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Neuroblastomas are the main extracranial tumors that affect children, while glioblastomas
are the most lethal brain tumors, with a median survival time of less than 12 months, and
the prognosis of these tumors is poor due to multidrug resistance. Thus, the development
of new therapies for the treatment of these types of tumors is urgently needed. In this
context, a new type of cell death with strong antitumor potential, called ferroptosis, has
recently been described. Ferroptosis is molecularly, morphologically and biochemically
different from the other types of cell death described to date because it continues in the
absence of classical effectors of apoptosis and does not require the necroptotic
machinery. In contrast, ferroptosis has been defined as an iron-dependent form of cell
death that is inhibited by glutathione peroxidase 4 (GPX4) activity. Interestingly, ferroptosis
can be induced pharmacologically, with potential antitumor activity in vivo and eventual
application prospects in translational medicine. Here, we summarize the main pathways of
pharmacological ferroptosis induction in tumor cells known to date, along with the
limitations of, perspectives on and possible applications of this in the treatment of
these tumors.
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INTRODUCTION

Cancer is one of the most frequent pathologies worldwide; according to the World Health
Organization (WHO) statistics, there were 18.1 million new cases and 9.6 million deaths related
to this disease in 2018 (https://www.who.int/news-room/fact-sheets/detail/cancer). Cancers are
difficult to treat because they employ multiple molecular mechanisms to evade different types of cell
death, such as apoptosis, due to their overexpression of antiapoptotic proteins such as Bcl-2 and Bcl-
xL and low expression of proapoptotic factors such as Bax, Bim and Puma (Figures 1A, B) (1). At
the same time, it is known that the low efficacy of apoptosis induction with conventional therapies is
due to the robust antioxidative defenses of tumor cells (2). Among the main antioxidants that confer
apoptosis resistance on tumor cells is glutathione (GSH) (3, 4).

Due to the high resistance of tumors to apoptosis, the induction of necroptosis was postulated to
be a potential therapeutic approach (5, 6). In contrast to apoptosis, which does not generate an
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inflammatory response, necroptosis induces death by cellular
explosion, which generates a microenvironment of
proinflammatory signals that could favor tumor death (5, 6).
Thus, necroptosis, a form of regulated necrosis dependent on
RIPK1, RIPK3 and MLKL, was postulated as a potential therapy
Frontiers in Oncology | www.frontiersin.org 2
for cancer (Figures 1A, B) (7–9). Unfortunately, several tumor
cells evade necroptosis efficiently by inhibiting the expression of
RIPK3 via epigenetic control mechanisms (10–12).

In line with this idea, new and emerging forms of regulated
cell death with characteristics of necrotic disintegration have
A

B

FIGURE 1 | Survival programs in normal and tumor cells. (A) Under physiological conditions, normal cells maintain stable levels of death-executing proteins while
maintaining a constant balance of nutrients and trace elements, promoting cell survival. (B) To avoid death, tumor cells activate various mechanisms, such as decreasing the
expression of proapoptotic and necroptotic genes while increasing antioxidant defense by increasing GSH synthesis and GPX4 levels. In this way, ROS are efficiently
eliminated, avoiding the damage produced by the accumulation of iron due to low FPN levels. This death evasion program makes many types of cancer highly difficult to
treat, as classical apoptosis induction therapies fail because the machinery for the execution of this pathway is not available. FPN, Ferroportin; TfR1, Transferrin Receptor
1; DMT1, Divalent Metal Transporter 1; Cys2, Cystine; Cys, Cysteine; LIP, Labile Iron Pool.
June 2022 | Volume 12 | Article 858480
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been described and postulated as treatments for cancer; among
these, ferroptosis is highlighted (13–19). Here, we describe the
main pharmacological targets for the induction of ferroptosis
with emphasis on the treatment of brain tumors.
OVERVIEW OF THE INDUCTION OF
FERROPTOSIS IN CANCER CELLS:
TARGETING SYSTEM x−c
System x−c is an antiporter that imports cystine and exports
glutamate from the cell in a 1:1 ratio (Figures 1A, B). System x−c
is composed of 2 subunits: the SLC7A11 subunit (also called
xCT), with a transport function and solute carrier family 3
member 2 (SLC3A2; also called CD98hc or 4F2hc), a
chaperone with a plasma membrane anchoring function (20–
23). For the purposes of this review, we refer only to the
SLC7A11 subunit, given the importance of cystine transport to
the cell (Figures 1A, B). In this context, the uptake of cystine into
the cell is essential to maintain the redox state, since the reduced
form of this amino acid (nonessential) is necessary for the
biosynthesis of the main intracellular antioxidant, glutathione
(GSH) (Figure 1A). Interestingly, most cancer cells overexpress
SLC7A11 (22), suggesting a strong dependence on GSH to
maintain the levels of controlled reactive oxygen species (ROS)
(Figure 1B); thus, SLC7A11 is an potential therapeutic target.
Interestingly, in 2012, it was determined that the small molecule
erastin (13, 24) targeted SLC7A11 for inhibition, which led to
depletion of GSH, inducing a type of death dependent on iron
and lipid ROS, called ferroptosis (14). This type of cell death was
inhibited by radical trapping antioxidants (RTAs) such as
Ferrostatin-1 (Fer-1), lipophilic antioxidants such as vitamin E
or iron chelators such as Desferoxamine (DFO) (18, 25), with
potential application in the treatment of cancer and other
pathologies (Figure 2B) (26).

Thus, when tumor cells are incubated with erastin, cell death
is induced independent of caspases (13) or mitochondrial
oxidative stress but in a manner dependent on iron, ROS and
lipid ROS (14). Even though there is evidence that mitochondria
could be involved, regulating the “avidity” for ferroptosis
induction (27–29), they are not necessary for activation of this
pathway (30). Inhibition of system x−c results in intracellular
depletion of cysteine because extracellular cystine (Cys2) is
imported through SLC7A11 and reduced intracellularly to
cysteine (Figure 2B) (16, 31). Intracellular cysteine is necessary
for the biosynthesis of GSH (16, 32). In turn, GSH is a cofactor
for the selenoprotein GPX4, a hydroperoxidase responsible for
detoxifying toxic hydroperoxides to alcohols (15). Therefore,
erastin triggers indirect inhibition of GPX4 activity mediated by
GSH depletion (Figure 2B).

Despite this apparent dependence of cells on system x−c ,
animals with knockout of the slc7a11 gene are fertile and
develop completely normally (33), which prompted the
consideration of SLC7A11 inhibition as an eventual cancer
therapy with few adverse effects (Figure 2A).
Frontiers in Oncology | www.frontiersin.org 3
Thus, although many tumor cells can evade apoptosis and
necroptosis due to their low expression of key genes for the
activation of these pathways (Figure 1B) (1, 10, 11), RNA-seq
data show that most cancer cells have high expression levels of
SLC7A11 and GPX4 (https://portals.broadinstitute.org/ccle).
Similarly, tumor cells are “addicted” to iron because they have
decreased expression of ferroportin (FPN), the iron efflux pump,
and overexpress the transferrin receptor (TfR1), the iron importer
(Figure 1B) (34–37). Indeed, excess iron contributes to both tumor
initiation and tumor growth (34). These observations indicate that
SLC7A11, GPX4, iron and ferroptosis are potential therapeutic
targets for cancer (Figures 2B, 3). However, there are cancer cells
that do not express FPN (MCF-7 cells, among others) and therefore
accumulate excess intracellular iron but are still resistant to
ferroptosis (38, 39). An explanation for this phenomenon is the
recent finding that in addition to GPX4 and iron, acyl-CoA
synthetase long-chain family member 4 (ACSL4) is another
component that dictates sensitivity to ferroptosis (39).
Reinforcing this concept, ACSL4 is a key protein because it
incorporates long polyunsaturated fatty acids (PUFAs) into
membranes, which allows lipid peroxidation to proceed and
ferroptosis to be carried out (39–41). In another context, the
erastin analog imidazole ketone erastin (IKE) has been shown to
be metabolically stable and a potent inducer of ferroptosis in tumor
cells in vivo (19, 42). Thus, induction of ferroptosis in tumor cells
through inhibition of SLC7A11 may be a promising treatment for
use in patients.

Interestingly, high doses of glutamate can inhibit system x−c ,
emulating the effects induced by erastin (14, 43, 44). However, it
is known that the responses to glutamate treatment are diverse
and can induce cell death by apoptosis or necroptosis (45, 46)
and eventually by other pathways of regulated necrosis. Thus,
although high doses of glutamate can inhibit system x−c , they are
not necessarily a specific inducer of ferroptosis in tumor cells but
could induce ferroptosis in normal tissues under pathophysiological
conditions (44, 47–49).

Ferroptosis Beyond the Inhibition
of System x−c
Although the concept of ferroptosis was initially described in
response to treatment with erastin, various ferroptosis inducers
(FINs) have been developed to act independently of cystine
uptake and GSH levels. FINs are currently classified into four
classes (I-IV) (40, 50): class I FINs induce GSH depletion
(Figure 2B), class II FINs inhibit GPX4 (Figure 3), class III
FINs deplete GPX4 (Figure 4), and class IV FINs act through
iron oxidation/iron overload (Figure 5) (summarized in
Table 1). Interestingly, two research groups recently described
a new player in the regulation of ferroptosis in parallel:
ferroptosis suppressor protein 1 (FSP1) (Figure 4) (54, 55).
Previously called apoptosis-inducing mitochondria-associated
factor 2 (AIFM2), FSP1 is a flavoprotein with extramitochondrial
oxidoreductase activity that can be recruited into the plasma
membrane due to myristoylation. FSP1 in the plasma membrane
catalyzes the conversion of ubiquinone (coenzyme Q10, CoQ10) to
ubiquinol at the expense of NADPH (56).
June 2022 | Volume 12 | Article 858480
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Thus, the FSP1-ubiquinone-ubiquinol axis inhibits lipid
peroxidation and ferroptosis in parallel to GPX4 and
independent of GSH levels (54, 55). An inhibitor of FSP1
(iFSP1) (54) that may stimulate the induction of ferroptosis
Frontiers in Oncology | www.frontiersin.org 4
was identified by drug screening. In this context, the iFSP does
not fit within any class of FINs (I-IV) because it does not target
GPX4 or iron metabolism. Thus, we suggest that FINs that do
not target GPX4 or iron metabolism but, as their mechanism
A

B

FIGURE 2 | System x−c dependence in cancer cells. Under physiological conditions, the nonessential amino acid cysteine is present as cystine due to the extracellular
oxidative environment. To maintain a stable intracellular cysteine level, the presence of the cystine/glutamate antiporter (system x−c ) is necessary. Interestingly, genetic
deletion of system x−c does not produce any damage in animals, suggesting that normal cells do not depend on this antiporter to maintain the intracellular cysteine level.
In line with this idea, compensatory mechanisms, such as the transsulfuration pathway, may exist for the recovery of the intracellular cysteine level (A). Conversely, it has
been widely described that tumor cells have a high dependence on system x−c for the cellular uptake of cysteine (B). Pharmacological inhibition of this antiporter results in
the depletion of intracellular cysteine, inducing an abrupt decrease in the GSH level, which ultimately triggers inactivation of GPX4, the main hydroperoxidase in the cell.
Inactivation of GPX4 due to inhibition of system x−c results in an overwhelming overload of lipid ROS that ultimately induces tumor death by ferroptosis (B). Interestingly,
it has been determined that inhibition of system x−c can induce tumor death both in vitro and in vivo, identifying this antiporter as a potential therapeutic target for cancer.
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involves CoQ10, can be classified into class V (Figure 4). Because
FIN56 depletes GPX4 and CoQ10 (52), this compound has a
dual classification and should also be reclassified into class V.
Despite the existence of various ferroptosis inducers, not all of
them have therapeutic potential in vivo (40). However, it has
been shown that the use of class IV inducers could have potential
therapeutic effects in vivo to treat high-risk neuroblastomas (17).
INDUCTION OF CELL DEATH IN
NERVOUS TISSUE

Normal adult neurons are equipped to survive because they
express low levels of proapoptotic proteins and high levels of
antiapoptotic proteins (57, 58). Furthermore, it has been shown
Frontiers in Oncology | www.frontiersin.org 5
that as neurons mature, they lose chemosensitivity to
staurosporine and doxorubicin (58). This evidence suggests
that brain tumors would be highly resistant to conventional
antineoplastic agents, given the preconditioning of this type of
cell to efficiently evade apoptosis. At the same time, it has been
shown that tumor cells of astroglial origin (T98G, U251 and
A172) efficiently evade necroptosis induced by chemotherapeutic
agents because they do not express RIPK3 due to epigenetic
modifications (10, 11).

Thus, the development of new therapies for the treatment of
brain tumors that do not involve the induction of apoptosis or
necroptosis as the main strategy is urgently needed. In this sense,
in recent years, the induction of ferroptosis has gained great
relevance as a possible therapeutic approach to induce cell death
in brain tumors (17, 50, 59, 60). Considering this concept in the
FIGURE 3 | GPX4 as a target for ferroptosis induction. Unlike class I FINs, which indirectly inactivate GPX4, class II FINs such as RSL-3 directly inhibit GPX4,
triggering ferroptosis independent of the GSH level. Direct inhibition of GPX4 results in rapid induction of ferroptosis, which can be inhibited by RTA or iron chelators.
However, cell death is not inhibited by the recovery of cysteine uptake.
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following sections, we focus on the induction of ferroptosis in
neuroblastoma (NB) and glioblastoma multiforme (GBM).

Neuroblastoma
NB is the most common pediatric extracranial tumor,
accounting for more than 15% of all cancer deaths in children
(61). NB is classified as low-, intermediate- and high-risk (62).
While low-risk and intermediate-risk NBs generally have a good
prognosis given that they develop into benign ganglioneuromas
or enter remission due to surgical or pharmacological treatment,
high-risk NBs have few treatment options (17, 62, 63). The main
diagnostic characteristics of high-risk NB are that it appears after
18 months of age, has MYCN amplification, or exhibits
activation of telomere maintenance mechanisms (62, 63). In
line with this observation, current therapies against the NB
include treatment with cycles of cisplatin, etoposide,
vincristine, doxorubicin, and cyclophosphamide (64), which
Frontiers in Oncology | www.frontiersin.org 6
are preferential inducers of apoptosis. However, this type of
pharmacological treatment generates multidrug-resistant clones,
which greatly hinders the eradication of this type of tumor and
favors its relapse (64).

Classical Pharmacological Induction of
Ferroptosis in Neuroblastoma
Considering that classical NB eradication therapies generally fail,
it has been proposed that the induction of ferroptosis could be a
feasible therapeutic approach. In this context, when the
sensitivity of NB cell lines to classic ferroptosis inducers such
as erastin or RSL-3 was studied (Figures 2B, 3), it was
determined that most of the models (SHSY-5Y, SK-N-SH,
NB69, SK-N -DZ, NLF, and CHP-134 cells, among others) are
highly insensitive to SLC7A11 or GPX4 inhibition (17, 65, 66).
At the same time, there is very little information on the potential
use of iFSP1 as a possible strategy against NB, since this
FIGURE 4 | Degradation of GPX4/CoQ10 or inhibition of FSP1 induces ferroptosis in cancer cells. Class III FINs are molecules that act independently of system x−c
activity, the GSH level and direct inhibition of GPX4. These molecules, including FIN56, induce degradation of GPX4, which leads to ferroptosis induction. In addition
to degrading GPX4, FIN56 also induces degradation of coenzyme Q10 (ubiquinone) by altering the mevalonate pathway. The importance of coenzyme Q10 degradation
in the execution of ferroptosis is assumed because the function of a protein called FSP1 (a class V FIN) was recently described (33, 34). In this scenario, FSP1 converts
extramitochondrial ubiquinone (the oxidized form of coenzyme Q10) to extramitochondrial ubiquinol (the reduced form of coenzyme Q10), and ubiquinol acts as an
endogenous RTA that inhibits ferroptosis independent of the presence of GPX4. In this context, by inducing coenzyme Q10 degradation, FIN56 can inhibit the effects
of FSP1 to confer resistance to ferroptosis. On the other hand, the inhibitor of FSP1 (iFSP1) controls ferroptosis without degrading CoQ10.
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compound has only been tested in the IMR-5/75 cell line without
major effects on viability (54). Based on this background, the
scientific community has focused on the search for new strategies
for ferroptosis induction in NB, not through the classical targets
but instead through the use of combined therapies or
noncanonical inducers of ferroptosis, as potential treatments
for high-risk NB (17, 67).
Frontiers in Oncology | www.frontiersin.org 7
TYPICAL AND ATYPICAL PATHWAYS TO
INDUCE FERROPTOSIS IN
NEUROBLASTOMA

Because NB generally presents resistance to Erastin and RSL-3, it
is necessary to search for new ferroptosis inducers. To this end, it
was recently determined that treatment with the natural
FIGURE 5 | Iron overload or peroxidation induces ferroptosis in tumor cells. Class IV FINs are ferroptosis inducers that directly involve metabolism and iron levels in
the cell. On the one hand, we have found synthetic molecules, such as FINO2, that alter the metabolism of iron, favoring its intracellular oxidation. In addition to promoting
the oxidation of iron, FINO2 indirectly inhibits the activity of GPX4. On the other hand, when the labile iron pool (LIP) is increased by exogenous treatment with iron or iron
nanoparticles, an overload of this metal is generated, which induces lipid peroxidation without the need for GPX4 inhibition. Class IV FINs are fairly attractive agents for the
induction of ferroptosis because tumor cells are addicted to iron due to their low ferroportin (FPN) expression and high levels of transferrin receptor (TfR) expression, which
favors an increase in the LIP. In this context, treatment with exogenous iron (e.g., FeCl2) in combination with FINO2 would eventually be a potent inducer of ferroptosis in
tumor cells. Unfortunately, the development of FINO2 analogs for in vivo use is necessary to test whether the increases LIP and iron peroxidation are synergistic to
specifically kill tumor cells.
TABLE 1 | Principal Ferroptosis Inducers.

FIN Class Target Example

I System x−c Erastin, Sulfasalazine, Glutamate (14); IKE (19);
II Inhibition of GPX4 RSL-3 (15); ML210, ML162 (51)
III Depletion of GPX4 FIN56 (52), Statins (51), withaferin A (17)
IV Oxidation/Overload of Iron FINO2 (53); (NH4)2Fe(SO4)2 (17); FeCl2 (48)
V Inhibition FSP1/Depletion CoQ10 iFSP1 (54); FIN56 (52)
June 2022 | Volume 12 | Article 858480
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compound withaferin A (WA) can eradicate high-risk NB (17)
by inducing ferroptosis through the canonical pathway, this
means with GPX4 as a direct target. On the other hand, via a
noncanonical pathway, where keap1 is the target, thus favoring
an increase in labile iron pool (LIP) (17). This dual behavior of
WA, similar to that of a mixture of FIN56 and FINO2 (Figures 4, 5)
(52, 53) (compounds that have not been tested in NB models),
seems to render it a promising drug therapy for NB, since to date, it
is unknown whether in vivo application of FINO2 is possible (40).
Fortunately, WA has been shown to be effective in promoting the
eradication of NB in vivo (17, 50). Interestingly, even though WA
has been shown to induce iron-dependent lipid peroxidation and
GPX4 depletion, Fer-1 treatment does not completely rescue NB
cells from cell death (17). This suggests two alternatives; the first is
that WA induces other types of ferroptosis-independent death in
NB. However, WA induces lipid peroxidation, which is completely
inhibited by treatment with DFO and partially inhibited by Fer-1,
suggesting a strong iron dependence (17).

In this context, as a second alternative, the authors suggest
that WA could eventually favor an overload of lipid ROS of
various origins that may not necessarily be inhibited by Fer-1,
such as lipid ROS generated by H2O2 (17). It is important to note
that Fer-1 does not inhibit death induced by H2O2 treatment
(14) or by extracellular H2O2 production mediated by
pharmacological doses of ascorbic acid (68), because these
treatments preferentially induce conventional necrosis.
However, it has recently been determined that NADPH-
cytochrome P450 reductase (POR) favors the induction of
ferroptosis due to the cytoplasmic production of H2O2 (69),
which is inhibited by Fer-1 or by the intracellular expression of
catalase (69) but thus far, this finding is limited to cervical cancer
cells (HeLa).

In this context, and considering the particularities of NB cells,
it is likely that it is possible to classify the cell death induced in
this type of tumor (or others) as ferroptosis, even when it is not
inhibited by Fer-1, if it has other hallmarks, such as lipid
peroxidation and iron dependence. Indeed, it has recently been
determined that inhibition of lipid peroxidation mediated by
liproxstatin-1 treatment is not sufficient to rescue SLC7A11 KO
melanoma cells from death (70). Furthermore, it has also been
shown that there is strong induction of lipid peroxidation during
the activation of noncanonical pyroptosis that is not necessarily
related to the direct execution of this death pathway (71). This
evidence could limit lipid peroxidation as an exclusive hallmark
of ferroptosis, driving the definition of ferroptosis toward a type
of death dependent on lipid peroxidation (72).
DOES TARGETING SLC7A11-GSH AXIS IN
NEUROBLASTOMA INDUCE
FERROPTOSIS?

In another context and emphasizing that MYCN is a protein
overexpressed in NB, recent advances have been achieved to
determine that MYCN favors an increase in intracellular iron per
se, which could favor the pharmacological sensitization of NB to
Frontiers in Oncology | www.frontiersin.org 8
ferroptosis induction (66, 67). Thus, the authors determined that
inhibition of SLC7A11 with sulfasalazine (14) or inhibition of
GSH synthesis with Buthionine sulfoximine (BSO) favors the
induction of ferroptosis in models of NB with MYCN
amplification (67). This in vitro evidence from patient samples
is closely related to an eventual clinical application, since the
toxicity of BSO has been evaluated in a phase I clinical trial, as a
possible treatment for NB in conjunction with other drugs (73).
Despite being relatively well tolerated, the treated patients
presented vomiting/nausea as adverse effects (73). However,
there is also evidence indicating that the administration of
BSO can trigger kidney failure in animal models (74) and
patients (75). Thus, special precautions must be taken when
trying to directly extrapolate in vitro findings to in vivo models
or patients.

Curiously, some of the NB cell lines used in this study show
partial resistance to death induced by the SLC7A11 inhibitor and
GSH depletor erastin (17), which leads to an intriguing question:
why are some NB cell lines resistant to erastin but sensitive to
inhibition of GSH synthesis or inhibition of SLC7A11 mediated
by sulfasalazine? In this scenario, it is important to highlight that
in lung adenocarcinoma cells, it was recently determined that the
SLC7A11 inhibitor HG106 preferentially induces GSH depletion
and cell death by apoptosis, which is inhibited by the recovery of
cysteine uptake, but without eventual induction of ferroptosis,
since DFO treatment does not prevent cell death (76). This
evidence suggests that although HG106 has the same target as
erastin (SLC7A11), there are other off-targets that favor the
induction of one type of death over another (apoptosis or
ferroptosis) or the production of particular ROS that
trigger differential cellular responses (22). Despite these
pharmacological dichotomies, which induce different types of
death even when the target is the same, or which have differential
action mechanisms in response to treatment with SAS, erastin
(IKE) or HG106, the message that remains the same: SLC7A11 is
a potent therapeutic target for cancer (Figure 2B).
IRON OVERLOAD AS A POSSIBLE
TREATMENT FOR NEUROBLASTOMA

It was shown that NB cells with MYCN amplification are
particularly sensitive to the induction of death mediated by
treatment with auranofin (a rheumatoid arthritis drug) (67).
Although the authors attribute the effect of auranofin to the
induction of ferroptosis, treatment with Fer-1 only partially
rescues cells from cell death, even when there is an increase in
lipid peroxidation, and treatment with DFO effectively prevents
cell death and ROS production (67). Again, this finding leads us
to conclude that apparently in NBs, the lipid ROS generated are
specific to this tumor type or there are parallel mechanisms of
cell death, since Fer-1 is not capable of completely inhibiting cell
death, even when the evidence points to iron and lipid ROS
dependency. Accumulating evidence, the literature indicates that
iron accumulation and increased LIP are strong candidates for
exploiting the pharmacological sensitivity of high-risk NB to
June 2022 | Volume 12 | Article 858480
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ferroptosis induction (Figure 5) (17, 50, 66, 67, 77). Thus, the use
of compounds that promote the mobilization or uptake of iron in
this type of tumor, in combination with ferroptosis inducers,
could exploit the vulnerabilities of this tumor to favor its
eradication. However, further studies are still needed to
determine the potential lethal effects on nervous tissue and to
assess whether these types of therapeutic agents can penetrate the
blood–brain barrier.
GLIOBLASTOMA

Overview of Glioblastoma Treatment
Malignant gliomas are one of the most devastating and
frequently diagnosed brain tumors in adults and are associated
with a short life expectancy of only 12 to 15 months (78). The
WHO classifies this type of tumor as grade I to IV, the latter
being called glioblastoma multiforme (GBM), which corresponds
to the most advanced stage and has a shorter life expectancy (78–
80). The current incidence of GBM in the USA is approximately
7 per 100,000 inhabitants (79). Currently, therapy for GBM is
based on surgery accompanied by radiation therapy and
chemotherapy, since GBM cannot be completely removed
surgically due to its infiltrative nature (78). Although
radiotherapy increases the life expectancy of patients, 90% of
GBMs exhibit recurrence at the original tumor site after therapy
(81). Thus, all hopes for the treatment of this type of tumor are
placed on the development of new agents or pharmacological
strategies for successful chemotherapy. To date, the main
pharmacological approaches for the treatment of GBM include
the use of antiangiogenic therapies (bevacizumab, sunitinib,
vandetanib), immunotherapy (anti-PD-1/PD-L1 antibodies)
and various other molecular approaches, such as inhibitors of
mTOR, EGFR, HSP90, and PI3K (78, 82). Unfortunately, GBMs
acquire resistance to these types of treatment (78, 82). In this
scenario, as a therapeutic strategy, one of the most commonly
used compounds is temozolomide (TMZ), an oral alkylating
agent (80, 83, 84) that targets the DNA repair enzyme O6-
methylguanine DNA methyltransferase (MGMT), which has
been shown to prolong the life expectancy of patients when
used in conjunction with radiotherapy (84–86). Unfortunately,
most GBMs recur after 2 years with cell populations resistant to
this type of therapy due to stem cell properties (87–89). Based on
accumulating evidence and the strong resistance of GBM to
multiple therapies, the development of new drugs for the
treatment of these devastating tumors is urgently needed.

Pharmacological Ferroptosis Induction: A
Therapy Against Glioblastoma?
Based on the above premise, pharmacological induction of
ferroptosis could exploit the vulnerabilities of GBM cells and
sensitize them to death when used in combination with other
antineoplastic compounds. In line with this idea, the evidence
suggests that combined treatment with ferroptosis inducers plus
other antineoplastic therapies (e.g., TMZ or radiation) could lead
to sensitization to this type of death in GBM cells (60, 90). This is
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because most GBM cells are resistant to either SLC7A11
inhibition (erastin treatment) or GPX4 inhibition (RSL-3
treatment) (54, 91, 92), although they express ACSL4 (93).

In line with this observation, high levels of SLC7A11
expression are considered to predict poor survival in patients
with malignant glioma (94). At the same time, high expression of
SLC7A11 is associated with epileptic seizures, stem cell
properties, increased migration and invasion, neurosphere
formation and increased expression of Nanog, Sox-2 and
Nestin, among other proteins (95, 96). Thus, the expression of
this transporter is considered a possible biomarker for the
diagnosis of GBM. In this scenario, it is tempting to speculate
that SLC7A11 blockade could be an excellent therapy for GBM,
since its high expression level indicates a strong dependence on
its function.

However, current evidence has shown that GBM cells, such
as U87, U251, and U373 cells, are highly insensitive to
treatment with SAS or erastin (72, 97), a phenotype that
could be related to resistance mechanisms mediated by ATF4
and Nrf-2 that favor overexpression of SLC7A11 (21, 97, 98).
Furthermore, the use of SAS in a clinical trial against glioma did
not show a response, and various adverse effects were observed
(99), which greatly complicates its future use as a ferroptosis-
inducing drug in patients. It is important to note that various
studies have suggested that GBM cells (and cells of other
lineages) have unique sensitivity to death (theoretically
ferroptotic) mediated by sorafenib treatment (97, 100).
However, recently, it was shown that sorafenib failed to
induce ferroptosis in a wide panel of tumor cell lines
(including GBM cell lines) (72), which leads us to take special
care in the interpretation and specificity of sorafenib in
triggering ferroptosis.

Molecular Pathways That Confer
Resistance to Ferroptosis in Glioblastoma
In this scenario, where GBM cells show great resistance to
inhibition of system x−c , it is possible to speculate that they
obtain cysteine intracellularly from another source that implies
mechanisms independent of the function of SLC7A11, which
would explain the resistance to treatment with erastin or SAS.
The main metabolic pathway that supplies cysteine
intracellularly in tumor cells independent of the transport
activity of SLC7A11 is the transsulfuration pathway (101). The
transsulfuration pathway allows methionine to be used as a
substrate for cysteine biosynthesis through various enzymatic
reactions (101). At the same time, it has been shown that
inhibition of this pathway in tumor cells makes it possible to
recover sensitivity to erastin in certain cell lines other than GBM
cell lines (102). Unfortunately, inhibition of the expression of
cystathionine b-synthase (CBS), a key protein in the
transsulfuration pathway, has been shown to promote GBM
progression (103), while in other tumor models, CBS inhibition
effectively causes cell death (104), which suggests that GBM cells
could be resistant to ferroptosis induction, including that
mediated through inhibit ion of system x−c and the
transsulfuration pathway.
June 2022 | Volume 12 | Article 858480

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ferrada et al. Ferroptosis in Neuroblastoma and Glioblastoma
On the other hand, one possible explanation for the strong
resistance of GBM cells to the induction of ferroptosis is the
protective effect exhibited by FSP1 in this type of tumor
(Figure 4), since most GBM cells express high levels of this
protein, and cotreatment with iFSP1 and RSL-3 strongly
sensitizes them to ferroptosis (54, 72). However, cotreatment
with erastin or SAS + iFSP1 fails to induce death in GBM cells
(72). This evidence corroborates the findings that FSP1 acts
independently of the GSH level (54, 55) and that it apparently
can only have synergistic effects with direct GPX4 inhibitors such
as RSL-3 or ML162.

Interestingly, the GPX4 depletor FIN56 (Figure 4) was
recently shown to induce ferroptosis in in vitro and in vivo
GBMmodels (105); this was the first study to use this compound
in vivo. However, the trial was not carried out with tumors in
nervous tissue but rather in nude mice with subcutaneous
tumors, which makes it difficult to extrapolate the possible
eventual effects of FIN56 on the brain, and it is not known
whether this compound can cross the blood–brain barrier to be
considered a potential therapy in the future.

Based on accumulating evidence and given the limitations of
the use of direct GPX4 inhibitors for the treatment of tumors in
vivo, the best therapeutic approach seems to be inhibition of
SLC7A11. Along these lines, it has been demonstrated that
cotreatment with IKE and radiation favors ROS production
and induces cell death in GBM models (60). Concurrently,
cotreatment with erastin and TMZ has been found to sensitize
GBM cells to death (90). This eventual therapeutic strategy
offered by treatment with SLC7A11 inhibitors should be
exploited in the future in the search for compounds with
synergistic activity that exploit the vulnerabilities of GBM cells.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Although there are several inducers of ferroptosis, the potential
use of these drugs as cancer treatments is limited because they
have little bioavailability for action in vivo. However, with the
development of IKE, an avenue was opened for ferroptosis
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induction as an in vivo treatment by targeting system x−c (19).
To date, evidence suggests that inhibition of system x−c could be a
safe therapeutic approach as a tumor suppressor. Unfortunately,
several types of tumors, including NB and GBM, are resistant to
system x−c inhibition for ferroptosis induction (13, 17, 92). Thus,
combination therapies of other antineoplastic drugs with IKE
may represent an option for the treatment of cancers highly
resistant to cell death. However, ferroptosis dogma dictates that
GPX4 is the key protein (15, 106); thus, all efforts have been
focused on the development of new drugs for its inhibition.
Although there are direct GPX4 inhibitors, such as RSL3 (15),
they have little application in vivo (40), and GPX4 deletion in
some types of cancer is not lethal (51), suggesting that there may
be other mechanisms in addition to GPX4 inhibition to suppress
lethal lipid peroxidation. FSP1, GCH1 and BH4/BH2 are
proteins with the ability to inhibit ferroptosis independently of
GPX4 and GSH levels (54, 55, 65), and FSP1 is a druggable
protein (54). In line with this idea, a new avenue has been opened
for the development of drugs that include SLC7A11, GPX4 and
FSP1 inhibitors with potential in vivo application as a
cancer treatment.
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