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Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to

therapy and has a poor prognosis due to its universal recurrence rate. GBM

cel ls interact with the non-cel lular components in the tumor

microenvironment (TME), facilitating their rapid growth, evolution, and

invasion into the normal brain. Herein we discuss the complexity of the

interactions between the cellular and non-cellular components of the TME

and advances in the field as a whole. While the stroma of non-central nervous

system (CNS) tissues is abundant in fibrillary collagens, laminins, and

fibronectin, the normal brain extracellular matrix (ECM) predominantly

includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary

components typically found only in association with the vasculature. However,

recent studies have found that in GBMs, the microenvironment evolves into a

more complex array of components, with upregulated collagen gene

expression and aligned fibrillary ECM networks. The interactions of glioma

cells with the ECM and the degradation of matrix barriers are crucial for both

single-cell and collective invasion into neighboring brain tissue. ECM-regulated

mechanisms also contribute to immune exclusion, resulting in a major

challenge to immunotherapy delivery and efficacy. Glioma cells chemically

and physically control the function of their environment, co-opting complex

signaling networks for their own benefit, resulting in radio- and chemo-

resistance, tumor recurrence, and cancer progression. Targeting these

interactions is an attractive strategy for overcoming therapy resistance, and

we will discuss recent advances in preclinical studies, current clinical trials, and

potential future clinical applications. In this review, we also provide a

comprehensive discussion of the complexities of the interconnected cellular
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and non-cellular components of the microenvironmental landscape of brain

tumors to guide the development of safe and effective therapeutic strategies

against brain cancer.
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Introduction

Glioblastomas (GBM) are the most aggressive and invasive

tumors of the central nervous system. GBM are highly

heterogeneous, and the complex tumor cell interactions with

the cellular and non-cellular (ECM) TME influence overall

tumor progression (1). Aside from malignant cells, tumors are

comprised of vascular cells and immune cells (macrophages,

microglia, and T, B, and NK cells) -which in gliomas can amount

to 50% of the total number of cells in the tumor- in addition to

the extracellular matrix (2). The ECM is modified in GBM

tumors compared to the normal brain, playing a critical role

in tumor migration and invasion (3, 4). In GBM, the ECM

consists of higher levels of collagen, fibronectin, laminin,

hyaluronic acid, tenascin-C and vitronectin (4, 5) and the

exact composition of any individual tumor varies with the

stage of tumor growth as the extracellular matrix becomes

more remodeled (6, 7).

Unfortunately, there has been very little therapeutic success

for glioblastomas and high rates of recurrence. Interestingly,

very few clinical trials focus on microenvironmental targets,

such as the ECM or immune cell-tumor interactions. For

example, macrophages display two different phenotypes, pro-

tumoral M2 and anti-tumoral M1, and interactions between

pro-tumoral macrophages can alter the mesenchymal

characteristics of glioma cells (8–10). Thus, it might be

possible to tip the balance towards the anti-tumoral

macrophage as a therapeutic strategy. Another unexplored

possibility would be to understand in further depth the

interactions between immune cells and the extracellular

matrix. Immune cells comprise a complex group of T cells, B

cells, and NK cells, but in spite of many expectations, clinical

trials using immune checkpoint inhibitors have only achieved

minor anti-tumor effects (11). In other tumors, it has been

shown that manipulating the ECM can alter the capacity of

immune cells to enter the tumor mass (12, 13). Thus, the ECM-

immune cell interaction remains an unexplored potential target

for the treatment of GBM.

Other novel therapeutic strategies now consider the

possibilities of targeting the ECM with therapeutic intent (14).

As our knowledge of the structure of tumor ECM progresses,
02
novel potential targets are discovered. An intriguing possibility is

the direct targeting of structures formed by glioma cells and

called oncostreams (15). These structures promote glioma

growth and invasion and depend on their structure on

collagen produced by tumor cells. As we have shown that

eliminating collagen from tumor cells disrupts oncostream

structure, we propose that doing so pharmacologically may be

a potential novel therapy. Interestingly, similar production of

Collagen 1 by tumor cells has recently been shown in pancreatic

cancer (16). Though there have not yet been clinical trials in

GBM tumors targeting the ECM, such trials have been

performed in pancreatic cancer (17, 18). However, in spite of

very positive preclinical data, there were no increased survival in

patients treated with inhibitors of hyaluronic acid (19).

Targeting the ECM therapeutically carries its own

challenges, as it remains unclear which are the cells that

produce the ECM. There exists a population of brain

fibroblasts, though it is yet poorly understood (20). It is likely

that such fibroblasts contribute to the tumor ECM. If they do, it

will be important to determine which factors that induce these

cells to alter the composition of the ECM as tumors grow.

Interestingly, it is now becoming clear that tumor cells

themselves contribute to the makeup of the ECM. Tumor cell

contributions are thus another potential treatment target. In the

case of genetically engineered mouse models of glioma we have

recently shown that tumor cells produce Collagen 1 (15), and it

has further been shown that breast cancer cells also produce a

particular isoform of Collagen 1 (21). As knowledge advances

concerning the contributions tumor cells make to tumor ECM,

novel therapeutic targets will be identified. The larger themes of

tumor-ECM interaction which have been highlighted will now

be discussed in detail throughout this review.
Glioma subtypes and
molecular classification

GBMs vary in terms of histologic characteristics, malignancy

grade, and molecular changes. The histological WHO

classification of gliomas, which previously classified these

tumors as being of glial origin, has recently been improved by
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the addition of the existence and distribution of genetic/

epigenetic changes as classification criteria (22–24). Classifying

gliomas based on recurrent IDH1 point mutations, which have

been linked to gliomagenesis (25, 26), is important because it

distinguishes mutant IDH1 gliomas from wild-type-IDH1 (wt-

IDH1) gliomas. In contrast to low-grade gliomas (LGG), WHO

grade 4 wt-IDH1 high-grade gliomas exhibit more somatic

mutations and multiple genomic alterations (22, 27–30). Adult

wt-IDH1 gliomas still demonstrate ATRX activity and

frequently co-present TP53 and TERTp mutations.

Additionally, wt-IDH1 gliomas can have mutations or

deletions in the tumor-suppressor genes PTEN and CDKN2A/

B, as well as changes to chromosomes 7 and 10. These changes

can affect how the RTK-RAS-PI3K signaling cascade is

regulated, including EGFR amplification (23, 27).

The majority of diffuse LGG (WHO grade 2) and LGGs that

relapse as GBM (WHO grade 4) have IDH1 mutations, typically

at arginine 132 (R132H) (29, 31–33). IDH1-R132H catalyzes the

formation of 2-hydroxyglutarate, which leads to epigenetic

reprogramming of the glioma transcriptome and is associated

with a better prognosis in glioma (32, 34–36). A mutant IDH1

glioma subgroup with codeletion of the chromosomal bands 1p

and 19q as well as a mutation in the TERT promoter are

histologically defined as oligodendrogliomas (37–39). In

contrast, mutant IDH1 gliomas without 1p and 19q codeletion

are typically P53 and ATRX mutants and they have astrocytic

histology with a hypermethylation phenotype (G-CIMP high).

The importance of IDH1 mutation status to the clinical fate

(better prognosis) of the tumors contributed to the decision to

include it in the classification of diffuse gliomas (40, 41).

Furthermore, demethylation of CXCR4, TBX18, SP5, and

TMEM22 genes is also associated with the initiation and

progression of tumors in GBM (42). Analyzing methylation

profiles of TCGA data uncovered DNA methylation clusters

termed subtypes LGm1 through LGm6, which were associated

with molecular glioma subclasses and WHO grades (32).

Additionally, methylation of MGMT promoter CpG islands

predicts improved response to DNA alkylating drugs (43). In

terms of methylation and copy number profile, as well as

histological appearance and molecular signature, a novel

IDH1-WT GBM methylation subgroup that differs from

previously reported molecular subgroups was recently

introduced in the classification of glioma (44).

The 2021 WHO classification of gliomas has introduced 4

general groups of diffuse gliomas: adult-type diffuse, pediatric-

type diffuse low-grade, pediatric-type diffuse high-grade, and

circumscribed astrocytic gliomas. Adult-type diffuse gliomas

include astrocytoma with IDH mutation, oligodendroglioma

with IDH mutation and 1p/19q codeletion, and glioblastoma

with IDH wildtype. IDH-mutant diffuse astrocytomas are now

classified 2-4 grade; the designations “anaplastic astrocytoma”

and “glioblastoma” have been dropped for IDH-mutant

astrocytomas. Furthermore, if an IDH-mutant diffuse
Frontiers in Oncology 03
astrocytoma has a homozygous deletion of CDKN2A/B, it is

classified as a CNS WHO grade 4 neoplasm, even though

histologic signs of malignancy such as necrosis and

microvascular proliferation are lacking (39, 45, 46). Roman

numerals are no longer used to denote WHO grades; instead,

Arabic numbers are used. It is stressed how crucial it is to find

mutations other than the standard IDH1 R132H mutation in

diffuse gliomas, particularly in patients under the age of 55. For

example, noncanonical (such as non-R132H) IDH1 and IDH2

mutations should be examined in patients 55 years of age and

younger with IDH-wildtype diffuse astrocytic gliomas. Other

molecular markers, such as ATRX expression loss or TERT

promoter mutations, presence of TP53 or histone H3 mutations,

EGFR amplification, or CDKN2A/B changes, must be

investigated (39, 45, 46).

The WHO classification of CNS malignancies in 2021 is a

significant advancement with substantial implications for the

management of patients with brain tumors. This new

classification will improve diagnosis accuracy, provide better

prognosis guidance, selection of more appropriate treatment,

and allow enrollment of more homogeneous patient populations

in clinical trials. This categorization will improve patient care

and stimulate the development of more effective treatment

regimens (39, 45).
Cellular components of the
tumor microenvironment

The tumoral composition of GBM is highly heterogeneous,

both inter- and intratumorally as illustrated in Figure 1. This

varied landscape, including cellular and non-cellular

components, is termed the TME and encompasses the wide

range of cell types and variations in ECM found within and

near the tumor. The glioma TME includes both malignant and

non-malignant cells - tumor cells, a variety of infiltrating

peripheral immune cells, and the cells of the healthy brain

such as neurons, neuroglia, and the additional components of

the neurovascular unit (NVU), including pericytes and

endothelial cells (47–50). Among the non-malignant cells are

local immune cell types, such as microglia and astrocytes, as

well as lymphocytes, endothelial, and other cells. Half of the

tumor mass is composed of infiltrating cells, and most of the

tumor-associated immune population are macrophages or

microglia (2). However, the tumor environment is

characterized as an immunosuppressive environment,

inhibiting the immune response.
Glioma cells

Glioma cells are thought to develop from altered glial

progenitors, and there are several subtypes based on their
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differentiation state, including astrocytomas, oligodendrogliomas,

and ependymomas (51, 52). Glioma cells can form tumors in any

part of the brain and diffusely infiltrate surrounding parenchyma

(53). Along pre-existing brain structures, glioma cells invade brain

tissue through ECM components including myelinated fibers and

brain vasculature (54). Glioma cells can eventually enter and occupy

the subarachnoid region via the perivascular space (55, 56). Because

gliomas tend to invade so much of the surrounding tissue, surgical

resection is usually not enough to cure them. Instead, cells survive

and grow back from the invasion zones beyond the resectionmargins

(57). Glioma cells typically do not infiltrate the lumens of blood
Frontiers in Oncology 04
vessels, thus, systemic spread and metastasis in non-CNS organs are

rare in brain neoplasia (58, 59).
Glioma stem cells

GSCs are highly tumorigenic, invasive, and resistant to a

variety of therapies (60). GSCs are frequently located in the

“vascular niche” surrounding the tumor vasculature, which is

known to offer microenvironmental signals to maintain GSC

stemness, promote invasion, and enhance resistance to
FIGURE 1

Schematics of the cellular components of the brain tumor microenvironmental landscape. The cellular components of gliomas: malignant and
non-malignant cells, including tumor cells, a range of invasive peripheral immune cells, cells from the healthy brain including neurons and
neuroglia, as well as pericytes and endothelial cells. The non-malignant cellular component consists of local immune cell types, including
microglia and astrocytes, as well as lymphocytes, endothelial cells. High numbers of neutrophils in the systemic circulation indicates a positive
therapeutic response. However, the presence of neutrophils in the glioma microenvironment confers resistance to anti-angiogenic therapy,
suggesting high-grade glioma. Neutrophils promote the proliferation of GSCs with mesenchymal phenotypes and GSCs recruited through TGF-
b secretion induce an immunosuppressive and, protumoral, M2 phenotype in macrophages. TGF-b and IL-10, immunosuppressive cytokines
that impair T-cell response and antigen-presenting cell function, are overexpressed by glioma cells. The expression of MHC-I is downregulated
in glioma cells while PD-L1 is upregulated, impairing T-cell response. Additionally, CTLA-4 expression reduces TCR activity. Recruitment and
development of regulatory T cells are stimulated by TGF- and IL-10. Finally, the release of GM-CSF and CSF-1 by glioma cells promotes the
recruitment of macrophages and polarization of M1 macrophages to an M2-like phenotype. The tumor–brain interface is distinguished by an
invasive edge that harbors invasive glioma cells that migrate via white matter tracts or extracellular matrix fibers to infiltrate the brain
parenchyma either collectively or as a single cell invasion. Glioma cells have been demonstrated to invade the perivascular space collectively, as
a conduit for invasion. [Created with BioRender.com].
frontiersin.org
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treatments. The SDF-1/CXCR4 axis transdifferentiate GSCs to

endothelial cells and are triggered to become pericytes by TGF-b
(61). Targeting pericytes derived from GSCs disrupts the blood-

tumor barrier and enhances chemotherapeutic efficacy (61–66).

Neutrophils promote the proliferation of GSCs with

mesenchymal phenotypes (67) and GSCs recruited through

TGF-b secretion induce an immunosuppressive and,

protumoral M2 phenotype in macrophages (68, 69). WNT5A

is associated with both differentiation of GSCs into endothelial

cells (ECs) and recruitment of additional ECs (70). ECs recruit

GSCs via the CXCL12 (SDF-1)-CXCR4 axis after which they

differentiate into pericytes by TGF-b (61).

The cancer stem cell (CSC) hypothesis, which has been

experimentally supported in the last two decades in

connection to glioblastoma and numerous other cancer types,

suggests that self-renewing CSCs originate and sustain tumor

formation (71–77). CSCs can also arise from pediatric brain

tumors (78). GSCs are capable of long-term proliferation, self-

renewal, differentiation, and quiescence in G0 state, generating

tumor spheres in culture due to their clonogenic capacity, and

producing a tumor phenotypically similar to the original tumor

when transplanted into recipient mice. Due to their propensity

for self-renewal, and long-term replication, GSCs have been

identified as the true “units of selection” during tumor growth

(79). Recent research has demonstrated that different genetic

and epigenetic variations of GSCs coexist in GBM and that they

are responsible for cancer evolution (80). Experimental evidence

suggests that GSCs serve as cellular drivers of the subclonal

expansion in glioblastoma development and evolution. Hypoxia-

inducible factor HIF2a and several HIF-regulated genes are

more likely to be expressed in GSCs than in normal neural

progenitors or non-stem tumor cells (63, 81–85). As GBM

grows, the original network of vasculature is no longer

sufficient to provide the growing mass, and hypoxia starts to

occur in some regions (86, 87). Brognaro describes different

phases of hypoxia, the first phase is pre-hypoxic, where the

oxygen level is between 10-5%, HIF2a is a GSC marker during

the second phase of GBM development, when the oxygen level is

between 5-1%, while the third phase is very severe hypoxia,

which lasts from 1% oxygen (when HIF1a is also turned on) to a

very low level of oxygen tension (86, 87). This indicates that

GSCs are the most sensitive cells to hypoxia and that they pass

on the traits that make them fit to their offspring, which drives

tumor evolution. In the same way, GSCs can quickly turn up the

Glut3 transporter for glucose uptake when there isn’t enough

glucose (88).

Singh et al. have shown that CD133+ cells may develop into

tumor cells that phenotypically resembled the patient’s tumor

(89, 90). CD133+ glioma stem cells promote radio resistance and

glioma recurrence through regulation of the -DNA repair and

checkpoint response network; Bao et al. have shown that

targeting this DNA damage checkpoint response suppresses

radio resistance in vitro and in vivo (91). The authors further
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survival of CD133+ glioma stem cells (92). Vascular endothelial

growth factor (VEGF) is regularly secreted at considerably

higher levels by stem like-glioma cell and was further

stimulated by hypoxia (93). Jin et al. showed that proneural

GSCs are more responsive to EZH2 suppression than

mesenchymal GSCs are to BMI1 inhibition. Given that

glioblastomas contain both proneural and mesenchymal GSCs,

targeting both EZH2 and BMI1 was more efficacious than

targeting either agent alone (94).
Invasion and migration

Gliomas are distinguished by intertumoral heterogeneity and

diffuse invasion of normal brain tissue. To achieve this, gliomas

employ a variety of motility modes, including single-cell invasion,

collective invasion, and perivascular invasion (Figure 1) (15, 95–

97). It is not well understood if tumor growth and spread are

random, or if glioma cells self-organize to help tumors grow and

spread (98). Collective motion patterns have been seen both

during normal development and in diseases like cancer, where

the cells change from epithelial to mesenchymal phenotypes and

then spread to other organs; gliomas have also been shown to

exhibit organized, moving structures (15, 99–101). Recent studies

using explants of spontaneous intestinal carcinoma found that the

cells in the tumor core moved collectively. Using mouse glioma

explants from genetically engineered mouse models, we recently

studied the complicated behavior of glioma cells both in the center

of the tumor and at the border with normal brain (15, 97). To get a

more accurate picture of gliomas, we need a better understanding

of their dynamic heterogeneity, which includes their histological

features and their molecular makeup. Disrupting the collective

dynamic patterns of gliomas with drugs may eventually stop the

growth and spread of gliomas, leading to novel glioma

treatment strategies.

The current treatment for glioblastoma is maximal surgical

resection followed by chemo- and radiotherapy. The success of

brain surgeries can be credited to American neurosurgeons

Walter Dandy and Harvey Cushing. Dandy’s incomparable

achievements set him apart from others’ recognition, including

his epochal paper on ventriculography. Before this technique

was developed, it was difficult to precisely locate brain tumors.

After ventriculography was perfected, it was possible to locate

virtually every tumor (102). Since Dandy’s discovery,

neurosurgery for glioblastoma has made much progress in

terms of technology. Today, glioblastoma surgery is guided by

5-ALA or intraoperative MRI and helped by a neuronavigation

system and neurophysiological monitoring. Due to these

improvements in technology, neurosurgeons can now remove

about 90% of tumors without affecting the patients’ functional

status. But even though surgery has improved, and patients

undergo radiotherapy and chemotherapy, patient outlook
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remains very poor. Many tumors remain resistant to current

treatments and grow back after a short period of regression, in

both patients with visible or non-visible residual disease after

surgery. Recent evidence of a branched evolution pattern leading

to the multifaceted and variegated subclonal architecture of the

primary bulk of glioblastoma has explained this resistance (103).

Additionally, micro-infiltration of the brain parenchyma occurs

in the very early stages of tumor growth. Recurrences happen

mostly close by, and sometimes far away from the initial tumor

site, even in patients whose primary glioblastoma bulk was

completely removed by surgery (103).

To discover a cure for this terrible disease, new treatments

must take into account both the fact that different active CSCs in

the primary tumor or in tumor residues post-surgery can

become resistant and brain tumor initiating CSCs are still

present in the normal brain parenchyma, here they are

sheltered by their dormant state, cellular and non-cellular

interactions within the glioma-microenvironment, and the

blood-brain barrier (103). Intratumoral heterogeneity and the

clonal evolution of GBM determine patient-specific responses to

treatment. In particular, after treatment, the remaining tumor

population may not be a single clone that is resistant, but rather

a group of different cancer cells with genetic changes that help

them in the invasion of the normal brain parenchyma and

resistance to treatments (104). This review mainly focuses on

discussing the cellular and non-cellular interactions at the bulk

tumor core and the infiltrating tumor border to define novel and

efficacious treatment modalities against glioblastoma.
Immune cells

In the normal brain, macrophages are a minor population

but orchestrate the immune response under pathological

conditions. Macrophages are either recruited to the brain as

the tumor forms (105) or are recruited as monocytes and

induced to become macrophages once in the TME (106). They

can enter the brain due to GBM-induced disruption of the BBB

(107). Glioma associated macrophages (GAMs) have

traditionally been understood to exist between the M1

immune stimulatory and M2 immunosuppressive phenotypes

(Figure 1) (108). We now know that this dichotomous approach

to TAM classification is an oversimplification of multiple

macrophage phenotypes, thanks to recent advances in single-

cell technology and high-throughput immune profiling (109).

Microglia are CNS-resident immune cells that behave pro-

angiogenically (110). Microglial responses to different

neuropathologies have also been linked to disruption of the

BBB (111). Neutrophils may confer resistance to anti-angiogenic

therapy, possibly explaining why neutrophil infiltration

correlates with glioma grade (67). This could also be explained

by their stimulation of tumoral proliferation and invasion via

neutrophil extracellular traps (NETs) (112). Ferroptosis of
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tumor cells caused by neutrophils leads to the formation of

necrotic regions in tumors (113).

Due to disruption of the BBB, T cells can also infiltrate the

brain and enter the TME (114) self-inducing a CD8+

immunosuppressive phenotype (115). Additionally, the

immunosuppressive regulatory T cells are the most common

kind of T cell in the TME and are responsible for preventing

cytotoxic T cell proliferation (116). Although T cells and other

immune cells should be one of the body’s primary defenses to

attack tumor cells, in GBM, T cells often become inactivated

near the tumor due to genetic reprogramming and immune

cell exclusion.

Myeloid cells are the most common immune cells found in

the glioma microenvironment, accounting for 60% of all

infiltrating immune cells (117–119). Resident microglia, bone

marrow-derived macrophages, myeloid-derived suppressor cells

(MDSCs), dendritic cells, and neutrophils make up this

population (12, 120). Despite their different developmental

origins, microglia and macrophages share several phenotypic

characteristics and can be distinguished by distinct cellular

markers. Microglia make up 10% of the brain cell population

and are derived from yolk sac erythro-myeloid progenitors

during early embryonic development (121). Microglia are

critical in maintaining brain homeostasis. However, under

pathological conditions, they tend to polarize into two

traditional categories: neurotoxic and neuroprotective, with

changes in morphological features and marker expression

(122–124).

Microglia and peripheral macrophages/monocytes activate,

proliferate, and contribute to the disturbance of immune

homeostasis under pathological conditions (9, 125, 126).

Resident microglia, not macrophages, promote vascularization

in brain tumors via the CXCL2-CXCR2 signaling pathway and

are a source of alternative pro-angiogenic agents (110).

Additionally, inhibiting the myeloid checkpoint of signal

regulatory protein alpha (SIRPa) in microglia represses

microglial stimulation by acting on the neuronal CD47 (127).

SIRPa contains a receptor tyrosine-based inhibitory motif

(ITIM) in its cytoplasmic region, which is phosphorylated

upon contact with CD47, thereby increasing the binding and

activation of SHP-1 and SHP-2, which limit phagocytosis by

inhibiting myosin IIA deposition at the phagocytic synapse

(128–130). Consequently, the observed upregulation of CD47

in GBM promotes the immunosuppressive properties of

microglia in the tumor microenvironment (131, 132).
Myeloid-derived suppressor cells

MDSCs are a diverse population of immature myeloid cells

that release large amounts of immunosuppressive mediators and

impair anti-tumor immunity. These cells can originate from

either monocytic (M-MDSCs) or granulocytic (PMN-MDSCs)
frontiersin.org

https://doi.org/10.3389/fonc.2022.1005069
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Faisal et al. 10.3389/fonc.2022.1005069
precursors (133). M-MDSCs have a better immunosuppressive

capacity and are more prevalent in the blood of GBM patients,

but PMN-MDSCs are more prevalent in the glioma

microenvironment (134). Recent research by Bayik et al.

demonstrates that chemotherapy can be utilized to target M-

MDSCs in males, while IL1 pathway inhibitors can assist females

by inhibiting PMN-MDSCs (135). MDSC subsets can contribute

to the progression of primary tumors and promote metastatic

dissemination, by inhibiting the antitumor immune response,

boosting cancer stem cell (CSC)/epithelial-to-mesenchymal

transition (EMT), and increasing angiogenesis (136).

Glioma-derived cytokines are the primary stimuli that

induce the recruitment and proliferation of MDSCs, which can

be MDSCs recruiters (including CCL2, CXCL8, SDF-1, and

CCL2) and/or MDSCs expanders (including IL-6, PGE2, IL-

10, VEGF, and GM-CSF) (134, 137). A cytokine screen further

revealed that glioma stem cells released many molecules that

enhanced MDSCs mediated immune suppression, including

macrophage migration inhibitory factor (MIF), which acts to

decrease immunological rejection by triggering and maintaining

immune suppressive MDSCs in the GBM TME (138, 139). In

glioma patients, elevated plasma levels of arginase and G-CSF

may be associated with MDSC suppressor function and MDSC

expansion, respectively (140). MDSCs inhibit cytotoxic

responses mediated by natural killer cells and impede the

activation of tumor reactive CD4+ T helper cells and cytotoxic

CD8+ T cells (141). MDSCs along with glioma-associated

macrophages have the ability to recruit Treg cells to the tumor

site (141). Multiple mechanisms, including the development of

oxidative stress, expression of T cell inhibitory ligands,

inhibition of T cell migration, and depletion of essential T cell

metabolites, contribute to this suppression (133, 134). In GBM

patient tissue, elevated MDSCs levels in recurrent GBM

predicted a poor prognosis. A CyTOF study of peripheral

blood from newly diagnosed GBM patients demonstrated a

concurrent decrease in MDSCs and rise in dendritic cells with

time. Similar to the levels of individuals with low-grade glioma

(LGG), GBM patients with prolonged survival exhibited less

MDSCs. The identification of MDSCs as a prominent

immunosuppressive population identifies them as a

therapeutic target for glioma (139, 142). In the Phase I clinical

trial (NCT02669173), the combination of low-dose, metronomic

capecitabine and bevacizumab was well tolerated by GBM

patients and was associated with a decrease in circulating

MDSC levels and an increase in cytotoxic immune infiltration

into the TME (143).
Astrocytes

Astrocytes comprise the bulk of brain cells and play a

significant role in GBM (144). Tumor-associated astrocytes

(TAAs) promote GBM proliferation, survival, and invasion of
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brain parenchyma by enhancing the release of degradative

enzymes, cytokines, chemokines, and growth factors (145).

Additionally, brain tumor cells make direct contact with

astrocytes through gap junctions, resulting in enhanced

chemo- and radio-resistance (Figure 1) (146). Astrocytes also

release exosomes that suppress PTEN via microRNA in GBM

(147) through these gap junctions (148–150). Additionally,

astrocytes interact with microglial cells, contributing to the

immune-suppressing glioma TME (145). Recent findings

indicate that astrocytes may be activated by brain tumor cells

and play a crucial role in the development, aggressiveness, and

angiogenesis of the tumor mass (151). Astrocytes transform into

reactive astrocytes, which are defined by hypertrophy and

upregulation of intermediate filaments [such as nestin,

vimentin, and glial fibrillary acidic protein (GFAP)], and

stimulation of cell proliferation (152). Active STAT3 in

reactive astrocytes associated with worse survival after

diagnosis of brain metastases in patients. Even at advanced

phases of colonization, inhibiting STAT3 signaling in reactive

astrocytes inhibits experimental brain metastasis from various

primary tumor sites (153). Astrocytes secrete substances that

retain the blood-brain barrier (BBB) tight junctions, which

controls whether metastatic cells can invade the brain.

Additionally, astrocytes also encourage the release of

degradative enzymes, anti-inflammatory cytokines (including

TGFb, IL10, and G-CSF through activation of the JAK/STAT

signaling pathway), chemokines, and growth factors, which

eventually promote tumor cell growth, survival, and invasion

(154–157). The balance of pro- and anti-inflammatory cytokines

is shifted toward a pro-inflammatory milieu by inhibition of the

JAK/STAT signaling pathway. Tumor-associated astrocytes

contribute to anti-inflammatory responses is suggested by the

intricate relationship between astrocytes and microglial cells,

which can further contribute to the immunosuppressive glioma

microenvironment (145).
Fibroblasts

Fibroblasts secrete ECM components and recent multimodal

investigations have begun to illuminate their presence in the

meninges, choroid plexus, and perivascular spaces of the brain

and spinal cord. It is still unknown where CNS fibroblasts come

from and what they do, but it is obvious that they belong to a

unique cell population, or populations, which have often been

mistaken for other cell types due to the expression of

overlapping cellular markers (20). Fibroblasts differ in

transcriptional signatures across the layers of the meninges

during development, with the pia mater fibroblast populations

enriched in matrix metalloproteinases (MMPs) and a variety of

ECM components including collagens and proteoglycans

(Figure 1) (158). Subarachnoid-activated fibroblasts and

perivascular inactivated fibroblasts surrounding the cortex-
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penetrating pia mater both express PDGFR-b (159). These

perivascular Col1a1+ fibroblasts are largely absent in the brain

at birth but are present later in development and are suggested to

migrate along parenchymal vasculature (160).
Blood-Brain Barrier

The blood brain barrier (BBB) is composed of endothelial

cells, astrocytic processes, pericytes, and the basement

membrane (161). Traditionally, the BBB was understood to

facilitate the immune-privileged status of the brain; however,

the extent to which the immune landscape of the brain is

separate from the rest of the body has recently been called into

question. The BBB can be compromised by GBM due to a

number of factors including increased cerebral pressure, tumor

cells displacing astrocytic feet as they proliferate in the

perivascular space (162), and Semaphorin3A expressing

extracellular vesicles released by tumor cells (163).

Furthermore, the ECM of the BBB is altered in GBM

including lessened expression of agrin and increased tenascin

in the basal lamina (164). As GBM grows, new blood vessels are

formed (neovascularization), which helps the tumor to expand.

This neovascularization starts with endothelial cells, involves

extracellular matrix changes, migration and proliferation of

vascular cells forming capillaries (95, 165–167).
Non-cellular components of the
microenvironmental landscape in
brain tumors: Molecular and
biochemical aspects

Extracellular matrix in brain tumors

The non-cellular components of the tumor microenvironment

are generally classified as the extracellular matrix, which functions

as a biochemical and biophysical support of the cellular

components of the TME as shown in Figure 2. The ECM

includes interstitial fluid, minerals, fibrous proteins including

fibers that provide tensile strength like collagen and elastin, and

adhesive glycoproteins like fibronectin, laminin, and tenascin. The

non-fibrillar ECM constituent includes the proteoglycans - heparan

sulfate, chondroitin sulfate, and keratan sulfate - and the

glycosaminoglycans including hyaluronic acid (168). Different

organs have a particular composition of these elements that are

directly related to their function. The general composition of the

ECM arises from the balance between the cellular production/

secretion and degradation. The ECM is highly dynamic and is stable

under normal physiological conditions. However, in different

pathological conditions such as cancer, the balance between

production and degradation is lost. The mechanical forces
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generated by the ECM have recently been discovered to play

critical roles in disease progression and malignant cell behavior

(169–171).

The ECM of the normal brain is different from other organs

as the brain has minimal levels of fibrotic ECM proteins like

collagen, fibronectin, and laminin. These proteins are primarily

found in the basal membrane around blood vessels and at the

meninges. On the other hand, the brain parenchyma is rich in

glycosaminoglycans (hyaluronic acid), proteoglycans and other

linking proteins (6, 7). Compared to the healthy brain, the ECM

is altered in GBM tumors and plays a crucial role in tumor

invasion and migration (3, 4). Higher concentrations of collagen,

fibronectin, laminin, hyaluronic acid, tenascin C, and vitronectin

are present in the ECM of GBM and have been shown to have

important roles in the onset and glioma progression (Figure 2)

(4, 5). Additionally, several of these non-cellular components of

the ECM have been especially linked to regulating tumor growth

and are covered in more detail below.

GBM cells not only need to collect oncogenic genetic

changes, but they also need permissive signals from the ECM

around them in order to become more malignant (172). For

instance, it has been shown that the ECM can change the

amount of mRNA and the rates of protein synthesis and

secretion. The ECM affects gene expression through

transmembrane proteins (like integrins) and parts of the

cytoskeleton. The cytoskeleton is connected to polyribosomes,

which control mRNA stability and protein synthesis and to the

nuclear matrix, which controls mRNA processing and rate of

transcription. It has recently been shown in pancreatic cancer

that disrupting these ECM cues alone can change oncogenic

programs and slow down tumor growth (173). Similarly,

identifying important ECM components in GBM can u er new

therapeutic targets to halt tumor progression.
Collagens and collagen receptors

Collagen is the most abundant of the ECM components and

is classified in 29 different collagen subtypes. The molecular

structure of collagen is a homotrimer or heterotrimer helical of 3

polypeptide chains which present a Gly-X-Y sequence (X and Y

are typically proline or hydroxyproline). Collagens are classified

in three main varieties: fibrillar, network forming, and fibril

associated. Fibrillar collagen is mainly represented by collagen

type I, in addition to collagens II, III, V and XI (174, 175).

Collagen fibers are synthesized inside the cells as pro-collagen,

which is then post-translationally modified in the rough

endoplasmic reticulum via hydroxylation of proline and lysine

and glycosylation. The fibers are then secreted from the Golgi to

the extracellular space where they are cleaved and then

crosslinked to other microfibrils and proteoglycans such as

decorin and biglycan. This process forms large fibers that

provide necessary tension for the tissue (5, 171, 176). Besides
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its function as a structural molecule, collagen plays a central role

in cellular signaling and interactions with other ECM

components. Specific domains of collagen bind cellular

receptors including integrins, dimeric discoidin domain

receptors DDR1 and DDR2, paired immunoglobulin receptor

glycoprote in VI (GPVI) , the leukocyte assoc iated

immunoglobulin like receptor 1 (LAIR1), urokinase-type

plasminogen activator associated protein (Endo180). Different

studies using mouse glioma models and The Cancer Genome

Atlas (TCGA) data showed that fibrillar collagens such as type I

are overexpressed in the glioma tumor mass compared to

normal brain, and their levels positively correlate with tumor

grade and malignancy (15, 177). Moreover, we recently

demonstrated that inhibition of COL1A1 expression within

the tumor cells reprogramed the tumoral microenvironment
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and inhibited tumor invasion and progression (15).

Upregulation of certain growth factor such as TGF-b, can also

contribute to ECM upregulation in gliomas (178).

Another subtype of collagens are the network-forming

collagens, including collagen IV, VIII and X. These collagens

are essential components of the basal lamina of the basement

membrane and are characterized by the presence of NC (No-

collagen) domain at the N and C terminal ends that enable the

formation of collagen networks (5, 179). Collagen IV is localized

at the base membrane surrounding the blood vessels and it is

upregulated in gliomas (180, 181).The third subtype of collagens

are the fibril-associated collagens (FACIT), including collagen

XVI. These molecules present interrupted triple helices and,

although they do not form fibrils by themselves, bind to other

ECM proteins such as proteoglycans and small leucin rich
FIGURE 2

Illustration of the complex cellular and non-cellular ECM interactions in the glioma tumor microenvironment. The normal brain’s ECM differs
from that of other organs because it contains very little of the fibrotic ECM proteins collagen, fibronectin, and laminin. On the other hand, the
brain parenchyma is abundant in proteoglycans, connecting proteins, and glycosaminoglycans (hyaluronic acid). The ECM is transformed in
GBM tumors compared to healthy brain tissue, and it is crucial for tumor invasion and migration. The ECM of GBM contains higher levels of
collagen, fibronectin, laminin, hyaluronic acid, tenascin C, and vitronectin, all of which have been linked to glioma growth, invasion, and chemo-
and radio-resistance. Due to the complex interactions between glioma cells and the non-cellular components in the GBM TME, targeting the
ECM directly and attempting to alter the tumor production of ECM proteins, and thereby reduce tumor growth, should improve the infiltration
of immune cells, drugs and provide improved therapies for highly malignant brain tumors. [Created with BioRender.com].
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proteoglycans (SLRPs) then are further stabilized by the lysyl

oxidase enzymes (LOXs) (5, 182, 183). Collagen XVI has been

reported to be overexpressed in glioblastomas compared to

normal brain parenchyma, and its inhibition reduced glioma

cell invasion (184, 185).
Fibronectin

Fibronectin is less abundant in GBM tumors than collagen

but does form an intricate fibrillar network connecting cells to

the ECM (171, 186). Fibronectin is a dimer and multi-domain

proteoglycan that is encoded by a single gene but has 20 isoforms

via alternative splicing. The fibronectin fibrillar matrix is formed

by binding to cell a5b1 integrins and other fibronectin

molecules, collagen fibers, and heparan sulfates. The binding

of fibronectin to other ECM components has been shown to be

critical for the assembly of collagen fibers such as type I; collagen

abundance also affects the assembly of fibronectin (187, 188).

Studies have shown that the antibody targeting the collagen

binding site on fibronectin suppressed the formation of collagen

fibers (189). Other studies have shown that inhibition of

collagen 1A1 decreased the levels of fibronectin expression and

matrix assembly in a glioma mouse model (Figure 2) (15). In

tumors, fibronectin is secreted by several cells including

mesenchymal cells, fibroblast, endothelial cells, and the

perivascular smooth muscle cells which, in turn affects the

proliferation, migration, and cell-adhesion of tumor cells

(190). Moreover, it has been shown in different cancers that

the binding offibronectin to cell integrins can affect cell signaling

transduction and growth factors, such as the transforming

growth factor beta (TGF-b), fibroblast growth factor (FGF),

and platelet-derived growth factor (PDGF), which can all

directly interact with fibronectin (190, 191). In gliomas, it has

been shown by immunohistochemistry and using the

PrognoScan data base that fibronectin expression correlates

with tumor progression and prognosis as mediated by TGF-b
signaling (192). Other research demonstrated by Cox regression

analysis from the TCGA database that fibronectin was a risk

factor for GBM, and its RNA levels were overexpressed in

gliomas (193).
Laminin

Laminin is the main component of the basement membrane

along with collagen IV, fibronectin and perlecan. It participates

in vascularization and wound healing and is upregulated in

different cancer pathologies, regulating cell adhesion,

differentiation, and migration (Figure 2) (171, 194). Laminin is

a glycoprotein formed by three different chains, the a, b, and g
chains, each encoded by different genes. The a chains has five

forms (LAMA1-5) and, the b and g chains each have three forms
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(LAMB1-3 and LAMC1-3, respectively) which are found in

laminins in different combinations (195).

It has been reported that during glioma progression,

laminin-9 (a4b2g1) is changed to laminin-8 (a4b1g1), which
is highly upregulated. Laminins 8 and 9 are differentiated by the

b chain. Glioma tumors with higher expression of Laminin 8

show accelerated cellular spread and tumor recurrence (196).

Other studies found that the a4 subunit of laminin (LAMA4) is

overexpressed in the cerebral spinal fluid from GBM patients

compared to patients without brain tumors and the expression

levels correlated with the overall GBM tumor volume (197). A

study of glioma cell migration found that laminins play an

important role in this process. The authors indicated that

GBM tumors express a2, a3, a4 and a5 laminins chains, and

they demonstrated that a3 (Lm332/laminin-5) and a5 (Lm511/

laminin-10) laminins highly enhanced glioma cell migration

mediated by integrin binding (198).
Tenascin

The tenascin family comprises a large group of glycoproteins

generated by alternative splicing resulting in different variants,

including TN-C, TN-R, TN-W, TN-X, TN-Y. Tenascin is highly

expressed during embryonic development, wound healing, and

cancer (199–202). Different member of the family display

different and even opposite functions and their expression

level are regulated by growth factors, cytokines and, other

ECM components (Figure 2) (202, 203). Most tumors express

high levels of this ECM glycoprotein and gliomas in particular

have an enrichment of Tenascin-C (TN-C), which participates in

tumor progression and correlates with tumor malignancy (204,

205). Tenascin binds to cell integrins, modifying cellular

function, and also binds to other ECM molecules, such as

brevican or neurocan, modifying cell migration and, focal

adhesion (1). Moreover, tenascins have been identified as an

oncogenic molecule promoting glioma cell proliferation and

inhibiting apoptosis in response to paclitaxel treatment via

PI3K/AKT signaling regulation (206).
Hyaluronic acid, glycosaminoglycans,
and proteoglycans

Other non-fibrillar ECM components found in the normal

brain and in glioma tumors are the glycosaminoglycans (GAGs),

proteoglycans, and hyaluronic acid (Figure 2). GAGs are linear

polysaccharides, with each block comprised of disaccharides

(GlcNAc or GalNAc) and uronic acids (GlcA and

IdoA). Proteoglycans are abundant in the ECM and are

formed by a core protein bound to one or more attached

GAGs (207). Proteoglycans play a key role in the brain as

growth factor reservoirs and stabilizers for ligand-mediated
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signaling by acting as co-receptors (208). In turn, they regulate

normal cell signaling and migration and promote receptor

tyrosine kinase (RTK) signaling and progression in glioma

(208). Hyaluronic acid is another essential component of the

brain ECM and is the simplest glycosaminoglycan. Hyaluronic

acid is formed by a negatively charged long polymer chains

forming random coils intertwined in solution. The many

hydroxyl groups on the chains retain high amount of water

increasing the elastoviscosity and maintaining the osmotic

balance of the tissue (190, 209). Its production is upregulated

in glioma tissue (210), inducing signals from the ECM to the

cytoplasm and enhancing tumor cell migration and proliferation

(211). High hyaluronic acid levels have been shown to correlate

with poor prognosis in GBM patients (212). Molecularly,

hyaluronic acid binds to different membrane receptors

including the glycoprotein receptor CD44 and the receptor for

hyaluronan-mediated motility (RHAMM), which has a central

role in glioma cell motility, invasion, and inflammation (19,

213). It has been demonstrated that high levels of CD44 are

necessary to generate infiltrative glioma mouse models and that

treatment with anti-CD44 antibodies inhibited tumor

progression, possibly due to altered hyaluronic acid

binding (214).
Biochemical interactions between glioma
cells and the ECM mediated by receptor-
ligand binding

Extracellular RTKs such as EGFR, PDGFR, and IGF-1R are

cell surface receptors for growth factors, hormones, cytokines, and

other signaling molecules. When a ligand binds, RTKs are

dimerized and phosphorylated, in turn, activating the

downstream signaling pathways Ras/MAPK/ERK and Ras/PI3K/

AKT (215). This upregulates cell migration and proliferation, cell

growth and survival, translation and differentiation, and

angiogenesis while inhibiting p53 and PTEN activation and

apoptosis. EGFR is amplified and mutated in 45-57% of GBM

cases, inducing proliferation and resistance. However, EGFRvIII –

a truncated mutant variant III – is correlated to increased patient

survival, possibly due to triggering an immune response (215–

217). Platelet-derived growth factor receptor alpha (PDGFRa) is
amplified in 10-13% of GBM cases in the TCGA database and

stimulates a malignant GBP autocrine loop. Similarly, the

activation of insulin-like growth factor 1 receptor (IGF-IR)

through interactions with IGF-1 promotes the recruitment of

IRS-1, activating AKT and ERK, resulting in increased GBM cell

growth, proliferation, and migration (218).

Silver et al. investigated the components driving, and

inhibiting, diffuse glioma invasion, and found that glycosylated

chondroitin sulfate proteoglycans (CSPGs) are heavily present in

noninvasive lesions compared to highly infiltrative tumors (219–

221). They found CSPGs act as molecular barriers, organizing
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the brain tumor microenvironment, inducing activation of

tumor-associated microglia and reactive astrocytes exit from

the tumor (220, 222). Specifically, leukocyte common antigen-

related (LAR) receptors bind to glycosylated CSPGs, anchoring

CSPGs to resist passive diffusion, inhibiting tumor cell

infiltration. It’s also speculated that LAR functions as an

adhesive molecule, tightly binding to noninvasive tumor cells

to the CS-GAG-rich ECM (219, 220). The receptor protein

tyrosine phosphatase m (PTPm) is another cell adhesion

molecule and is downregulated in GBM due to proteolytic

cleavage. It has been shown that downregulation of these

catalytically active PTPm proteolytic fragments degreases GBM

migration and survival, representing a possible therapeutic

target (223).
Interstitial fluid and soluble factors

Numerous soluble substances extravasated from

intravascular compartments or released by tumor or stromal

cells within the TME create a dynamic interstitial fluid

compartment of cells and ECM components (224). The

cellular makeup of most tumor regions is continually changing

due to these variations in soluble component concentrations,

which results in dynamic changes in chemotactic gradients. The

ECM is a reservoir for cytokines that can regulate the migration

and function of immune cells, primarily those with

immunosuppressive effects such as interleukin-10 and TGF-b
(225, 226). TGF-b has been shown to positively correlate with

collagen-binding integrin a2b1 levels and may play a role in

activation of collagen and fibronectin synthesis (5, 227). High

TGF-b activity confers poor prognosis in patients (228). Clinical

trials testing TGF-b inhibitors in glioma have not yet shown

significant efficacy (229, 230). However, many aspects of its role

in tumor progression are not fully understood, including its

presence in ligand-shielding exosomes (231), and TGF-b
remains a promising target for future research.

Tumor-associated macrophages are a primary source of

anti-inflammatory molecules such as TGF-b, ARG1, and IL-

10, as well as pro-inflammatory molecules such as tumor

necrosis factor-a (TNF-a), IL1-b and CXCL10. In addition,

TAMs also produce remodeling and angiogenesis molecules that

give tissue support such as vascular endothelial growth factor

(VEGF), MMP2, MMP9 and Membrane Type-1 MMP.

The GBM microenvironment is also characterized by tissue

hypoxia due to the irregular vascularization and elevated

tumoral oxygen consumption. Tissue hypoxia activates the

STAT3 pathway, HIF-1a synthesis, activation of Tregs and

production of VEGF, ultimately inhibits recruitment of

dendritic cells (232). In CD4+ T-cells, HIF-1a promotes IL-17

and Th17. Hypoxic microenvironments are a common feature of

GBM, which is caused by morphologically and functionally

inappropriate neovascularization, irregular blood flow, and
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proliferating glioma cells that require much oxygen (233, 234).

Hypoxia inducible factor (HIF)-1a is produced during tumor

hypoxia by activating the immunosuppressive pSTAT3 pathway

(235). HIF1a is implicated in the regulation of T-cell immune

checkpoints, and promotes PD-L1 expression in cancer cells,

macrophages, dendritic cells, and MDSCs (236–238). The

CTLA-4 receptor, which is increased on CD8+ T-cells under

hypoxia perhaps via HIF1, is another checkpoint regulated by

hypoxia (HIF1) (232, 239). Teffector cells are inhibited and Treg

cells are activated when CTLA-4 on T-cells binds to the ligands

CD80 and CD86 on the surface of APCs (240). Clinical trials

using CTLA-4 and PD-1/PD-L1-targeted treatments for several

cancer types demonstrated encouraging results (241). A lot of

immune-suppressing cells, like Tregs, MDSCs, and TAM, invade

the GBM microenvironment and upregulate multiple immune

checkpoints, like PD-1, Tim-3, CTLA-4, and IDO-1, and

immune-suppressing ligands, like PD-L1 on GBM cells and

tumor-infiltrating myeloid cells, which conceal GBM tumor

antigens. This contributes immunosuppressive features to the

GBM and suppress the T cells to proliferate and invade the TME

(242). In macrophages, HIF-1a triggers the release of

inflammatory cytokines augmenting myeloid cell recruitment

(243). Hypoxic TAMs produce MMP9 when induced by HIF-

1a. MMP9 increases bioavailability of VEGF, resulting in

neovascularization (244). Therefore, the success of GBM

immunotherapy also depends on lowering or eliminating the

infiltration of immunosuppressive TME and raising the quantity

and activity of effector T cells (245).

Galectin-1 (Gal-1) has also been discovered to be a crucial

player in the development, invasion, and therapeutic resistance

(246), as well as the escape and inhibition of the immune system

(Figure 2) (247, 248). We recently demonstrated the existence of

an innate anti-glioma NK-mediated circuit initiated by glioma-

released microRNA (miR-1983) within exosomes and which is

under the regulation of Gal-1 (249). We showed that miR-1983

is an endogenous Toll-Like Receptor 7 (TLR7) ligand that

activates TLR7 in plasmacytoid and conventional Dendritic

cells (pDCs and cDCs) through a 5′-UGUUU-3′ motif at its 3′
end. TLR7 activation and downstream signaling through

MyD88-IRF5/IRF7 stimulate secretion of interferon (IFN-b).
IFN-b then stimulates NK cells resulting in the eradication of

gliomas (249).

Another important aspect of the ECM is the unique

distribution of oncometabolites that are produced in the TME.

A large subset of GBM display mutations in isocitrate

dehydrogenase isoforms (IDH) 1 and 2, resulting in a buildup

of the D enantiomer of 2-hydroxygluterate (D-2HG) (35, 37).

IDH1-R132H suppresses tumor growth in gliomas via

epigenetically activating the DNA damage response (36).

Granulocyte-colony stimulating factor (G-CSF) reprograms

bone marrow granulopoiesis, resulting in non-inhibitory

myeloid cells within mIDH1 glioma TME and enhancing the

efficacy of immune-stimulatory gene therapy (TK/Flt3L) (250,
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251). Increased D-2HG levels exert a tumorigenic effect by

supporting hypermethylation of tumor suppressor genes such

as Tet methylcytosine dioxygenases (252). D-2HG may also

affect proper collagen maturation, leading to an increase in

tumor progression (253). Inhibition of D-2HG has been found

to increase median survival in mouse models of GBM (254).
Exploring the physical effects and
multi-dimensionality of the
tumor ECM

Impact of ECM on cellular mechanics in
glioblastoma: Biophysical interactions

Glioma cells and the ECM components of the brain

biophysically interact with each other - pushing, pulling,

degrading, and secreting – strongly influencing each other’s

form and function. It has been recognized that physical

qualities of the ECM including stiffness, viscoelasticity,

mechanical plasticity, and nonlinear elasticity affect cellular

processes like proliferation, apoptosis, migration, and

spreading (255). Mechanistically, cell surface integrins

recognize and bind to ECM proteins, clustering together to

form focal complexes which grow and mature into focal

adhesions (FAs). Cells sense the biochemical and physical

characteristics of the ECM based on the extent of focal

clusters, related signaling, and downstream transcription factor

activation (255, 256) Pulling forces are often exerted by

actomyosin-based contractility and pushing forces through

actin polymerization and microtubules, and cells use these

interactions to spread and migrate through the tissue (257–260).

Extracellular matrix fibers are not purely elastic, exhibiting

viscoelasticity and irreversible plastic deformations (255, 261,

262). Viscoelasticity is a time-dependent mechanical property -

tissues and the ECM may recover their shape when stretched

slowly but can also experience strain-stiffening and permanent

damage when rapidly extended. Shenoy et al. detail the various

mechanical tests and constitutive equations used to characterize

tissue and ECM deformations in their recent review (255) The

brain is one of the softest viscoelastic tissues in the human body

with a mean normal brain stiffness of 7.3 kPa and increases to

between 11 - 33 kPa for different grade brain tumors as

measured by intraoperative shear wave elastography (263).

Because of this low relative stiffness, it exhibits high levels of

dissipative energy, allowing glioma cells to migrate and

reorganize ECM fibers within the soft tissue. While many in-

vitro studies are performed in 2D environments, it’s essential to

consider that glioma cells do not exist in a flat environment and

3D and ex-vivo studies can create more realistic models of GBM

(264). Additionally, in a 2018 study, Ma et al. discovered that

GBM cells cultured in 2D and 3D environments had drastically
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different cellular morphologies, genetic expression, and protein

secretion (265). The authors point out the lack of the ECM and

3D interactions in the 2D culture as a main contributor to these

inactivated signaling pathways and differing cellular

morphologies showing their importance in vivo and for

future studies.
ECM-glioma interactions on 2D substrates
The probing of substrate stiffness’ effect on cellular

biomechanics started with studies of cells migrating on

polyacrylamide hydrogels (PAM gels) coated with ECM

prote ins or funct ional ized for ce l l adhes ion with

arginylglycylaspartic acid peptide (RGD) (266, 267). These gels

have tunable elastic moduli which can be modulated based on

the environment of interest. In Umesh et al.’s 2014 study, they

culture human GBM cells on fabricated polyacrylamide

substrates ranging from 0.08 kPa–119 kPa (266). They found

that increasing substrate stiffness increases cellular proliferation

and regulates cell cycle progression by altering EGFR-dependent

signaling. O’Neill et al. showed that four out of five of their

primary GBM cell lines had rounded morphology on the softest

PAM gels (0.2 kPa) and then spread out on stiffer gels (1.0 and

8.0 kPa) (267). Cell speed was also regulated by substrate

stiffness in four of the cell lines with cells migrating faster on

the stiffer substrate, as similarly described in many other in-vitro

studies (268–270). While 2D studies have been shown to

inaccurately portray GBM dynamics in-vivo, some methods to

study physical forces and mechanics are not yet possible in 3D or

in-vivo. Traction force microscopy (TFM) is a key method for

understanding the complex array of forces at play when GBM

cells migrate through the TME (271, 272). Cells are seeded on a

hydrogel substrate embedded with fluorescent beads which are

pushed and pulled by the cells as they migrate across them.

Forces exerted by the cells are measured based on the

displacement of the beads, the time-period, and the density of

the hydrogel. These forces may be similar to those exerted by

cells on the ECM as they migrate, and more in-depth studies are

necessary to measure the exact forces on ECM fibers.
ECM-glioma interactions in 3D environments
However, although more complicated to perform, 3D studies

retain more characteristics of a GBM tumor in-vivo and garner

more accurate results (273–275). Much research into GBM-

ECM interactions has turned to 3D in-vitro environments, ex-

vivo studies, and even in-vivo mouse studies. The ECM mainly

acts as a guiding scaffold or a barrier in which GBM cells

migrate. Thus, many groups create 3D bioengineered scaffolds

made of ECM proteins to model the TME (276–280). These

scaffolds are usually manufactured by crosslinking ECM

proteins inside polyethylene glycol (PEG), collagen, Matrigel

or other gels and are then filled with either individual cells or cell

spheroids. In 2013, Florczyk et al. designed porous chitosan-
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hyaluronic acid scaffolds which mimic the GBM tumor

environment (276). These complex 3D scaffold cultures

promoted cellular malignancy and drug resistance in a way

that better models GBM cells in-situ. They also found that the

physical interactions between the ECM and cells promoted

upregulation of stem-like genetic properties and increased

invasiveness and tumor spheroid formation. This study and

others evaluated the effect of drugs and radiation on the cultures,

including chemotherapies such as temozolomide, bevacizumab,

and erlotinib (277). While erlotinib was shown to enhance

radiosensitivity in 2D, 3D cultures were not affected,

illustrating a key need for 3D studies to be performed before

drug consideration for clinical trials.

A study by Ananthanarayanan et al. also developed HA

scaffolds which could be altered to independently control

biochemical and mechanical properties (273). This group

studied migration in both 2D and 3D HA scaffold cultures,

highlighting a key difference. In 2D, glioma cells exhibited a

mesenchymal phenotype and migrated via lamellipodia at the

leading edge. However, in 3D, the cells migrated with a “sling-

shot” type migration in which the cells protruded, retracted,

branched out, and then suddenly moved forward through the

gel, in a process very similar to that observed in some ex-vivo

glioma studies (281–283). This study also found that when HA

density increased above 5% (corresponding to 5 kPa), glioma cell

invasion was abolished, concluding that cell migration is

sterically hindered at high concentrations of ECM proteins.

However, this study emphasized that their HA hydrogels were

non-fibrillar, claiming that this matched the native structure of

the brain, but new research has shown that many higher-grade

glioblastoma tumors contain fibrillar collagen and fibronectin

components, as discussed above (14, 177, 284, 285). Another 3D

method of probing ECM interactions with cells consists of

creating 3D gels filled with electro spun fibers, mimicking

collagen or fibronectin (286–288). Unlike 3D experiments

using solely gels, adding in electro spun fibers allows

researchers to study the effects of fiber orientation, size, and

density. Some fibers have been shown to enhance axon growth

and elongation, which could trigger tumor recurrence, while

others were designed to mimic white matter tracts and enhanced

GBM invasion through the tumor (287, 288). More studies on

the interactions between glioma cells and synthetic fiber tracts or

embedded fibers, and how these affect migration and invasion

will be interesting.

Ex-vivo brain slices accurately mimic
in-vivo environment

The aforementioned 3D platforms are a more promising tool

for GBM drug development than 2D cultures and are faster and

more efficient than most in-vivo studies. 3D studies also allow for

the isolation of different ECM components to individually probe

their importance in GBM development. However, they still lack

the complex, multi-faceted characteristics of a tumor, and recent
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research has focused on ex-vivo or in-vivo methods to study

ECM-GBM interactions. These studies use the native tumor

microenvironment in order to retain the precise properties of the

ECM and bulk tissue that cells experience. Comba et al. recently

utilized 3D-organotypic slice cultures, and time-lapse confocal

imaging and mathematical models to spatiotemporally quantify

glioma cell organization and dynamics (15). While the precise

physical qualities of the ECM were not measured in this study,

retaining the native GBM environment preserves in-vivo cellular

qualities and dynamics. We show that collagen presence and

density is essential for the formation of malignant cellular

structures called oncostreams which promote GBM migration

and invasion. We further demonstrate that targeting the

production of Collagen 1 by these tumors reduces malignant

features of these tumors and improves survival. More recently it

has also been shown that breast cancer cells produce an isoform

of Collagen 1 that also has pro-tumoral effects. These

organotypic studies have an advantage over the in-vivo studies

discussed later; since they are not within an animal or human

patient, mechanical characterization tests, such as atomic force

microscopy (AFM) or nanoindentation, are easily conducted. In

another study, Sin et al. designed a scaffold-free 3D culture

system to model the invasion of glioma cells across a simulated

tumor-stromal interface, taking into account the properties of

the host tissue (289). By culturing spheroids of glioma cells

(representing the tumor) next to neural progenitor cell

organoids (representing the normal brain) and imaging with

time-lapse confocal microscopy, they captured the 3D invasion

of glioma cells into mouse neural spheroids and corroborated

this with spheroid cryo-sectioning. Spheroids are easily created

using many cell lines and these can also be embedded in different

ECM-containing gels to study migration and invasion, thus

representing a viable and effective tool for future GBM research.

Probing ECM-GBM cell interactions in-vivo
Measuring the mechanical properties of cells and the tumor

microenvironment in live animals or patients is a formidable

task, but several groups have devised techniques to understand

GBM-ECM interactions in-vivo (15, 290–293). We recently

demonstrated the intravital multiphoton imaging to study

glioma cell dynamics deep into the brain with high-resolution

and low photobleaching (15). Joyce et al. also used two-photon

microscopy as well as magnetic resonance imaging (MRI) to

longitudinally image glioblastoma tumor initiation and

development (293). Using both methods, the authors could

measure overall tumor growth or regression with different

therapeutic measures and also probe the TME at a single-cell

level. Blood vessels were visualized with fluorescently labeled

dextran and meningeal collagen was imaged with second

harmonic generation (SHG) imaging. SHG was first used in a

biological setting in 1986 and is highly specific at visualizing

fibrillar collagen (294). Briefly, SHG is a second-harmonic
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generation nonlinear scattering process which inherently

recognizes the non-centrosymmetric qualities of fibrillar

collagen without the need for fluorescent markers. Due to the

importance of fibrillar collagen in GBM, an important next step

for the field is to utilize combined longitudinal multiphoton and

SHG imaging to understand collagen composition and dynamics

inside the tumor.

Another technique called magnetic resonance elastography

(MRE) has been used to non-invasively measure tumor and

normal brain stiffness in human patients. MRE is a developing

technique which sends a single-shot spin-echo echo-planar-

imaging pulse sequence to induce shear waves through the

brain (292, 295, 296). The properties of the shear waves are

then correlated to the elastic modulus of the material through

which they are traveling. Huston et al. conducted MRE on 14

patients with meningioma tumors and measured intratumoral

stiffness with 3-mm isotropic resolution. While a cellular

resolution of stiffness measurements has not yet been obtained

via MRE, the authors did observe that the tumor was

significantly stiffer than the surrounding normal brain.

Additionally, MRE can measure stiffness difference by up to 5

orders of magnitude between tissues, whereas MRI and

ultrasonography can only measure around 2 orders of

magnitude of difference. The stiffness of the material in which

glioma cells migrate has been shown to influence their speed,

persistence, and morphology in 2D and 3D, and future studies

in-vivo could confirm or refute these previous findings.
Impact of ECM on tissue remodeling
and immune suppression

The extracellular matrix functions as both a physical and

biological barrier for the immune system (Figure 2). The

immune system function is dependent on receptor-ligand

interactions, which are influenced by cellular motion, bulk

fluid flow and the local stiffness of the ECM. The physics of

the tumor stroma is regulated by collagen fiber cross-linking,

which is catalyzed by lysyl oxidase (LOX). The balance between

matrix degradation and production is regulated by the

antagonistic actions of matrix metalloproteinases and tissue

inhibitors of MMPs (TIMP) (297). ECM remodeling affects

immune cell trafficking and can impede immunological

synapses (298). Lymphocyte motility and infiltration is

determined by their interactions with the ECM. Tumor-

infiltrating T cells are less abundant in areas with densely

packed ECM fibers (299). Collagen I degradation by MMP8 or

MMP9 generates the acetylated Pro-Gly-Pro (proline-glycine-

proline) tripeptide, which shares structural homology with

CXCL8 and is a major chemoattractant for neutrophils (300).

Peptides generated from elastin digestion by MMP12 can also

function as chemoattractant (301), and MMP2 stimulates
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monocyte derived dendritic cells (DC) via toll-like receptor 2

(TLR2) (302, 303).

However, ECM presence can also assist in immune cell

infiltration as natural killers (NK), DCs and T cells migrate

along fibrillar collagen (304, 305). T cells accumulate in loose

fibronectin and collagen regions (299, 306). Targeting collagen

fibers through LOXL2 increases T-cell infiltration (307). It has

been shown that in a muscle wound, collagen scaffolds skewed

the ratio of CD4:CD8 T cells toward a higher fraction of

CD4+helper T cells. Furthermore, the T cells in the collagen-

implanted wounds expressed higher levels of anti-inflammatory

cytokines (308). Collagen density also influences macrophage

infiltration. Low-collagen genetically engineered mouse models

of glioma exhibit lower macrophage infiltration (CD68+ cells)

(15). Neutrophils and monocytes have been shown to

preferentially migrate through areas with low collagen IV

(309, 310).

Most immune cells express receptors that interact with

collagen. Discoid in domain receptors (DDR) are highly

responsive to collagen and profoundly involved in cell

migration (311–313). Blocking of these receptors has been

shown to impair migration of neutrophils, monocytes, and T

cells in a collagen matrix (311, 312, 314, 315). Leukocyte-

associated Ig-like receptor-1 (LAIR-1) is expressed by the

majority of PBMC and thymocytes (316, 317). LAIR-1 is also

expressed by CD4+ and CD8+ T cells, with the highest

expression in naïve T cells (318, 319). Furthermore,

crosslinking of LAIR-1 on primary T cells results in an

inhibition of T cell function (319). Interaction of LAIR-1-

expressing NK cells with collagen inhibits NK cytotoxic

potential (320). In monocytes, LAIR-1 ligation with an

agonistic antibody inhibited TLR-mediated activation (321).

Additionally, M1 macrophages on surfaces coated with LAIR-1

ligand peptide decreased secretion of TNFa and T cell attracting

chemokines (322). Integrins also play an important role; several

have been found to promote ECM adhesion in T cells in

response to TCR stimulation (323). Macrophages also express

various integrins, most commonly members of the b2-integrin
family (324). The a2b1-integrin has been shown to mediate the

migration and mechanosensing of macrophages cultured on 3D

collagen matrices (325). It was also shown to be involved in M2-

polarization in 3D culture in a gelatin-based hydrogel (326).

Monocytes, macrophages, and DC also express osteoclast-

associated receptor (OSCAR), which is another collagen

binding receptor (327, 328). In contrast to LAIR-1, OSCAR-

signaling is mainly associated with immune activation (329).

OSCAR on monocytes and neutrophils is involved in the

induction of the primary proinflammatory cascade and the

initiation of downstream immune responses (330).

Other components of the matrix also interact with immune

cells. Tenascin-C synthesis is known to be up-regulated in

glioma (331) and T-cells accumulate on the border of tumor

and normal brain in association with high TNC deposition
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(332). Additionally, glycosaminoglycans, hyaluronan, and

versican have been shown to be immunosuppressive (297).
Therapeutic opportunities targeting
the extracellular matrix in the
tumor microenvironment

Enhanced targeting specificity via matrix-
specific ligands

The extracellular matrix is a target for glioblastoma

treatment for many reasons, and many ECM components

are uniquely upregulated compared to healthy tissue and

ubiquitously expressed across the tumor stroma. This

presents the opportunity for the development of specific

ligand-coupled treatment without cross-reactivity with

normal brain parenchyma (14, 333, 334). Extra-domain B

of fibronectin (FN-EDB) is almost exclusively expressed in

areas of angiogenesis. Antibody L19-SIP is a notable molecule

that was developed to specifically bind to FN-EDB (335, 336).

It was shown to significantly slow tumor growth and increase

survival in orthotopic murine models of glioma when fused to

a variety of cytokines, including IL2 (337). The efficacy of L19

as a treatment guide is being investigated in multiple clinical

trials, with promising results in other cancer types (338). A

phase I/II trial investigating the safety and antitumor activity

of L19-TNF on IDH-wildtype WHO grade III/IV glioma is

currently ongoing (NCT03779230). Numerous other

methods have been developed to target FN-EDB, including

selective aptamer-like peptides encasing siRNA, which were

found to significantly slow tumor growth in a GBM xenograft

mouse model (338, 339).

Tenascins are normally involved in embryonic development

but are upregulated in adult brains in malignant tissue.

Numerous ligands have been developed to selectively bind to

TN-C, including antibody 81C6, which has shown promising

results as a treatment guide in phase I and II clinical trials (340,

341). Peptide PL3 has recently been found to significantly

slow tumor growth and improve survival of xenograft

glioblastoma-bearing mice when used to guide pro-apoptotic

nanoworms (342).

Brevican is a chondroitin surface glycoprotein abundantly

expressed in adult CNS. However, the isoform dg-Bcan is unique

to high-grade gliomas (343). BTP-7 is a novel peptide that binds

to dg-Bcan, and it has shown high affinity and accumulation in

murine GBM xenografts (344). Although its specific role in

GBM is unclear, brevican levels were also found to be

upregulated in more aggressive patient tumor samples when

analyzed by immunohistochemistry (IHC) (345). In addition to

acting as a treatment target, strategies modulating brevican

expression may be useful once its effects are better understood.
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Modulation of specific ECM components
as GBM therapy

Along with its specificity, many components of the tumor

ECM have been shown to promote tumor growth and

infiltration, presenting the potential for targeted treatments.

While much of the specifics behind these effects are largely

unknown, some possible mechanisms have been suggested.

Many ECM components are over-expressed in tumor tissue,

encapsulating the tumor with a physical barrier. This barrier

limits access to nutrients and oxygen, leading to hypoxic

conditions which promote tumor aggressiveness and invasion.

Homogenous treatment distribution is also hindered by this

barrier (346). Finally, the unique properties of the tumor ECM

aid growth and migration into healthy tissue (347). These

tumor-shielding and promoting effects also suggest that

inhibition of ECM production and induction of degradation

may be useful tools for GBM treatment.

Degradation of HA may be a useful treatment to allow

better therapy and immune penetration to the tumor center. A

study of orthotopic GBM models found that treatment with

hyaluronidase-expressing oncolytic adenovirus (ICOVIR17)

displayed improved survival and infiltration of CD8+ T cells

and macrophages when compared to a control virus (348).

While no clinical trials have studied HA degradation in

glioma, a phase II trial found significant improvement in

progression-free survival in pancreatic cancer patients

treated with hyaluronidase (PEGPH20) in combination with

paclitaxel/gemcitabine (17). However, a follow-up phase III

trial was terminated due to negative study outcome (18). HA

synthesis inhibitor 4-Methylumbelliferone has also been

proposed as a potential drug of interest. It was found to

reduce proliferation and migration in GBM cell line GL26,

as well as amplify cytotoxicity when paired with TMZ (211)

and more research and drug development may lead to

successful clinical trials.

Given their abundant interactions with hyaluronic acid,

hyaluronic acid receptors are another potential treatment

target. High levels of CD44 (a transmembrane hyaluronic acid

receptor) were associated with a significant decrease in median

survival in tissue specimens from 62 GBM patients (349), and

CD44 inhibition reduced tumor growth in a mouse model of

GBM (350). Additionally, a proposed mechanism of GBM

migration involves attachment of cell “micro-tentacles” to

hyaluronic acid via CD44 (351). While no clinical trials have

been performed on glioma patients, the CD44 inhibitor RG7356

induced modest clinical benefits in a trial of 65 patients with

advanced CD44-expressing solid tumors (352). Along with

CD44 levels, hyaluronan-mediated motility receptor (HMMR)

levels were upregulated in the tumors of patients with shorter

overall median survival when analyzed by IHC (345), and maybe

another significant target (353).
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As mentioned, despite its ubiquity in most of the body,

collagen expression is normally limited in healthy brain tissue.

However, collagens are upregulated to become an integral part of

the ECM in certain forms of GBM (177, 285). Collagen

expression has been shown to play a critical role in tumor

immune suppression (354) and angiogenesis (284). Along with

hyaluronic acid, collagen is a major contributor to matrix

stiffness, a phenotype that has been shown to contribute to

tumor aggressiveness (355). One study of patient microarray

datasets found that six collagen genes (COL1A1, COL1A2,

COL3A1, COL4A1, COL4A2, and COL5A2) play a role in

immunosuppression and epithelial-mesenchymal transition in

glioblastoma (356). Another study found that increased

COL5A1 expression has been found to correlate strongly with

lower survival probability in GBM patients (357). Additionally,

differences in collagen organization may be a prognostic factor

and these components represent potential therapeutic targets for

glioblastoma treatment.

The receptors that interact with collagen are another

important potential target. In a study of 29 GBM patients,

mRNA levels of collagen receptor DDR1 were correlated with

decreased survival (358), and its inhibition was shown to

sensitize cells to both radio- and chemotherapy in vitro (359).

Receptor Endo180 binds to collagens I, IV, and V, and may be

responsible for collagen remodeling in glioma (177). Chen et al.

identified that type I collagen produced by pancreatic cancer

cells is the abnormal oncogenic homotrimer variant and its

deletion in cancer cells inhibit tumor progression and enriches T

cells with enhanced efficacy of anti-PD1 immunotherapy (16).

We recently demonstrated that inhibition of COL1A1

expression within the GBM tumor cells reprogramed the

tumoral microenvironment and inhibited tumor invasion and

progression (15).
Summary and conclusions

A myriad of clinical trials for glioblastoma have been

performed throughout the past decades, with no major

successes. However, most of these have not focused on

targeting multiple GBM mechanisms at once through

combination therapies (360). Future research needs to

consider the complexity of the GBM microenvironment, and

tumor cell-ECM interactions, and use a multi-modal therapeutic

approach, targeting both the cellular components and non-

cellular components of the TME.

Glioblastoma patients have a high prevalence of tumor

recurrence, signifying poor prognosis and rapid death (361).

Key interactions between motile glioma cells and the non-

cellular components of the TME stimulates rapid invasion of

the primary tumor to other areas of the brain, forming deadly

secondary tumors (3, 54, 346, 362). As GBM spreads
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throughout the brain, normal brain functions are further

disrupted, and tumor lethality ensues. Aligned ECM

components help glioma cells invade outwards into the

normal brain in a rapid and persistent manner, forming

organized structures called oncostreams (15). Targeting the

basis of oncostream formation – collagen and fibronectin fibers

– could eliminate these malignant structures, resulting in a less

aggressive GBM tumor which may better respond to the

traditional therapeutic approaches.

The ECM in the tumor hinders immune cell infiltration, as,

unlike glioma cells, immune cells cannot reorganize the dense

ECM and are blocked from attacking cancer cells in the tumor

core (14, 363). Even those that infiltrate the tumor core have

been shown to be exhausted (364). Targeting ECM components

within the tumor can augment immune cell trafficking into the

tumor (346), and studying exhaustion markers could reveal a

strategy to revamp immune cell responses. Taking into

consideration the high expression and the central role of the

ECM components in glioma tumors growth and invasion, a

chemotherapeutic approach using the ECM as a target should be

of vital importance.

Additionally, because of these complex interactions between

glioma cells and the non-cellular components in their

microenvironment, researchers should consider using more

accurate 3D or ex-vivo environments in their studies (15, 277,

289). Many results from 2D studies have been found to differ,

sometimes even showing opposite results, compared to 3D

studies that incorporate ECM components into the cellular

environment (271–275). Glioma cells are highly sensitive to

the biomechanical properties of their environment, including

stiffness and viscoelasticity; modulating these properties to

decrease their invasive strength and overall motility is a

promising avenue for future research. We predict that future

studies will concentrate on targeting the ECM directly, possibly

by altering the tumoral production of ECM proteins - reducing

tumor growth and improving the infiltration of immune cells -

and thereby provide improved therapies for highly malignant

brain tumors.
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