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Abstract

Background: New technologies have given rise to an abundance of -omics data, particularly metabolomic data.
The scale of these data introduces new challenges for the interpretation and extraction of knowledge, requiring the
development of innovative computational visualization methodologies. Here, we present GEM-Vis, an original
method for the visualization of time-course metabolomic data within the context of metabolic network maps. We
demonstrate the utility of the GEM-Vis method by examining previously published data for two cellular systems—the
human platelet and erythrocyte under cold storage for use in transfusion medicine.

Results: The results comprise two animated videos that allow for new insights into the metabolic state of both cell
types. In the case study of the platelet metabolome during storage, the new visualization technique elucidates a
nicotinamide accumulation that mirrors that of hypoxanthine and might, therefore, reflect similar pathway usage. This
visual analysis provides a possible explanation for why the salvage reactions in purine metabolism exhibit lower
activity during the first few days of the storage period. The second case study displays drastic changes in specific
erythrocyte metabolite pools at different times during storage at different temperatures.

Conclusions: The new visualization technique GEM-Vis introduced in this article constitutes a well-suitable approach
for large-scale network exploration and advances hypothesis generation. This method can be applied to any system
with data and a metabolic map to promote visualization and understand physiology at the network level. More
broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal -omics
data types. The supplement includes a comprehensive user’s guide and links to a series of tutorial videos that explain
how to prepare model and data files, and how to use the software SBMLsimulator in combination with further tools to
create similar animations as highlighted in the case studies.
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Background
Over the last few decades, new technological develop-
ments have enabled the generation of vast amounts of
“-omics” data [1]. These various -omic data types have
helped bring new insights to a vast array of biological
questions [2–4]. As more and more data are generated,
however, researchers are faced with the enormous chal-
lenge of integrating, interpreting, and visualizing these
data. The community has recognized these needs, focus-
ing efforts on data visualization as a way to maximize the
utility of biological data [5]. Data visualization is particu-
larly crucial for a systems-level perspective of metabolic
networks and pathways. Several excellent software tools
were made available for drawing and exploring biologi-
cal network graphs [6–10]. These tools provide impressive
descriptions of the network and support for diverse anal-
yses, including the mapping of omics data to networks.
In this study, we present GEM-Vis as a new approach for
the visualization of time-course metabolomic data in the
context of large-scale metabolic network maps.
Metabolomic data provide snapshots of cellular bio-

chemistry, presenting essential insights into a cell’s
metabolic state [11, 12]. Visualization tools often allow
users to overlay pathway maps with static data sets [6].
Recently, time-course metabolomic data sets that detail
cellular changes over time are becoming more prevalent
[13–16], leading to the need for dynamic visualizations
that can capture the aspect of time [17]—an essen-
tial aspect of understanding complex processes such as
changes in metabolic activity, concentration, or availabil-
ity. Many visualization tools [18–21], however, do not yet
provide support for the representation of dynamic con-
tent. Those visualization tools whose features do include
time series visualization [5, 17, 20, 22–24] only provide
static depictions of the data. Some progress has been
made to provide a stepwise temporal representation of
metabolomic data [25], but a robust and smooth dynamic
solution for mapping time series data to networks has yet
to be presented.
One reason for the current lack of convincing visual

analysis methods for dynamically changing data sets is
that time-dependent data add additional layers of com-
plexity to the already difficult problem of visual network
exploration. First of all, genome-scale metabolic net-
works (GEMs) can have enormous sizes: Some published
metabolic network maps comprise several thousand bio-
chemical reactions [26, 27], of which human beholders
can simultaneously only grasp a very small fraction [28].
With the development of new experimental technolo-

gies and the subsequent generation of -omics data sets, life
scientists are faced with the challenge of extracting action-
able knowledge. New visualization methods are a critical
way that the community can make strides toward making
the most of complex data. Here, we present a newmethod

for the visualization of longitudinal metabolomic data in
the context of the metabolic network. We provide two
case studies that examine (1) a baseline characterization
of a physiological process and (2) a set of experimental
perturbations that allowed for a side-by-side comparison
of different experimental conditions. The introduction of
this new visualizationmethod has two significant implica-
tions.
The method introduced in this article provides a

dynamic visualization of cellular processes. Tools such as
Cytoscape [29] provide visual analysis of networks and
supports plugins like TiCoNE [18] and CyDataSeries [30]
for the visualization of time-course data. However, tools
such as these or VANTED [20] only offer static represen-
tations of dynamic data. To our knowledge, only KEG-
Ganim [25] offers a dynamic visualization of time-course
data. The method presented here builds on KEGGanim
by offering a smooth interpolation between time points
and offers the further advantage of customization con-
cerning the display of both data and the network itself.
The method presented outlines an original development
for visualizing complex biological data based in a way
that a cognition study has found to be useful and support
perception [31].
With a steadily increasing number of carefully pre-

pared metabolic network layouts being published, we here
assume a map to be available for the system of interest.
If this is not yet the case, a map can be easily drawn
using software such as Escher [6]. This paper focuses on
the problem of displaying dynamically changing quantita-
tive data of network components. The aim is to answer
the question: How to create expressive visual displays of
dynamic metabolic networks? Needed are strategies to
visually present the data in a way that beholders can best
perceive and estimate quantities of network individual
components and that at the same time enable them to con-
ceptually narrow down parts of interest even within large
networks.
In the next sections, we present the new method GEM-

Vis (Genome-Scale Metabolic model Visualization) for
the visualization and contextualization of longitudinal
metabolomic data in metabolic networks. We developed
three different graphical representations of metabolic
concentration that allow for different interpretations of
metabolomic data through a smooth animation. The
method is implemented in the freely available software
SBMLsimulator. The supplementary material of this arti-
cle includes links to a series of four short tutorial videos
that explain all aspects needed for creating a GEM-Vis: (1)
where to obtain SBMLsimulator, how to run it, (2) where
to obtain systems biology models and how to load them
into the application, and how to create a simulated time-
course data set from the model that can be mapped to an
automatically generated pathway map, (3) where to obtain
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a manually drawn pathway map as well as published time-
course data of the yeast Saccharomyces cerevisiae and how
to prepare the data set for the import to SBMLsimula-
tor and how to embed this layout information [32] in an
SBML file [33], (4) how to loadmodel and data into SBML-
simulator to create a GEM-Vis animation video including
variation of several visual attribues and to save it to a
movie file. Finally, we present two case studies using this
method that examine two different cellular systems—the
human platelet and the human red blood cell (RBC)—
to show how visualizing existing data can provide new
insights into cellular metabolism. The result are two ani-
mated videos that give detailed information about the
systems under study and highlight new insights that were
not previously apparent. We hope that this method will
aid researchers in visualizing, perceiving, and interpreting
complex data sets.

Results
The idea of GEM-Vis is that time series can be ade-
quately observed in the form of an animated sequence of a
dynamically changing network map when using an appro-
priate representation of metabolic quantities. To this end,
our technique exploits the repeatedly observed ability of
human beholders to estimate quantities most precisely
when these are mapped to a lengths scale [31]. Since
metabolic maps commonly represent nodes with circles
[6, 34], we suggest using the fill level of each node as a
visual element to represent its amount at each time point.

We experimented with visualization of data in several dif-
ferent ways, based on node size, color, a combination of
size and color, or fill level (Supplementary Figure S1). Each
of these visual representations provides some advantages
over the others, but according to [31] the notion of the fill
level of a node can be the most intuitive as it allows for the
user to understand and gauge its minimum or maximum
value quickly (see Discussion).
Using this technique, we created such an animation

for given longitudinal metabolomic data and a metabolic
network map that corresponds to the observed cell type
(Fig. 1). To provide a smooth animation, additional time
points are interpolated in the provided time series. Fur-
ther details regarding the development and use of the
implementation of the method can be found in the Sup-
plementary Information.
To demonstrate the utility of this method, we applied

these visualization methods to four different cellular
systems—human hepatocytes [35], platelets [36] and
RBCs [37], as well as to yeast [38]. For the two human
blood cell types and for yeast longitudinal quantitative
data sets were available in the literature [13, 14, 39].
Consequently, all four models provide very different use-
case scenarios. Since the hepatocyte model [35] is a
fully-specified kinetic model and available in SBML for-
mat from BioModels database [40], it is well suitable to
demonstrate how simulated data can be generated and
visualized in the context of an algorithmically generated
network (see Additional file 11). The genome-scale model

Fig. 1 Dynamic visualization of metabolomic data. We take metabolomic data as input and generates a dynamic animation of the data over time
which enables the visualization of pool sizes for individually measured metabolites. Several different options are discussed in this article for the
visualization of the data based on node size, color, and fill level. The method has been implemented in SBMLsimulator including an export function
to save the resulting output in a video file. For creation of animation videos highlighted in Tables 1 and 2 post-processing steps are needed as
descibed in the Supplementary Information
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of yeast [38] can be downloaded in SBML and JSON for-
mat from BiGG Models Database [41], where it comes
with a manually drawn network of the organism’s central
carbon metabolism. It is, therefore, usable to demonstrate
mapping a published time-course metabolomic data set
[39] in the context of a hand-made pathway map (see
Additional file 13).
After gaining experience in working with the visual-

ization method, the focus will be applying the GEM-
Vis method to study human blood cells in more detail.
Transfusion medicine plays a vital role in modern health-
care, making the storage of different blood components
important physiological processes to understand. In par-
ticular, platelets and RBCs represent relatively simple
human cell types that can be intensely studied in the
well-defined, static environment provided by blood stor-
age (packed in plastic bags and stored at 22°C and
4°C for platelets and RBCs, respectively). While the
cells are stored in these conditions, biochemical and
morphological changes occur (the “storage lesion”) that
are well-studied through the use of metabolomic data
[12, 42]. Metabolic models were previously available for
both the platelet [36] and RBC [37], enabling the creation
of network maps for both reconstructions. Thus, these
data could be visualized in the context of the entire
metabolic network.

Case study: human platelets under storage conditions
Our first case study examined the storage of platelets.
We manually created a metabolic map for the complete
metabolic network of the platelet using Escher [6]. We
then overlaid metabolomic data which characterized the
baseline storage conditions with eight time points over
ten days of storage [13] to produce a network-level visu-
alization of the data (Fig. 2). Using this network-level
visualization, we examined the dynamics of the platelet
metabolome.
During the first part of storage, stress due to the

non-physiological conditions of storage (i.e., packed in
a plastic bag at 22°C) slows metabolic activity through
glycolysis, the pentose phosphate pathway, and purine
salvage pathways [13]. Several metabolites are secreted
by the cells and accumulate in the storage media, such
as hypoxanthine. The metabolite 5-Phospho-α-D-ribose
1-diphosphate (PRPP) is produced from the pentose phos-
phate pathway and is a cofactor in the salvage reactions
that break down hypoxanthine. Because flux through
the pentose phosphate pathway is lower, the cells have
less capacity to recycle hypoxanthine using the salvage
pathways.
By viewing all of the data simultaneously at the network

level, we were able to discover that the concentration pro-
file of nicotinamide mirrors that of hypoxanthine. This

Fig. 2 Network map in SBGN style [43] for the human platelet with metabolomic data [13] overlaid. This figure represents a visualization in which
the fill level of a node represents the relative size of the corresponding metabolite pool
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observation suggests a similar rationale for the accumu-
lation of nicotinamide, providing a hypothesis as to why
the salvage pathway within purine metabolism has lower
activity during the first few days of storage. These findings
are demonstrated in the video highlighted in (Table 1),
helping show how network-level visualization allows for
improved extraction of biological insight from large, com-
plex data sets.
Case study: human red blood cells under storage con-

ditions Our second case study examined the storage of
RBCs. A metabolic map was already available for the RBC
[44] and captures the complete metabolic network [37].
Here, we sought to examine a data set that provided the
opportunity to visualize different experimental conditions
for the same network. Recently, a study was published
[14] that used quantitative longitudinal metabolomic data
to examine the state of the RBC metabolome under four
different storage temperatures: 4°C (storage temperature),
13°C, 22°C, and 37°C (body temperature). For this sys-
tem, we opted to visualize the dynamics of the metabolite
concentrations as nodes with variable size where smaller
nodes represent smaller pool sizes, and larger nodes rep-
resent larger pool sizes (Fig. 3).
To highlight the differences between the experimental

conditions, we examined two of the conditions side-by-
side (see the video highlighted in Table 2). This visualiza-
tion helps supplement the type of statistical and modeling
analyses performed previously and helps contextualize
the effects of the temperature change across different
parts of the network. In particular, it is obvious from a
network-level view of the system that certain parts of the
network are more active at different points in the time-
course. A side-by-side comparison helped emphasize that
the availability of reduced glutathione is different with
increased temperature, an important physiological fea-
ture due to the role of glutathione in neutralizing reactive
oxygen species [45] that accumulate during storage and
contribute to the storage lesion [46]. Finally, it can be
seen that hypoxanthine—a known toxic metabolite whose
concentration has been shown to inversely correlate with
the post-transfusion recovery rates of transfusion patients

Table 1 Visualization of biochemical processes – storage of
platelets 8 min 26 s

This video introduces a new method for visualizing metabolic processes
in the context of a full biochemical network. Representing the metabolic
network as a graph where metabolites are nodes and reactions are edges
can help elucidate complex relationships within the network. While view-
ing a network in this manner is not new, overlaying -omics data onto
the map allows for an accurate integration of disparate data types. By
visually interpreting the information in this dynamic, graphical format,
we can more easily distinguish important characteristics of the network.
This video utilizes the metabolomic data from the study “Comprehen-
sive metabolomic study of platelets reveals the expression of discrete
metabolic phenotypes during storage” [13]. https://youtu.be/GQuT7R-
ldS4

[47]—accumulates faster at higher temperatures. Like in
the other case study presented above, the new insights into
complex processes (which are not yet fully understood)
provide evidence that this method can be beneficial for the
simplification and understanding of large, complex data
analyses.

Discussion
In this article, we proposed GEM-Vis as a new method
for visualizing time-course metabolomic data in the con-
text of large-scale metabolic networks. The approach was
evaluated with a range of different use-cases, ranging from
the display of simulated data on automatically generated
network layouts to experimentally obtained metabolite
concentration data on manually drawn network maps. All
experiments were described in elaborate tutorial videos
(see supplementary material). Subsequently, the method
was applied to study two different cases of human blood
cells (platelets and erythrocytes) in more detail.
As a result, a network-level representation of large

metabolomic data sets presents a more holistic view of
the data than does statistical analysis alone. While visual
inspection of data is indeed not a replacement for more
detailed statistical or modeling analyses, this method pro-
vides an important supplement to existing data analysis
pipelines. We demonstrate its utility in such an analysis
pipeline by highlighting findings from existing data sets
[13, 14]. Visualizing the metabolomic data in the context
of the full metabolic network allowed for new insights into
existing data sets. A potential explanation why the sal-
vage pathway lowers its activity during the first few days
of platelet storage could be deduced for the network of
the human platelet. In the RBC network, it could easily be
seen that concentrations in certain parts of the network
(e.g., nucleotide metabolism) accumulated or depleted
together. These findings illustrate the promising potential
of visualized time-course data and—combined with in-
depth computational data analysis—can help perceiving
information and elucidate physiological processes.
The simplification of experimental data interpretation

became extremely relevant in the age of high-throughput
technologies. The visualization concept presented here
offers a systems-level interpretation of metabolomic data.
Combined with other data analytics, this method helps
provide a holistic view of a data set, moving us closer
to being able to realize the full potential of a given data
set. More broadly, we hope that the method presented
here will provide the starting point for further visualiza-
tion improvements not only for metabolomic data but for
the visualization and contextualization of other data types.
Future work may include combining a dynamic represen-
tation with static concentration graphs that will continue
to improve the capabilities of such software to fully meet
the needs of life science researchers.

https://youtu.be/GQuT7R-ldS4
https://youtu.be/GQuT7R-ldS4
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Fig. 3 Overview of the RBC metabolic network under storage conditions at 4°C. The size and color of the nodes reflects their absolute abundance.
The oval area on the topmagnifies a region in the center of themap that appears in the style of Escher [6] in contrast to the SBGN style shown in Fig. 2

Methods
The method described in this paper utilizes existing soft-
ware libraries to visually represent metabolomic data in
the context of a metabolic network map.

Table 2 Visualization of biochemical processes – temperature
dependence of red blood cells 1 min 33 s

This video visually compares the biochemical effects of increasing the
storage temperature from (4°C to 13°C) of stored RBCs on metabolic
processes. The relative node size shows changes in metabolite concen-
trations for each measured metabolite. Zooming in on various parts
of the network helps visualize how specific metabolite pools undergo
more drastic changes at different points during storage. This video uti-
lizes the metabolomic data from the study “Quantitative time-course
metabolomic in human red blood cells reveal the temperature depen-
dence of human metabolic networks” [14]. https://youtu.be/0INItST4FQc

In brief, the metabolic map must be embedded as
SBML Layout extension (version 1) into an SBML Level 3
Version 1 file that is provided to the software SBML-
simulator [48]. In this study, the design of metabolic
network maps was created using the web-based soft-
ware Escher [6] within the web browser Safari 11 and
stored in JSON format, resulting in Additional file 4
for iAT-PLT-636 and Additional file 8 for iAB-RBC-283.
Subsequently, the generated maps have been converted
to SBML using the software EscherConverter (available
at https://github.com/draeger-lab/EscherConverter/) and
embedded into the metabolic model using a custom Java™
program (Additional file 14). The resulting SBML file
with embedded layout for iAT-PLT-636 can be found

https://youtu.be/0INItST4FQc
https://github.com/draeger-lab/EscherConverter/
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Fig. 4 Creation of an animated video from an SBML file, a pathway map, and a time-course metabolomic data set. EscherConverter converts the
manually drawn pathway map in Escher’s JSON format [6] to SBML [33] with Layout extension [32]. The resulting SBML file is merged with the
corresponding GEM (in SBML Level 3 Version 1 format, e.g., using the Java code from Additional file 14). After opening the merged SBML file in
SBMLsimulator [48], a time-course metabolomic data set in CSV format (character-separated values) is also loaded to SBMLsimulator. An export
function is provided in SBMLsimulator to generate a dynamic time-course animation

in Additional file 5, and in Additional file 9 for iAB-
RBC-283 (both files are compressed using GZIP). The
metabolomic time-course data are provided to SBML-
simulator in a *.csv file format with identifiers match-
ing those of the map (Additional file 3 for iAT-PLT-636
and Additional file 7 for iAB-RBC-283, the latter is a
compressed ZIP archive). SBMLsimulator reads in the
SBML file with embedded layout and the time-course
data. Subsequently, SBMLsimulator uses splines to inter-
polate the data over time with input from the user.
Other features are selected, such as the speed of anima-
tion and how metabolite concentrations are represented
(e.g., fill level). An optional *.csv file can be provided
to SBMLsimulator to define a moving camera animation.
To this end, this CSV file needs to contain as the first
value the zoom level of the camera followed by a tab-
separated list of corner points along the way of the moving
camera (these points are the top left corners of the cam-
era’s view port). The result is a smooth animation that
allows features such as zooming and panning across dif-
ferent areas of the map, which the user can safe to a
video file in one of the supported formats, e.g., AVI, MP4,
MPG, WMV, FLV, or MOV. The procedure is depicted
in Fig. 4 and demonstrated in detail in Additional files
10, 11, 12 and 13.

SBMLsimulator is implemented in Java™ SE 8 under
macOS High Sierra on a MacBook Pro 15”, 2016. All com-
putation for the animation videos has been performed
under macOS High Sierra version 10.13.2. The anima-
tion videos for the two case studies were created using
Windows 10.
Audio recording was performed using a ZOOM Handy

Recorder H4 and a Steinberg UR22 mkII USB Audio
Interface 24 bit/192 kHz (Steinberg Media Technolo-
gies GmbH, Hamburg, Germany) in combination with
a Røde NT1-A (Røde, Silverwater, NSW, Australia), and
the recording software Quicktime (Apple Inc., Cupper-
tino, CA, USA). Sony VEGAS Pro (version 12) was used
for video post-processing, resulting in Additional files 2
and 6.
Full details for the implementation and use of the

software are provided in the Supplemental Material
(Additional files 1 and 15).

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3415-z.

Additional file 1: Supplementary information about details of the
method and implementation can be found in file
12859_2020_3415_MOESM1_ESM.pdf.

https://doi.org/10.1186/s12859-020-3415-z
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Additional file 2: The animated movie iAT-PLT-636.mp4 (547.4 MB)
about iAT-PLT-636 available at https://youtu.be/GQuT7R-ldS4.

Additional file 3: The data set iAT-PLT-636_Data.csv used in the
iAT-PLT-636 animation (15 kB).

Additional file 4: The pathway map in Escher format
iAT-PLT-636_Map.json.gz compressed with gzip (200 kB).

Additional file 5: The pathway map in SBML Level 3 Version 1 format with
Layout and FBC (flux balance constraints) packages
iAT-PLT-636_Map.xml.gz compressed with gzip (457 kB).

Additional file 6: The animated movie iAB-RBC-283.mp4 (118.9 MB)
about iAB-RBC-283 available at https://youtu.be/0INItST4FQc.

Additional file 7: The data set iAB-RBC-283_Data.zip used in the
iAB-RBC-283 animation (13 kB).

Additional file 8: The pathway map in Escher format
iAB-RBC-283_Map_cell-outline.json.gz (94 kB).

Additional file 9: The pathway map
iAB-RBC-283_Map_cell-outline.xml.gz in SBML Level 3
Version 1 format with Layout and FBC packages compressed with gzip
(153 kB). Please note that the core model in this file has been reduced to
the content of the pathway map and does not comprise all reactions and
metabolites of the original model by [37].

Additional file 10: This tutorial video (36.3 MB) demonstrates how to
download, installation, and launch the software SBMLsimulator. The video
is available at https://youtu.be/Eu4uSPmNXVI.

Additional file 11: This tutorial video (61.8 MB) demonstrates how to load
model files in SBML format and how to run a simulation using the software
SBMLsimulator. The video is available at https://youtu.be/CVzp_XtIaHU.

Additional file 12: This tutorial video (66.7 MB) demonstrates how to
embedding a model layout in an SBML file and how to prepare
experimental data for loading it into the software SBMLsimulator. The
video is available at https://youtu.be/CoeOh2sFFSQ.

Additional file 13: This tutorial video (52.9 MB) demonstrates how to
visualize manually created layouts using the software SBMLsimulator. The
video is available at https://youtu.be/qv3qPyzofhI.

Additional file 14: A brief Java™ program that embeds a metabolic map
in the format of SBML Layout extensions into an SBML Level 3 Version 1 file.

Additional file 15: This document describes the features of the
application SBMLsimulator and explains how to use them.

Abbreviations
AVI: Audio video interleave; BiGG: Biochemically, genetically, genomically
structured; CSV: Character-separated values; FLV: Flash video; GEM:
Genome-scale metabolic model; GEM-Vis: GEM-visualization; GZIP: GNU zip;
JSON: JavaScript object notation; MOV: QuickTime file format; MPG: Moving
pictures expert group; MP4: Multimedia file format; PRPP:
5-phospho-α-D-ribose 1-diphosphate; RBC: Red blood cell; SBML: Systems
biology markup language; WMV: Windows media video

Acknowledgments
The authors would like to thank Prof. Dr. Robert Feil, Katrin Keppler for her
music contribution, Jan D. Rudolph, and Jakob Matthes for implementing a
basic Java™ interpreter of SBML layout.

Authors’ contributions
JH and AD designed the study. FJ, ÒES, OR, and JTY consulted on platelet and
RBC physiology. LFB and CB implemented the analysis in SBMLsimulator and
Escher, respectively, mentored by AD and ZAK, based on works of FS, ZAK, and
AD. JTY and VK drew the erythrocyte and platelet maps. LFB created animation
videos, mentored by JTY, ZAK, FJ, ÒES, OR, and AD, and drafted the manuscript
with JTY and contributions from all other authors. AD wrote the Users’ Guide
about SBMLsimulator and created the series of tutorial videos about the use of
SBMLsimulator, SBML file use, and data mapping with the help of LFB and JTY.

Funding
This work was funded by the National Institutes of Health (NIH, US, grants
2R01GM070923-13 to AD and U01-GM102098 to LY), the Institute for

Systems Biology’s Translational Research Fellowship (JTY), the Landspítali
University Hospital Research Fund, the University of Iceland Research Fund,
and the Novo Nordisk Foundation through the Center for Biosustainability at
the Technical University of Denmark (grant NNF10CC1016517). AD was
supported by infrastructural funding from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of
Excellence EXC 2124 Controlling Microbes to Fight Infections and by the DZIF
(German Center for Infection Research).
We acknowledge support by Open Access Publishing Fund of University of
Tübingen (https://uni-tuebingen.de/de/58988).
This work was made possible by the friendly support of yWorks GmbH
(https://www.yworks.com) who provided their diagram visualization library
yFiles for Java (https://www.yworks.com/products/yfiles-for-java) and
assistance during the implementation phase.
GEMA-free music licenses for the tutorial videos on SBMLsimulator were
provided by Frametraxx UG (https://www.frametraxx.de).
We also thank the Google Summer of Code program (https://summerofcode.
withgoogle.com) for supporting open-source software development for this
project.

Availability of data andmaterials
Data and materials required to reproduce the findings in this article are freely
available. See the appendix in Additional file 1 for details. For post-processing
generated animation files, a commercial video editing software, such as Sony
VEGAS Pro (version 12) that was used for creating Additional files 2 and 6, can
be obtained for purchase. Computers and audio recording devices need to be
purchased.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Computational Systems Biology of Infection and Antimicrobial-Resistant
Pathogens, Institute for Biomedical Informatics (IBMI), Sand 14, 72076
Tübingen, Germany. 2Institute for Systems Biology, 401 Terry Ave. N., 98109
Seattle, WA United States. 3Department of Computer Science, University of
Tübingen, Sand 14, 72076 Tübingen, Germany. 4yWorks GmbH, Vor dem
Kreuzberg 28, 72070 Tübingen, Germany. 5Systems Biology Research Group,
Department of Bioengineering, University of California, San Diego, 9500
Gilman Drive, CA 92093-0412 La Jolla, United States. 6Novo Nordisk
Foundation Center for Biosustainability, Technical University of Denmark,
Building 220, Kemitorvet, 2800 Kgs.Lyngby, Denmark. 7Department of
Chemical Engineering, Queen’s University, ON K7L 3N6 Kingston, Canada.
8Center for Systems Biology, University of Iceland, Sturlugata 8, 101 Reykjavík,
Iceland. 9The Blood Bank, Landspítali-University Hospital, 101 Reykjavík,
Iceland. 10School of Science and Engineering, Reykjavík University,
Menntavegi 1, 101 Reykjavík, Iceland. 11German Center for Infection Research
(DZIF), partner site Tübingen, 72076 Tübingen, Germany.

Received: 9 April 2019 Accepted: 12 February 2020

References
1. Robinson JL, Nielsen J. Integrative analysis of human omics data using

biomolecular networks. Mol BioSyst. 2016;12(10):2953–64. https://doi.
org/10.1039/C6MB00476H.

2. Österlund T, Cvijovic M, Kristiansson E. Integrative Analysis of Omics
Data. In: Nielsen J, Hohmann S, editors. Systems Biology. Weinheim:
Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p. 1–24. Chap. 1. https://doi.
org/10.1002/9783527696130.ch1.

3. Nielsen J. Systems Biology of Metabolism. Ann Rev Biochem. 2017;86(1):
245–75. https://doi.org/10.1146/annurev-biochem-061516-044757.

4. Yurkovich JT, Palsson BO. Quantitative -omic data empowers bottom-up
systems biology. Curr Opin Biotechnol. 2018;51:130–6. https://doi.org/10.
1016/j.copbio.2018.01.009.

https://youtu.be/GQuT7R-ldS4
https://youtu.be/0INItST4FQc
https://youtu.be/Eu4uSPmNXVI
https://youtu.be/CVzp_XtIaHU
https://youtu.be/CoeOh2sFFSQ
https://youtu.be/qv3qPyzofhI
https://uni-tuebingen.de/de/58988
https://www.yworks.com
https://www.yworks.com/products/yfiles-for-java
https://www.frametraxx.de
https://summerofcode.withgoogle.com
https://summerofcode.withgoogle.com
https://doi.org/10.1039/C6MB00476H
https://doi.org/10.1039/C6MB00476H
https://doi.org/10.1002/9783527696130.ch1
https://doi.org/10.1002/9783527696130.ch1
https://doi.org/10.1146/annurev-biochem-061516-044757
https://doi.org/10.1016/j.copbio.2018.01.009
https://doi.org/10.1016/j.copbio.2018.01.009


Buchweitz et al. BMC Bioinformatics          (2020) 21:130 Page 9 of 10

5. Callaway E. The visualizations transforming biology. Nature. 2016;535:
187–8. https://doi.org/10.1038/535187a.

6. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO.
Escher: A web application for building, sharing, and embedding
Data-Rich visualizations of biological pathways. PLoS Comput Biol.
2015;11(8):1004321.

7. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics.
2011;27(3):431–2.

8. Droste P, Nöh K, Wiechert W. Omix – a visualization tool for metabolic
networks with highest usability and customizability in focus. Chem Ing
Tech. 2013;85(6):849–62.

9. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H.
CellDesigner 3.5: A versatile modeling tool for biochemical networks. Proc
IEEE. 2008;96(8):1254–65.

10. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT,
Pico AR. WikiPathways: building research communities on biological
pathways. Nucleic Acids Res. 2012;40(Database issue):1301–7.

11. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of
the omics trilogy. Nat Rev Mol Cell Biol. 2012;13:263–9. https://doi.org/10.
1038/nrm3314.

12. Nemkov T, Hansen KC, Dumont LJ, D’Alessandro A. Metabolomics in
transfusion medicine. Transfusion. 2016;56(4):980–93. https://doi.org/10.
1111/trf.13442.

13. Paglia G, Sigurjónsson OE, Rolfsson O, Valgeirsdottir S, Hansen MB,
Brynjólfsson S, Gudmundsson S, Palsson BO. Comprehensive
metabolomic study of platelets reveals the expression of discrete
metabolic phenotypes during storage. Transfusion. 2014;54:2911–23.
https://doi.org/10.1111/trf.12710.

14. Yurkovich JT, Zielinski DC, Yang L, Paglia G, Rolfsson O, Sigurjónsson
OE, Broddrick JT, Bordbar A, Wichuk K, Brynjólfsson S, Palsson S,
Gudmundsson S, Palsson BO. Quantitative time-course metabolomics in
human red blood cells reveal the temperature dependence of human
metabolic networks. J Biol Chem. 2017;292:117–804914. https://doi.org/
10.1074/jbc.M117.804914.

15. Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson OE, Palsson
BO. Elucidating dynamic metabolic physiology through network
integration of quantitative timecourse metabolomics. Sci Rep.
2017;7(46249):1–12. https://doi.org/10.1038/srep46249.

16. Paglia G, Sigurjónsson ÓE, Rolfsson Ó., Hansen MB, Brynjólfsson S,
Gudmundsson S, Palsson BO. Metabolomic analysis of platelets during
storage: a comparison between apheresis- and buffy coat-derived
platelet concentrates. Transfusion. 2015;55(2):301–13.

17. Secrier M, Schneider R. Visualizing time-related data in biology, a review.
Brief Bioinforma. 2014;15(5):771–82. https://doi.org/10.1093/bib/bbt021.

18. Wiwie C, Rauch A, Haakonsson A, Barrio-Hernandez I, Blagoev B,
Mandrup S, Röttger R, Baumbach J. Elucidation of time-dependent
systems biology cell response patterns with time course network
enrichment. 2017. https://arxiv.org/abs/1710.10262.
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Danielsdottir AD, Heinken A, Noronha A, Rose PW, Burley SK, Fleming
RMT, Nielsen J, Thiele I, Palsson BO. Recon3D enables a
three-dimensional view of gene variation in human metabolism. Nat
Biotechnol. 20181–37. https://doi.org/10.1038/nbt.4072.

27. Noronha A, Daníelsdóttir AD, Gawron P, Jóhannsson F, Jónsdóttir S,
Jarlsson S, Gunnarsson JP, Brynjólfsson S, Schneider R, Thiele I, Fleming
RMT. Reconmap: an interactive visualization of human metabolism.
Bioinformatics. 2017;33(4):605–7. https://doi.org/10.1093/bioinformatics/
btw667.

28. Halford GS, Baker R, McCredden JE, Bain JD. How many variables can
humans process?,. Psychol Sci. 2005;16(1):70–76. https://doi.org/10.1111/
j.0956-7976.2005.00782.x.

29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski BB, Ideker T. Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction Networks. Genome Res.
2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
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