
1Scientific Reports | 5:16047 | DOI: 10.1038/srep16047

www.nature.com/scientificreports

Screening and Molecular Analysis 
of Single Circulating Tumor Cells 
Using Micromagnet Array
Yu-Yen Huang1,*, Peng Chen2,*, Chun-Hsien Wu2, Kazunori Hoshino3, Konstantin Sokolov4, 
Nancy Lane5, Huaying Liu5, Michael Huebschman5, Eugene Frenkel5 & John X. J. Zhang1

Immunomagnetic assay has been developed to detect rare circulating tumor cells (CTCs), which 
shows clinical significance in cancer diagnosis and prognosis. The generation and fine-tuning of 
the magnetic field play essential roles in such assay toward effective single-cell-based analyses of 
target cells. However, the current assay has a limited range of field gradient, potentially leading 
to aggregation of cells and nanoparticles. Consequently, quenching of the fluorescence signal and 
mechanical damage to the cells may occur, which lower the system sensitivity and specificity. 
We develop a micromagnet-integrated microfluidic system for enhanced CTC detection. The 
ferromagnetic micromagnets, after being magnetized, generate localized magnetic field up to 8-fold 
stronger than that without the micromagnets, and strengthen the interactions between CTCs and 
the magnetic field. The system is demonstrated with four cancer cell lines with over 97% capture 
rate, as well as with clinical samples from breast, prostate, lung, and colorectal cancer patients. 
The system captures target CTCs from patient blood samples on a standard glass slide that can 
be examined using the fluorescence in-situ hybridization method for the single-cell profiling. All 
cells showed clear hybridization signals, indicating the efficacy of the compact system in providing 
retrievable cells for molecular studies.

Detection and enrichment of target cells, such as stem cells1, disseminated tumor cells (DTCs)2, and cir-
culating tumor cells (CTCs)3 from heterogeneous suspensions play a central role in biomedical research 
and clinical practice. In particular, circulating tumor cells (CTCs) have been shown to closely relate to 
cancer metastasis4,5 providing information to assist cancer studies. First, accurate enumeration of CTCs 
can be used as a key indicator for cancer diagnosis, prognosis, and cancer treatment monitoring6. Beyond 
enumeration, advanced single cell characterization techniques, such as fluorescence in-situ hybridiza-
tion (FISH)7, reverse transcription polymerase chain reaction (RT-PCR)8, and quantitative RT-PCR9, can 
provide insights into the biologic characterization of the CTCs. CTCs have the potential of providing 
a non-invasive “liquid-biopsy” to study the heterogeneity of cancer cells and eventually aid the devel-
opment of personalized therapy10–12. A combination of rapid enumeration and molecular profiling are 
critical to exploit the full potential of CTCs.

The challenges associated with CTC detection and analyses begin with the natural scarcity of CTCs 
(the estimated ratio between CTCs and normal leukocytes is 1:107–109), therefore platforms for CTC 
detection with high sensitivity, specificity, and reliability are in need4. A great number of separation sys-
tems have been developed, such as an antibody mediated immunoassay13, size-based filtration method14, 
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fluorescence-activated cell sorting (FACS)15, immunomagnetic separation16–19, and dielectrophoresis 
force separation20, and others as summarized in previous reviews21. Among the popular methods, the 
immunomagnetic cell separation assay, which works by selectively labeling the CTCs with magnetic 
nanoparticles, and using an external magnetic field to capture target cells, provides an effective solu-
tion for the translational clinical applications22–24. The immunomagnetic assay exhibits good sensitivity 
and specificity that arises from the cancer specific antibody-antigen interactions. In addition, the large 
effective range of magnetic attraction enables the larger channel size and allows for higher throughput. 
The immunomagnetic assay can also be integrated with multiple separation mechanisms, such as size 
filtration and inertial focusing25. The immunomagnetic assay has been widely applied for cell separation 
from heterogeneous suspensions16.

Approaches with engineered functional surface using techniques such as chemically modified three 
dimensional micro/nano-structures are proposed to enhance the sensitivity of rare cell detection26–29. For 
immunomagnetic assays, several isolation methods integrated with non-functionalized 3-D structures in 
the microchannel have been employed for particle sorting and cell detection with large populations30–32. 
To achieve high detection sensitivity and retain both the physical and biological integrities of the target 
cells, we propose a patterned thin-film micromagnet design, which can be integrated into a microchip 
based immunomagnetic assay to improve the detection and analysis of the CTCs.

Results
Design and fabrication of micromagnet-integrated microfluidic screening system.  When 
placed in an external magnetic field, the micromagnets can be magnetized to generate a localized strong 
magnetic field that can enhance the attractive interactions between cells and the capture surface in the 
microchannel. Compared to the conventional magnetic activated cell sorting system, where permanent 
magnets are used as the only magnetic flux source, the micromagnet approach increases the magnetic 
trap density throughout the whole microchannel surface and local magnetic field gradient. The micro-
magnets are designed to yield better capture sensitivity, achieve better capture distribution, and facilitate 
the downstream analyses. To fulfill these purposes, several design factors need to be considered, includ-
ing the thickness, the lateral dimension, and the spatial periodicity of the micromagnets. Thickness of 
a micromagnet determines the magnitude of the magnetic force and the vertical effective range of the 
micromagnet. To minimize the physical damages to the cells due to collision, we decreased the thick-
ness of the micromagnets compared with previous structures. Lateral dimension determines the lateral 
magnetic effective range of each micromagnet. Another key design parameter is the spatial periodicity of 
the micromagnet array, which plays an important role in altering the distribution of the captured cells. 
Figure 1a shows the principle of the micromagnet implementation.

We simulated the magnetic field distribution with the presence of an array of five micromagnets 
linearly aligned on the substrate. A two-dimensional model was built with FEM simulation software 
(COMSOL Multiphysics). Lateral dimensions, thickness, and spatial periodicity are represented as 
W, H, and D, respectively (Fig.  1b). The normalized magnetic flux density above the micromagnets 
(1 μ m ~ 50 μ m) is plotted (Fig. 1b). We examined the local magnetic field on the surface of the micromag-
nets, and found that thin-film nickel micromagnets increased the magnetic field 8-fold maximum in the 
vicinity of the micromagnet edge (SI, Fig. 1). Each micromagnet was in a cubic shape with the dimen-
sions of 20 μ m ×  20 μ m ×  250 nm (W ×  W ×  H) so that the length of each micromagnet was designed to 
be compatible with the diameters of CTCs, which range from 12 μ m to 25 μ m33. Thickness of a micro-
magnet at the nanoscale largely reduces the risk of damaging the CTCs during the capture. According 
to our previous theoretical endeavor of the micromagnet approach34, the periodicity plays an important 
role in tuning the surface magnetic field to distribute the captured CTCs, and facilitate the subsequent 
fluorescence imaging and identification steps. We choose a 100 μ m spatial periodicity (D) based on the 
calculated effective range of magnetic field created by a single micromagnet (30 μ m) and the size of can-
cer cell (20 μ m). Detailed theoretical derivation has been described in the previous report34. A standard 
thermal deposition technique was employed to fabricate the micromagnets. A scanning electron micro-
scope (SEM) picture shows arrays of fabricated micromagnets (Fig. 1c).

For experimental demonstration, arrayed ferromagnetic Ni thin-film is deposited on the substrate of 
the microchannel. Figure 1d illustrates the integrated micromagnets immunomagnetic CTC detection sys-
tem. A polydimethylsiloxane (PDMS) chip is bonded to a standard glass slide integrated with micromag-
nets forming a hexagonal micro-chamber with a height of 500 μ m, width of 17 mm, and length of 30 mm. 
Three permanent magnets (Block NdFeB magnet, product of 42 MGOe, grade N42, 3/4″  ×  1/2″  ×  7/32″ ) 
are placed outside the microfluidic device with alternate polarities. The sample is introduced to the 
microchannel by a syringe pump. CTCs are labeled with magnetic nanoparticles (FerrofluidTM, Veridex, 
LLC, NJ) based on cancer specific anti-epithelial cell adhesion molecule (anti-EpCAM) expression. When 
the sample is flowed through the microchannel, nanoparticles-labeled CTCs are magnetically captured 
on the channel substrate, while normal hematocytes, such as red blood cells (RBCs) and leukocytes, flow 
out of the microchannel. After the screening, the captured CTCs, now on the standard glass slide, can be 
immunofluorescently stained for imaging, identification, and further molecular studies.

The proposed approach combines the magnetic forces at different length-scales so that permanent 
magnets provide a long-range magnetic attraction, and the micromagnets provide the short-range retain-
ing force on the target cells. The layout of the micromagnet is designed to be an array format offering 
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distributed magnetic traps that help overcome the limitations of the cell and nanoparticle aggregation 
that may affect the morphological and fluorescent signals of the target cells.

Experimental results of the micromagnet-integrated microfluidic screening system.  To 
examine the efficacy of the micromagnet integrated assay, four different human cancer cell lines were 
spiked into normal human blood: including COLO 205 (colorectal), SK-BR-3 and MCF-7 (breast), and 
PC3 (prostate). Capture rate is defined as the ratio of the number of cancer cells captured in the screened 
samples to the average number of cancer cells prepared on multiple control slides. Typically, two control 
slides are prepared from the same cell suspension at the same time as the blood sample is spiked. The 
number of spiked CTCs is obtained in the following way: when the screening blood sample is spiked with 
cancer cells, equal amount of the same cell suspension is dropped on glass slide as control samples. The 
average number of cancer cells found in the control samples indicates the number of cancer cells spiked 
into the screening blood samples, and is used to calculate the capture rate. To identify cancer cells, exper-
imental slides were immunofluorescently stained with DAPI (blue), CK-FITC (green), and CD45-Alexa 
Fluor 594 (red). Cancer cells exhibit DAPI+ , CK+ , and CD45− , while the main interfering leukocytes 
are DAPI+ , CK− , and CD45+ . One sample cancer cell and two leukocytes are shown in Fig. 2a. The cells 

Figure 1.  Micromagnet-integrated microfluidic device and characterization of micromagnets.  
(a) Schematic illustration of the glass substrate patterned with micromagnets for immunomagnetic isolation 
of cancer cells. Permanent magnets provide external magnetic field and magnetize micromagnets to induce 
local magnetic field enhancement. Magnetic nanoparticles-labeled CTCs are captured to the channel 
substrate by the arrays of micromagnets as the blood sample flows through the microchannel.  
(b) Schematic of the patterned thin-film micromagnet array showing the lateral dimensions, thickness, and 
spatial periodicity. Magnetic field distribution of an array of five micromagnets (brown blocks) within a 
microfluidic channel space obtained using COMSOL. The strongest spots of magnetic field are around the 
edges of the micromagnets. (c) SEM image of fabricated micromagnets. (d) Schematic shows the setup of the 
screening system with dimensions of the microchannel.
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are identified based on the morphological characteristics and fluorescent signals by a trained observer, 
and each cell is further confirmed by multiple physicians. This combinational approach has been used 
for CTC studies, and has been proved to be able to effectively differentiate WBCs and CTCs13,35. In 
order to further verify the feasibility of our identification process in a systematic and objective manner, 
image analysis of captured cells has been made to conduct computer-aided cell identification18. The result 

Figure 2.  Characterization of micromagnets-integrated microchip by the comparative spiked 
experiments. (a) Fluorescence images of a COLO 205 cell and two leukocytes (COLO 205: DAPI+ , 
Cytokeratin+ , and CD45− ; Leukocyte: DAPI+ , Cytokeratin− , and CD45+ ). Scale bar is 20 μ m. (b) Overlay 
of fluorescence and bright field images of FITC-stained COLO 205 cells (green) captured by micromagnets. 
Scale bar is 20 μ m. (c) SEM images of a doublet of COLO 205 cells captured next to a micromagnet and a 
COLO205 captured on top of a micromagnet. Scale bar is 20 μ m. (d) Capture rates of screenings spiked with 
COLO 205, PC3, SK-BR-3, and MCF-7 cell lines. The average capture rate with micromagnet-patterned glass 
slides was 97.3%. (e) Comparative screening showed that micromagnet-patterned glass slide showed higher 
capture rate and stability than the plain glass slide. Scale bar is 20 μ m.
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ensured its agreement with the cell identification by the observer and physicians. Since the micromagnets 
increase the surface retaining force in a short range, we can directly observe micromagnet capturing 
cancer cells with a strong fluorescent signal and an intact shape (Fig. 2b). SEM images show cancer cells 
being captured by micromagnets (Fig.  2c). Negative control testing with CellSearchTM system has been 
conducted by multiple groups36,37. Based on these early studies, we have indeed performed comparable 
screening tests where blood samples from both the cancer patients and the healthy donors were used. 
The operator of the apparatus did not have the information about the donors. Through the six trials, no 
CTC was found from healthy donors’ blood samples. Figure 2d shows the capture rates of all four spiked 
cancer cell lines using the micromagnet-patterned glass slide (COLO 205: 99.5 ±  9.9%, n =  15; PC3: 
99.1 ±  7.3%, n =  8; SK-BR-3: 90.4 ±  9.3%, n =  5; and MCF-7: 100 ±  4.8%, n =  5). We performed com-
parative spiked experiments using plain glass slides (without micromagnets) with two cell lines, COLO 
205 and PC3. The capture rates were 79.7 ±  17.7% for COLO 205 (n =  15) and 82.1 ±  12.9% for PC3 
(n =  8) (Fig. 2e). The implementation of the thin-film micromagnets optimized the assay in the following 
ways: First, an average 18.4% increase in capture rate was achieved (COLO 205: 19.8% improvement, 
p =  0.0012; PC3: 17% improvement, p =  0.006). Secondly, the micromagnets reduced the variations of the 
capture rates (COLO 205: ± 7.8%; PC3: ± 5.6%), indicating improved working stability and thirdly, the 
micromagnets demonstrated the versatility of the assay by the screening of four different cancer cell lines.

On the experimental slides, we observed the CTCs being captured by the micromagnets, where there 
were also magnetic nanoparticles aggregating around the micromagnets (Fig. 3a). The aggregated mag-
netic nanoparticles increase the effective range of the micromagnets. The morphology clearly showed 
the interactions between the CTCs and micromagnets. To investigate the impact of the micromagnets, 
the captured CTCs were categorized into three groups based on how they were captured (Fig.  3a), 1) 
by micromagnets; 2) by permanent magnets; 3) other area. Specifically, CTCs captured by permanent 
magnets refer to those target cells found near the front edge of the permanent magnets, but not attached 
to micromagnets. Figure 3b shows the percentages of each category for the plain and micromagnet slides 
respectively. For the plain glass slide, most COLO 205 cells (90.2% of spiked cells) were captured by per-
manent magnets, while 9.8% of cells were captured otherwise. For the micromagnet-patterned glass slide, 
micromagnets attracted 59.4% of spiked cancer cells during the screening process, while 34.6% of spiked 
COLO 205 cells were still captured by the permanent magnets. Only 6% of spiked cells were captured 
elsewhere. We could observe similar phenomenon in the spiked experiment with PC3 – about 38.5% of 
spiked PC3 cells were magnetically attracted by the micromagnets. The number of CTCs captured by 
permanent magnets dropped from 71.8% to 48.7% with the micromagnets. The increased ratio of cells 
captured by the micromagnets demonstrates the significant role of the micromagnets, verifying that the 
increase of the capture rates can be attributed to the implementation of the thin-film micromagnets.

After the screening experiments, we recorded the position of each captured cancer cell to study the 
distribution patterns. COLO 205 and PC3 were used as model cells, and the location maps of captured 
CTCs on micromagnet and plain slides of COLO 205 and PC3, respectively (Fig. 3c). We then measured 
the x coordinate of each cell using the left end of the microchannel as the origin, and summarized the 
distribution patterns for the four experimental conditions (Fig. 3d). On each box, the central mark is the 
median value, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most 
extreme data points. In all the four cases, the median values were around 9 mm, which was the location 
of the front edge of the permanent magnets array. It indicates that the permanent magnets provide the 
major attractive forces. However, on micromagnet slides, 25% of the cells were captured before the front 
edge of the permanent magnets, while 0% (no cell) was captured before this edge on plain slides. Besides, 
the total ranges of cell distribution area increased 55% for PC3 (from 11 mm to 17 mm), 175% for COLO 
205 (from 4 mm to 11 mm). The dramatic increase of this distribution range can be explained since the 
micromagnets create multiple additional potential magnetic trapping sites that are capable of capturing 
the target cells in a distributed format to prevent cell damage by stacked nanoparticles. The patterned 
thin-film micromagnets implementation provides an effective way to alleviate the cell aggregation issues 
of the assay since that more cells are captured by micromagnets rather than the areas with an aggregation 
of nanoparticles.

Comparing the results between the two cell lines, we found that PC3 cells tended to migrate further 
than COLO 205 cells, under the same experimental conditions. On micromagnet slides, the median x 
coordinate of captured CTCs was 9 mm for PC3 and 6 mm for COLO 205, while the maximum value 
was 21 mm for PC3, and 12 mm for COLO 205. On average, PC3 traveled 1.6 times further than COLO 
205. This spatial difference between the two cell lines could be attributed to the expression levels of the 
surface biomarker. PC3 cells, which have lower EpCAM expression24, conjugate with a smaller number 
of magnetic nanoparticles than COLO 205 cells. As such, a PC3 cell is subjected to smaller magnetic 
attractive forces, thus can move longer horizontal distance before being captured than a COLO 205. This 
cell-dependent distance information can be used reversely as a fundamental clue for cell type identifica-
tion. Our system, for the first time, provides spatial distinguishable information that can potentially be 
used for cancer cell phenotyping based on the biomarker expression levels.

Downstream analysis of captured circulating tumor cells from the spiked screenings.  
Amplification of HER-2 (human epidermal growth factor receptor 2, HER-2/ERBB2) identifies the cell 
as clearly a breast cancer cell and is seen progression of breast cancer. Copy number of HER-2 is largely 
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Figure 3.  Characterization of micromagnet-integrated microchip with three categories of captured 
cancer cells. (a) Overlay of fluorescence images and bright field images of FITC-stained COLO 205 cells 
(green). Category 1 of captured cancer cells showing that a cancer cell is captured by a micromagnet. 
Category 2: cells are captured by permanent magnets. Category 3: cells are captured on other areas. Scale bar 
is 20 μ m. (b) Capture rates of COLO 205 and PC3 cells for three categories with/without micromagnets. For 
plain glass slide, most COLO 205 cells were captured on the front line of permanent magnets. In addition, 
patterned micromagnets reduced the capture rate of COLO 205 captured elsewhere. (c) Mapping of COLO 
205 and PC3 locations on plain and micromagnet slides. (d) Distribution analysis of COLO 205 and PC3 
recorded on the plain and micromagnet slides.
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associated with a shorter survival and an increased risk of re-occurrence of cancer38,39. To demonstrate 
that our system provides retrievable CTCs for molecular profiling at single cell scale, we used the FISH 
method to evaluate the copy number of HER-2 and the ratio number of HER-2 to chromosome (CEP17) 
of the captured breast cancer cells (SK-BR-3 and MDA-MB-231) in spiked experiments. We performed 
fluorescence in-situ hybridization (FISH) on the captured CTCs to study the HER-2 expression. Figure 4 
shows the experimental results of FISH analysis showing the hybridization signals for HER-2 (orange) 
and CEP17 (green) of HER-2 positive cancer cell line (SK-BR-3), HER-2 negative cancer cell line 
(MDA-MB-231), and leukocytes as control cells. SK-BR-3 cells show a high level of HER-2 amplification, 
with more than 30 copies (Fig. 4a). While, the MDA-MB-231 cells show no significant amplification of 
HER-2, only with 3 copies (Fig. 4b). As a negative control, we studied leukocyte, and it showed negative 
HER-2 amplification (Fig.  4c). The average ratio number of SK-BR-3 is 5.4 showing that SK-BR-3 is a 
HER-2 positive cell line, and the MDA-MB-231 cell shows the ratio number to be 1. The control cell, 
which is a leukocyte here, shows the ratio number to be 1. Observation of SK-BR-3 (HER-2 positive) and 
MDA-MB-231 (HER-2 negative) cells here accords well with the previous conclusions40,41. It approves the 
efficacy of our system in providing retrievable cells for molecular studies.

Screening and single cell profiling of clinical samples from cancer patients.  We applied 
the developed micromagnet-integrated system in screening blood samples from the late stage cancer 
patients, and successfully found cancer cells from the clinical samples with four different types of meta-
static cancers - colorectal, lung, prostate, and breast cancers. All patients had not received any therapeutic 
treatments before the donation of blood samples for the screening experiments. Table 1 summarizes the 
pathological information and CTC screening experimental results of the patient samples. Notably, for 
samples 3 and 4, we performed comparative experiments using the micromagnet-integrated screening 
system and the “gold-standard” CellSearchTM system (Veridex, LLC, NJ). In both cases, our device out-
performed the CellSearchTM system that no cell was found in the CellSearchTM system.

The CTCs found from cancer patients were identified using the same immune-staining method 
(Fig. 5a,b). Similarly, we observed the direct capture of CTCs by the micromagnets (Fig. 5c). We catego-
rized the captured CTCs in the same way, and found that 54% of the CTCs were captured by micromag-
nets, 28% were captured by permanent magnets, and 19% were captured elsewhere. The high ratio of the 
CTCs captured by the micromagnets was consistent with the results of the spiked experiments. It again 
confirms the significance of the micromagnets in facilitating the capture of the CTCs.

FISH analysis has been performed for CTCs captured from patient samples #9 and #10. Large copy 
numbers of HER-2 (sample #9: more than 16 copies; sample #10: 6 copies) were found in CTCs from 

Figure 4.  FISH results of SK-BR-3 cells, MDA-MB-231 cells, and control cells (leukocytes) in the spiked 
experiments. (a) All cells showed clear hybridization signals for HER-2 in orange and CEP17 in green. 
SK-BR-3 cells showed 20 and 30 copies of HER-2, while 4 and 6 copies of CEP17 were measured. (b) 
MDA-MB-231 cells showed 3 copies of HER-2 and 3 copies of CEP17. (c) Leukocytes showed 2 copies of 
HER-2 and 2 copies of CEP17. Scale bar is 10 μ m.
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cancer patient samples (Fig. 5d). The ratio numbers of all three CTCs were larger than 2.2 (sample #9: 
larger than 2.2; sample #10: 3) suggesting that the captured CTCs were HER-2 positive cancer cells.

Discussion
This screening system combined the advantages of the immunomagnetic assay and micromagnet-integrated 
microfluidic device providing the capability of isolating CTCs from whole blood samples with high 
capture efficiency, high sensitivity, high throughput, high versatility, and simple experimental setup. 
Incorporation of micromagnets patterned in the microchannel enhanced the retaining magnetic force 
locally, reduced the extent of aggregated free nanoparticles and cell aggregation by efficiently utilizing 
the channel space, increased the reliability of achieving high capture efficiency with less variation, and 
achieved single-cell resolution. The system has been used to screen four cell lines from three different 
cancer types showing high capture efficiency. Furthermore, the screening system has been successfully 
applied to clinical screening of blood samples from patients with cancer. We also performed single-cell 
fluorescence in-situ hybridization (FISH) analysis to measure the copy numbers and ratio numbers of 
HER-2 and CEP17 of SK-BR-3 (HER-2 positive), MDA-MB-231 (HER-2 negative), and CTCs from a 
cancer patient sample. The local gradient tuning micromagnet activate cell separation system provides a 
versatile tool for potential single cell based recognition and monitoring of cancer.

Methods
Screening system.  The microchannel was made by a standard molding technique using poly-
dimethylsiloxane (PDMS). Surfaces of PDMS chips and glass slides were treated with O2 plasma followed 
by a bonding process to form microchannel. One end of the microchannel device was connected to a 
reservoir, while the other end was connected to a waste collection tube. A syringe pump was used to 
draw the blood sample from the reservoir through the microchannel, and collected the waste liquid at 
the tube. An automatic rotational microfluidic device holder was developed to rotate the orientation of 
microfluidic device during the screening process, including the separation step and the flushing step. The 
screening system provided the function of rocking the reservoir to mix the blood sample while screening. 
Six samples could be screened at the same time to increase the screening throughput. More details can be 
found in17,18. Based on the mathematical model we built in the previous publication42, the microchannel 
was inversely placed during the separation process to achieve high capture efficiency.

Fabrication of micromagnets.  Arrayed micromagnets were defined by the lift-off technique. A pho-
toresist (AZ5209) was spun on a glass slide and patterned by the standard photolithography process. A 
15 nm thick chromium layer was thermally deposited as an adhesion layer. Next, a thin-film of nickel 
layer (250 nm thick) was thermally deposited. Photoresist was removed to form the nickel micromagnets.

Blood sample collection.  All blood samples were obtained from healthy donors and cancer patients 
in the UT Southwestern Medical Center at Dallas with informed consent from all participants under 

Sample 
number Cancer Type Gender

Ferrofluid/
blood (μL/mL)

Flow 
rate 

(μL/hr)
Screening 

volume (mL)
Number of 

CTCs

Number of 
CTCs/7.5 mL of 

blood found from 
CellSearchTM

1 Colon cancer M 7.5 2.5 5.0 1 N/A

2 Lung cancer F 7.5 2.5 10.0 1 N/A

3 Prostate cancer M 7.5 2.5 7.5 13 0

4 Breast cancer F 7.5 2.5 7.5 6 0

5 Breast cancer F 7.5 2.5 7.5 3 N/A

6 Breast cancer F 7.5 2.5 5.0 10 N/A

7 Breast cancer F 7.5 2.5 7.5 2 N/A

8 Breast cancer F 7.5 2.5 7.5 1 N/A

9 Breast cancer F 7.5 2.5 10.0 22 N/A

10 Breast cancer F 7.5 2.5 5.0 215 N/A

11 Breast cancer F 7.5 2.5 7.5 2 N/A

12 Breast cancer F 7.5 2.5 7.5 6 N/A

13 Breast cancer F 7.5 2.5 5.0 7 N/A

Table 1.   Results of screened patient samples with micromagnet-patterned glass slide (pathology 
information included). Comparative experiments were performed for samples 3 and 4 using the 
micromagnet-integrated screening system and CellSearchTM system. No cell was found from the CellSearchTM 
while CTCs were found in the micromagnet-integrated system.



www.nature.com/scientificreports/

9Scientific Reports | 5:16047 | DOI: 10.1038/srep16047

an IRB-approved protocol. The project was approved by the Institutional Biosafety Committee (IBC) 
and the Advisory Committee on Human Research at University of Texas at Austin. All screenings were 
performed in accordance with the declaration of Helsinki.

Blood sample preparation.  Blood was collected in a CellSave tube (Veridex, Janssen Diagnostic 
LLC, NJ) and centrifuged at 800 G for 10 minutes. Supernatant containing plasma was replaced with dilu-
tion buffer solution (Veridex, Janssen Diagnostic LLC, NJ) for the total volume to be 3.5 mL. Suspensions 
of magnetic nanoparticles (Fe3O4 magnetic nanoparticle, FerrofluidTM, Veridex, Janssen Diagnostic LLC, 
NJ) functionalized with anti-epithelial cell adhesion molecules (anti-EpCAM) and capture enhancement 
reagent were added to the blood sample tube and then incubated in a strong magnetic field for 10 min-
utes before the screening experiment. The flow rate was kept at 2.5 mL/hr during the screening process. 
Magnetic force was used to magnetically trap the nanoparticle-labeled cancer cells on the channel sub-
strate. Phosphate buffered saline (PBS) was used to flush the microchannel after the screening process. 
More details can be found in17,18.

Cell Culture.  MCF-7, PC3, SK-BR-3, and COLO 205 cells were used as cancer cell models to demon-
strate molecular-specific cellular imaging. Cells were cultured in RPMI-1640 (1X, Gibco, Grand Island, 
NY) medium containing 20% fetal bovine serum (FBS, Gibco, Grand Island, NY), and harvested at ~ 90% 
confluence with trypsin. Trypan blue was used to stain the cells, and haemocytometer was used to count 
the cells in the suspension. Cell suspensions containing ~3 ×  105 cells/mL were re-suspended in complete 
media. Meanwhile, a diluted cell suspension containing ~ 3 ×  104 cells/mL (equivalent to 200 cells/10 μ L) 
were prepared as the spiked screen sample.

Immunofluorescence staining and imaging.  Captured cancer cells were fixed in ice-cold acetone 
on the channel substrate for 10 minutes. The experimental glass slide was rinsed with 1X PBS and 0.1% 
Tween-20 (Sigma-Aldrich, St. Louis, MO). The 300 μ L blocking buffer (Boca Science Inc., Boca Raton, 
FL) was added on the sample slide followed by the incubation with 37oC for 60 minutes. The cells were 
then immunofluorescently stained with anti-cytokeratin (mouse anti-cytokeratin, positive test, pan-FITC, 
Sigma-Aldrich, St. Louis, MO) and anti-CD45 (AlexaFluor 594, negative test, Invitrogen, Grand Island, 
NY) in staining solution (1X PBS, 0.1% Tween-20, and 1% BSA). Incubation time is 45 minutes with 
37oC. The slide was immersed in 1X PBS and 0.1% Tween-20 for 5 minutes for three times. Next, the 
cells were stained with DAPI (stains DNA found in cell nucleus, positive test, Vectashield Mounting 
Medium with DAPI, Vector Laboratories, Inc., Burlingame, CA). The sample slide was stored in 4oC 
refrigerator for 30 minutes before the observation and cell identification with the inverted microscope 
(IX81, Olympus, Center Valley, PA).

Definition of the capture rate.  Capture rate is defined in the following way:
We defined the term “capture rate” to quantify the yield of our system. It is calculated based on the 

ratio between the number of captured cancer cells and spiked cancer cells.

Figure 5.  Cancer patient study results. (a,b) Fluorescence signals of the cancer cells found from breast 
cancer patients #9 and #10 from the Table 1. (c) Direct capture of CTCs onto the micromagnet was 
observed. (d) FISH results of the cells found from cancer patients #9 and #10. All cells showed clear 
hybridization signals for HER-2 in orange and CEP17 in green. CTCs captured from patient blood samples 
showed amplification of HER-2. Scale bar is 20 μ m.



www.nature.com/scientificreports/

1 0Scientific Reports | 5:16047 | DOI: 10.1038/srep16047

(%) = × %
( )

Capture rate
Number of cells captured and found in the screened sample

Average number of cells found on two control slides
100

1

Two control slides were prepared from 10 μ L of cell suspension (about 200 cells) when the blood sam-
ple was spiked with same volume of cell suspension. Capture rate could be higher than 100% when the 
number of cells spiked in the blood sample is more than the average number of cells on the two control 
slides because of the concentration variations in such a small cell suspensions (10 μ L).

Statistical analysis.  Data of capture rates are reported as mean ±  standard deviation of the mean. If 
groups had a standard normal distribution and homogenous variances, the group means were compared 
by an independent t-test, and the variances were compared using a Levene’s test. Differences in the com-
parative experiments were considered significant with the confidence level at 95% (p <  0.05).

Fluorescence in-situ hybridization (FISH) analysis.  After the screening process, the immunoflu-
orescence staining, and the cell identification, the experimental slide was used for fluorescence in-situ 
hybridization analysis. The cover slip was removed by immersing the experimental slide in the 1X PBS 
solution for two hours. Next, target cancer cells captured and fixed on the glass slide were then studied 
by the FISH method. LSI HER-2 DNA probe and chromosome 17 centromere (CEP17) DNA probe 
were used for copy number measurement of HER-2 and CEP17 respectively. A 190 Kb Spectrum Orange 
directly labeled fluorescent DNA probe specific for HER-2 gene locus. A 5.4 Kb Spectrum Green directly 
labeled fluorescent DNA probe specific for the alpha satellite DNA sequence at the centromere region 
of chromosome 17.
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