repair: review of the
literature. Restor Neurol Neurosci 25: 45–63. PMID: 17473395

73. Chung K, Chung JM (2001) Sympathetic sprouting in the dorsal root ganglion after spinal nerve liga-
tion: evidence of regenerative collateral sprouting. Brain Res 895: 204–212. PMID: 11259779

74. Tarasidis G, Watanabe O, Mackinnon SE, Strasberg SR, Haughey BH, Hunter DA (1997) End-to-side
neurorrhaphy resulting in limited sensory axonal regeneration in a rat model. Ann Otol Rhinol Laryngol
106: 506–512. PMID: 9199612

75. Tarasidis G, Watanabe O, Mackinnon SE, Strasberg SR, Haughey BH, Hunter DA (1998) End-to-side
neurorraphy: a long-term study of neural regeneration in a rat model. Otolaryngol Head Neck Surg
119: 337–341. PMID: 9781986

76. Beck-Broichsitter BE, Becker ST, Lamia A, Fregnan F, Geuna S, Sinis N (2014) Sensoric protection
after median nerve injury: babysitter-procedure prevents muscular atrophy and improves neuronal
recovery. Biomed Res Int 2014: 724197. doi: 10.1155/2014/724197 PMID: 25133176

77. Lutz BS, Chuang DC, Hsu JC, Ma SF, Wei FC (2000) Selection of donor nerves—an important factor
in end-to-side neurorrhaphy. Br J Plast Surg 53: 149–154. PMID: 10878839

78. Papalia I, Cardaci A, d'Alcontres FS, Lee JM, Tos P, Geuna S (2007) Selection of the donor nerve for
end-to-side neurorrhaphy. J Neurosurg 107: 378–382. PMID: 17695393

79. Sanapanich K, MorrisonWA, Messina A (2002) Physiologic and morphologic aspects of nerve regen-
eration after end-to-end or end-to-side coaptation in a rat model of brachial plexus injury. J Hand Surg
Am 27: 133–142. PMID: 11810627

80. Witzel C, Rohde C, Brushart TM (2005) Pathway sampling by regenerating peripheral axons. J Comp
Neurol 485: 183–190. PMID: 15791642

81. Samal F, Haninec P, Raska O, Dubovy P (2006) Quantitative assessment of the ability of collateral
sprouting of the motor and primary sensory neurons after the end-to-side neurorrhaphy of the rat mus-
culocutaneous nerve with the ulnar nerve. Ann Anat 188: 337–344. PMID: 16856598

82. Sananpanich K, Galea MP, MorrisonWA, Messina A (2007) Quantitative characterization of regener-
ating axons after end-to-side and end-to-end coaptation in a rat brachial plexus model: a retrograde
tracer study. J Neurotrauma 24: 864–875. PMID: 17518540

83. Spencer PS, Weinberg HJ, Raine CS, Prineas JW (1975) The perineurial window—a new model of
focal demyelination and remyelination. Brain Res 96: 323–329. PMID: 1175017

84. Zhang Z, Johnson EO, Vekris MD, Zoubos AB, Bo J, Beris AE, et al. (2006) Long-term evaluation of
rabbit peripheral nerve repair with end-to-side neurorrhaphy in rabbits. Microsurgery 26: 262–267.
PMID: 16628745

Epineurial Window in a Sutureless Model of End-to-Side Nerve Repair

PLOS ONE | DOI:10.1371/journal.pone.0148443 February 12, 2016 12 / 13

http://dx.doi.org/10.1016/j.expneurol.2015.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25681572
http://www.ncbi.nlm.nih.gov/pubmed/11992500
http://www.ncbi.nlm.nih.gov/pubmed/15892604
http://dx.doi.org/10.1002/mus.21116
http://www.ncbi.nlm.nih.gov/pubmed/18816625
http://dx.doi.org/10.1016/j.bjps.2010.04.033
http://dx.doi.org/10.1016/j.bjps.2010.04.033
http://www.ncbi.nlm.nih.gov/pubmed/20580334
http://www.ncbi.nlm.nih.gov/pubmed/12031346
http://www.ncbi.nlm.nih.gov/pubmed/3346713
http://www.ncbi.nlm.nih.gov/pubmed/8457897
http://www.ncbi.nlm.nih.gov/pubmed/8501535
http://www.ncbi.nlm.nih.gov/pubmed/12904237
http://www.ncbi.nlm.nih.gov/pubmed/15703019
http://www.ncbi.nlm.nih.gov/pubmed/14556287
http://www.ncbi.nlm.nih.gov/pubmed/17473395
http://www.ncbi.nlm.nih.gov/pubmed/11259779
http://www.ncbi.nlm.nih.gov/pubmed/9199612
http://www.ncbi.nlm.nih.gov/pubmed/9781986
http://dx.doi.org/10.1155/2014/724197
http://www.ncbi.nlm.nih.gov/pubmed/25133176
http://www.ncbi.nlm.nih.gov/pubmed/10878839
http://www.ncbi.nlm.nih.gov/pubmed/17695393
http://www.ncbi.nlm.nih.gov/pubmed/11810627
http://www.ncbi.nlm.nih.gov/pubmed/15791642
http://www.ncbi.nlm.nih.gov/pubmed/16856598
http://www.ncbi.nlm.nih.gov/pubmed/17518540
http://www.ncbi.nlm.nih.gov/pubmed/1175017
http://www.ncbi.nlm.nih.gov/pubmed/16628745


85. Zhang Z, Soucacos PN, Beris AE, Bo J, Ioachim E, Johnson EO (2000) Long-term evaluation of rat
peripheral nerve repair with end-to-side neurorrhaphy. J Reconstr Microsurg 16: 303–311. PMID:
10871089

86. Zhao JZ, Chen ZW, Chen TY (1997) Nerve regeneration after terminolateral neurorrhaphy: experi-
mental study in rats. J Reconstr Microsurg 13: 31–37. PMID: 9120840

87. Zhang Z, Soucacos PN, Bo J, Beris AE, Malizos KN, Ioachim E, et al. (2001) Reinnervation after end-
to-side nerve coaptation in a rat model. Am J Orthop (Belle Mead NJ) 30: 400–406; discussion 407.

88. Yan JG, Matloub HS, Sanger JR, Zhang LL, Riley DA, Jaradeh SS (2002) A modified end-to-side
method for peripheral nerve repair: large epineurial window helicoid technique versus small epineurial
window standard end-to-side technique. J Hand Surg Am 27: 484–492. PMID: 12015724

89. Yan YH, Yan JG, Matloub HS, Zhang LL, Hettinger P, Sanger J, et al. (2011) Helicoid end-to-side and
oblique attachment technique in repair of the musculocutaneous nerve injury with the phrenic nerve
as a donor: an experimental study in rats. Microsurgery 31: 122–129. doi: 10.1002/micr.20840 PMID:
21268106

90. al-Qattan MM, al-Thunyan A (1998) Variables affecting axonal regeneration following end-to-side
neurorrhaphy. Br J Plast Surg 51: 238–242. PMID: 9664884

91. Noah EM,Williams A, Jorgenson C, Skoulis TG, Terzis JK (1997) End-to-side neurorrhaphy: a histo-
logic and morphometric study of axonal sprouting into an end-to-side nerve graft. J Reconstr Micro-
surg 13: 99–106. PMID: 9044183

92. Liu K, Chen LE, Seaber AV, Goldner RV, Urbaniak JR (1999) Motor functional and morphological find-
ings following end-to-side neurorrhaphy in the rat model. J Orthop Res 17: 293–300. PMID:
10221848

93. Okajima S, Terzis JK (2000) Ultrastructure of early axonal regeneration in an end-to-side neurorrha-
phy model. J Reconstr Microsurg 16: 313–323; discussion 323–316. PMID: 10871090

94. Rovak JM, Cederna PS, Macionis V, Urbanchek MS, Van Der Meulen JH, KuzonWM Jr (2000) Ter-
mino-lateral neurorrhaphy: the functional axonal anatomy. Microsurgery 20: 6–14. PMID: 10617875

95. Walker JC, Brenner MJ, Mackinnon SE, Winograd JM, Hunter DA (2004) Effect of perineurial window
size on nerve regeneration, blood-nerve barrier integrity, and functional recovery. J Neurotrauma 21:
217–227. PMID: 15000762

96. Akeda K, Hirata H, Matsumoto M, Fukuda A, Tsujii M, Nagakura T, et al. (2006) Regenerating axons
emerge far proximal to the coaptation site in end-to-side nerve coaptation without a perineurial window
using a T-shaped chamber. Plast Reconstr Surg 117: 1194–1203; discussion 1204–1195. PMID:
16582786

97. Hilliard MA (2009) Axonal degeneration and regeneration: a mechanistic tug-of-war. J Neurochem
108: 23–32. doi: 10.1111/j.1471-4159.2008.05754.x PMID: 19054282

98. Palazzi S, Vila-Torres J, Lorenzo JC (1995) Fibrin glue is a sealant and not a nerve barrier. J Reconstr
Microsurg 11: 135–139. PMID: 7791138

99. Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante RL, et al. (2006) Fibrin glue: an alter-
native technique for nerve coaptation—Part II. Nerve regeneration and histomorphometric assess-
ment. J Reconstr Microsurg 22: 123–128. PMID: 16456773

100. Choi BH, Han SG, Kim SH, Zhu SJ, Huh JY, Jung JH, et al. (2005) Autologous fibrin glue in peripheral
nerve regeneration in vivo. Microsurgery 25: 495–499. PMID: 16145682

101. Silva DN, Silva AC, Aydos RD, Viterbo F, Pontes ER, Odashiro DN, et al. (2012) Nerve growth factor
with fibrin glue in end-to-side nerve repair in rats. Acta Cir Bras 27: 325–332. PMID: 22534808

102. Silva DN, Coelho J, Frazilio Fde O, Odashiro AN, Carvalho Pde T, Pontes ER, et al. (2010) End-to-
side nerve repair using fibrin glue in rats. Acta Cir Bras 25: 158–162. PMID: 20305882

103. Liang X, Cai H, Hao Y, Sun G, Song Y, ChenW (2014) Sciatic nerve repair using adhesive bonding
and a modified conduit. Neural Regen Res 9: 594–601. doi: 10.4103/1673-5374.130099 PMID:
25206861

104. Kolter M, Ott M, Hauer C, Reimold I, Fricker G (2015) Nanotoxicity of poly(n-butylcyano-acrylate)
nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release 197:
165–179. doi: 10.1016/j.jconrel.2014.11.005 PMID: 25445700

105. Mennen U (2004) End-to-side nerve suturing technique. J Hand Surg Br 29: 514. PMID: 15336761

Epineurial Window in a Sutureless Model of End-to-Side Nerve Repair

PLOS ONE | DOI:10.1371/journal.pone.0148443 February 12, 2016 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/10871089
http://www.ncbi.nlm.nih.gov/pubmed/9120840
http://www.ncbi.nlm.nih.gov/pubmed/12015724
http://dx.doi.org/10.1002/micr.20840
http://www.ncbi.nlm.nih.gov/pubmed/21268106
http://www.ncbi.nlm.nih.gov/pubmed/9664884
http://www.ncbi.nlm.nih.gov/pubmed/9044183
http://www.ncbi.nlm.nih.gov/pubmed/10221848
http://www.ncbi.nlm.nih.gov/pubmed/10871090
http://www.ncbi.nlm.nih.gov/pubmed/10617875
http://www.ncbi.nlm.nih.gov/pubmed/15000762
http://www.ncbi.nlm.nih.gov/pubmed/16582786
http://dx.doi.org/10.1111/j.1471-4159.2008.05754.x
http://www.ncbi.nlm.nih.gov/pubmed/19054282
http://www.ncbi.nlm.nih.gov/pubmed/7791138
http://www.ncbi.nlm.nih.gov/pubmed/16456773
http://www.ncbi.nlm.nih.gov/pubmed/16145682
http://www.ncbi.nlm.nih.gov/pubmed/22534808
http://www.ncbi.nlm.nih.gov/pubmed/20305882
http://dx.doi.org/10.4103/1673-5374.130099
http://www.ncbi.nlm.nih.gov/pubmed/25206861
http://dx.doi.org/10.1016/j.jconrel.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25445700
http://www.ncbi.nlm.nih.gov/pubmed/15336761

