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Spontaneous magnetization 
and anomalous Hall effect in an 
emergent Dice lattice
Omjyoti Dutta1, Anna Przysiężna1,2,3 & Jakub Zakrzewski1,4

Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing 
originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields 
as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles 
moving in a given field. We present the realization of artificial gauge fields for the observation of 
anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to 
be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced 
tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered 
synthetic magnetic flux appears and it can be controlled with external parameters. The obtained 
synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain 
either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall 
conductivity in spin-orbit coupled ferromagnets.

Due to its unusual features such as quantized conductance and dissipation-less edge states, the Quantum 
Hall effect (QHE)1 has various possible applications in quantum information sciences. In practical imple-
mentation, the standard QHE needs strong external magnetic fields and high mobility samples to occur. 
Therefore, it is particularly desirable to realize Hall effects without external magnetic fields.

In 1881, Hall2 observed that in ferromagnetic materials there are unusually large Hall currents at low 
fields when compared to non-magnetic conductors3. Since then, theoretical explanation of this effect 
was a subject of a debate and it has taken a century until the physics of the phenomena were explained. 
This effect, known now as the anomalous Hall effect (AHE), originates from spontaneous magnetization 
in spin-orbit coupled ferromagnets4–6. The magnetization breaks the time reversal symmetry while the 
spin-orbit coupling induces nontrivial topology of the bands7,8. Conductivty is not quantized for a metal, 
giving AHE, and quantized for insulators when Fermi energy lies in the band-gap, giving quantum 
anomalous Hall effect (QAHE). AHE and its quantized version can occur even in zero magnetic fields 
and they have been observed in various systems5,9–12.

Haldane13 in 1988 gave a theoretical proposal of an AHE without spin orbit coupling. He presented a 
quantized Hall effect without Landau levels in a system with circulating currents on a honeycomb lattice 
where the time reversal symmetry is broken only locally. Since then concentrated effort have been put 
forward to simulate AHE without the presence of a magnetic field.The key point of such proposals is to 
engineer nontrivial topology of energy bands where the Hall conductance is related to the integral of the 
Berry curvature of the filled part of the band. To tune the band structure in order to change its topology 
and induce the anomalous Hall effect, we need to create non-Abelian synthetic gauge fields14–18. In the 
case of Ferromagnets it is done by spin-orbit coupling, in Haldane model — by circulating currents. In 
all of those proposals regarding AHE without magnetic field, one important ingredient is the presence of 
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strong next-nearest neighbor tunneling with certain complex amplitude. Such a tunneling is in general 
hard to realize in normal lattices due to the exponential suppression of tunneling amplitudes with the 
distance. This presents another pertinent question: is it possible to generate AHE in a lattice with only 
the nearest neighbor tunneling? In the present paper we present such a lattice model leading to AHE in 
the quantum regime.

We show that in two-dimensional lattice, the combined effect of interaction induced tunneling and 
shaking can induce AHE and QAHE (used in 1D, this ingredients can also lead to topological phenom-
ena19). We focus on the systems of ultracold gases that provide versatile platform to simulate and engi-
neer novel forms of matter14. Our proposal consists of attractive two-species fermions (as in20) trapped 
in a periodically shaken triangular lattice. Triangular lattice introduces geometrical frustration while 
the shaking can resonantly enhance the interaction-induced sp-orbital nearest neighbor tunneling. In 
effect, an emergent Dice lattice is formed accompanied by a strong staggered flux which, due to inclu-
sion of p-orbitals, leads to a formation of synthetic non-Abelian fields. The system shows spontaneous 
magnetization accompanied by appearance of anomalous Hall conductivity forming an ultracold gas 
analogue of spin-orbit coupled ferromagnetic insulators. Furthermore, we show that, in presence of a 
strong staggered field, one can reach the regime of quantized Hall conductivity. This is a proposal of an 
experimentally realizable system with AHE without spin-orbit coupling.

Results
The model.  Consider an unequal mixture of two-species attractive ultracold fermions (denoted by ↑ , 
↓ ) trapped in a triangular lattice with fillings n↑ =  1/3 and n↓ >  1/3. A strong attractive contact interaction 
between atoms leads to pairing — formation of composites between the ↑  and ↓  -fermions, as studied 
experimentally for different lattice geometries21–23. We define a composite creation operator c s si i i= ↑ ↓ˆ ˆ ˆ† † †  
with the corresponding number operator n c cc

i i i=ˆ ˆ ˆ† . s si i,σ σˆ ˆ†  are the creation and annihilation operators 
of the σ fermions in the respective s-bands. The composites are hardcore bosons which anti-commute at 
the same site, c c{ } 1i i, =ˆ ˆ† , and commute for different sites, c c 0i j


 ,


 =

ˆ ˆ†  for i ≠ j 24.
We consider three lowest bands of the triangular two-dimensional (2D) lattice (we assume some tight 

trap in the third direction as in typical 2D cold atoms experiments25,26). For sufficiently deep optical lat-
tices the structure of the bands may be understood using a harmonic approximation for separate sites. 
The lowest band is the s-band with two close in energy p-orbitals forming the excited bands. Typically 
fermions (for low filling) reside in the s-band. However, once the composite occupies a given site an 
additional fermion coming to this site must land in the excited band due to the Pauli exclusion principle.

The harmonic approximation typically underestimates the tunneling coefficients (for a discussion see 
a recent review27). This is of no importance for the following since we assume that by using the well 
developed lattice shaking techniques, one can tune the standard intra-band tunneling to negligible val-
ues25,26,28. Such a shaking simultaneously makes the intra-band interaction induced tunneling29–34 (called 
also bond-charge tunneling) vanishingly small. The only remaining tunneling mechanism is then the 
sp-inter-band interaction induced tunneling20 which can be resonantly enhanced adjusting the shaking 
frequency (note that the standard single-body tunneling between sp orbitals vanishes in Wannier func-
tion representation). Therefore, the system at low-energies consists of the composites and the excess ↓  
-fermions with filling n↓ −  n↑. Note that the ↓  - or ↑  -fermions of the composites cannot undergo 
sp-tunneling without breaking the strong pairing - which costs energy. Similarly, as discussed in detail 
in22,24, the tunneling of the composites to a neighboring vacant site as a whole is extremely small, (see 
Methods section) so it is neglected. Thus, the low-energy local Hilbert subspace is spanned by 
c p c0 0i i i, ±,
ˆ ˆ ˆ† † † , and s 0iˆ†  states, where s pi i, ±,

ˆ ˆ  denote the excess ↓ -fermions operators in the s- and 
p-orbitals. The latter are written in the chiral representation = ( ± )/±

ˆ ˆ ˆp p i p 2x y
. Within this sub-

space, one can show that the composite number operator equals the ↑  -fermions number operator, 
n nc

i i= ↑ˆ ˆ  and the densities nc =  n↑ =  1/3. Other important relations are: i) s c 0i i =ˆ ˆ† †  — a composite and an 
excess s-fermion cannot occupy the same site due to the Pauli-exclusion principle; ii) , =±,

ˆ ˆn p[ 0]c
i j

, and 
iii) , =ˆ ˆn s[ ] 0c

i j  for i ≠ j.
The effective Hamiltonian for the composites and the excess ↓  -fermions consists of three parts (see 

Methods for more details: Hsp describing interaction-induced sp-tunneling, Honsite describing energies and 
local contact interactions, and Hshaking describing the driving force. First of them reads,

H

J
f p n s h c1

2 1
c

i
i i i

sp

sp
∑= + . ,

( )δ
δ δ

σ
σ σ

, , =±
, +ˆ ˆ ˆ†

where vectors connecting nearest-neighbors in the triangle lattice are δ =  ± δ0, ±  δ±with 
1 0 1 2 3 2 1 2 3 20δ δ δ= ( , ), = ( / , / ), = ( / , − / )+ − . Due to the angles created by the different δ 

vectors, in the chiral representation an additional phase factor fδ appears. In the harmonic approximation 
of the triangular lattice potential, this phase factor is given by fδσ =  exp[− iσtan−1(δy/δx)]. The tunneling 
Jsp is given in terms of the s- and p-band Wannier functions W x yi

00 ( , ) and W x yi
10 ( , ) as
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= ( , )( ( , )) ( , ) , ( )δ+∬J g W x y W x y W x y dxdy 2sp i i i2D
10 00 2 00

0

with the contact interaction strength g2D adjusted for a quasi-2D geometry (with a tight harmonic con-
finement along z)35. The second part gives the on-site Hamiltonian including higher band energy contri-
bution and contact interactions. It reads20,

H U n U n n E n
3

i
c

sp
c

i i
i i

i
ionsite 2 1∑ ∑ ∑= + + ,

( )σ
σ

σ
σ

, =± , =±

ˆ ˆ ˆ ˆ

where U2 denotes the energy of the composites and Usp is the additional interaction energy to occupy 
the p-orbital of a composite filled site. E1 is the single-particle excitation energy of the p-band. Shaking 
with elliptical periodic driving force leads to25,

H n n ni F
4t s

i
i i ishaking ∑= ⋅ ( + + ),

( )+ −ˆ ˆ ˆ

with the shaking force K t x K t yF [ sin cos ]t 1 2= − (Ω ) + (Ω + Φ)ˆ ˆ . We consider the case where 
Jsp  U2,Usp ≤  Ω . That allows us to use rotating-wave approximation and Floquet theorem and to average 
terms fast oscillating in time (see Methods).

The sp-tunneling will be resonantly enhanced when the energy to occupy the p-bands is an integer 
multiple of the shaking frequency. This translates into the condition that E1 +  Usp =  NΩ  for integer N. 
The resonance order, N, can be controlled by varying either the lattice depth, interaction strength or the 
driving frequency. The time-averaged Hamiltonian then becomes,

∑= ,
( )δ σ

δ δσ σ δ
, , =±

, +ˆ ˆ ˆ†H

J
F f p n s1

2 5i

cavg

sp
i i i

where

F iN t iK t dt K iN1
2

exp[ cos ] exp[ ] 6N
0

2

∫π α α= Ω − ( + ) = ( /Ω) − , ( )δ

π

δ δ δ δ

with  xN( ) being the Bessel function of the first kind with integer order N. The amplitudes are K K10
=δ  

and K K K K K[ 3 2 3 sin ]1
2

2
2

1 2
1 2

= + ± Φδ
/

±
. The phase factor αδ =  0 for δ =  ± δ0 and 

tan 1 3 cos
1 3 sin

α = 



δ

− Φ
± Φ

 for δ =  ± δ±. The effective tunneling strength may be characterized by 

J N J Kp Ns spδ′ ( , ) = ( /Ω)δ . Moreover, lattice shaking also induces phases to the sp-tunnelings (6) as 
illustrated in Fig.1(a) (see also Methods).

The ground state composite structure.  The composite number operator nc
iˆ  commutes with the 

Hamiltonian (5), n H 0c
i avg

 ,


 =

ˆ ˆ . Therefore, we can characterize a site by the presence or the absence of 
a composite, i.e. n 1 0c

i = ,  which makes the Hamiltonian, (5), quadratic in operators for a particular 
realization of composite configuration. For a given composite configuration, we then diagonalize the 
quadratic Hamiltonian and fill up the energy levels depending on the excess ↓  -fermions filling 
n↓ −  n↑ ≤  1/3. We find the ground state composite structure by comparing the energies of different com-
posite configurations using simulated annealing on 6 ×  6 up to 20 ×  12 lattices with periodic boundary 
conditions. For details about the parameters of simulated annealing, we refer to Ref. 20. The resulting 
ground state self-organized structure of the composites resembles a Dice lattice and is shown in Fig. 1(a). 
Its basis consists of three sites denoted A, B and C. The A site consists of two orbitals p+ and p− whereas 
the sites B and C have only s-orbitals. The basis vectors for the Dice lattice are given by a 3 2 3 21 = ( / , / ) 
and a 3 2 3 22 = ( / , − / ). For any deviation from the 1/3 filling of the composites, the excess compos-
ites or vacancies will show up as impurities on top of the Dice lattice as long as the density of such 
impurities is small (nimp 1/3).

To understand the origin of the Dice structure, consider first a composite at some chosen site A. The 
energy is minimized when all the neighboring sites (forming hexagon with the site A in the center) are 
without composites. This facilitates the sp tunneling from a p orbital at site A to the neighboring sites. Any 
composite on these neighboring sites increases the energy by JspFavg,δ. Thus, for a composite filling of nc =  1/3, 
the delocalization area is maximized by filling the lattice with hexagons with a composite at their center.

Assuming the ground state configuration is fixed, the effective Hamiltonian for the excess fermions is 
quadratic and thus easily diagonalized to yield the band structure. The behavior of the excess fermions 
is then that of an ideal Fermi gas with such band structure, which is easily computed.

Creation of the staggered field.  For the Dice lattice considered here, one can construct two kind 
of plaquettes: i) The three plaquettes as shown in Fig. 1(b) where the particle traverses the closed path 
involving px ↔ s↔ px ↔ s orbitals. Such a path does not mix the px and py orbitals. Due to the phases of 
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the tunneling amplitudes, a particle going through each of those plaquettes (denoted by ϕ1,ϕ2 and ϕ3, see 
Fig.1(b) and calculated along the direction of the arrow) acquire fluxes due to Aharonov-Bohm effect. We 
find that the induced flux is staggered in nature as the phases obey the constraint mod(ϕ1 +  ϕ2 +  ϕ3,2π ) =  0. 
These fluxes are calculated by taking into account a single p-orbital. Figure 1(c) shows the flux strengths 
for N =  1. In particular, for Φ  =  0, ϕ1 =  ϕ2 =  ϕ3 =  2π/3 which is equivalent to a uniform magnetic flux of 
the same magnitude. With growing Φ , fluxes change with all fluxes vanishing at Φ  =  π/2.

ii) The other kind of plaquette involves the A sites containing px, py orbitals as given by the parallel-
ogram shown in Fig. 1(d). A particle going around such plaquette picks up a non-Abelian flux. Consider 
the transport from site “1” to “2”. The process can go either via the upper or the lower path with two 
consecutive sp tunnelings with strengths J N J KNsp 0 sp 0( )δ′ ( , ) = /Ωδ  and J N J KNsp sp ( )δ′ ( , ) = /Ωδ+ +

. 
The effective amplitude becomes  J N J N 212 sp 0 spδ δ= ′ ( , ) ′ ( , )/+ . The kinetic energy term around the 
plaquette for A sites may be written as

   H L L L L h c 7Akin 2 12 12 1 3 23 23 2 4 34 34 3 1 41 41 4= Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ + . , ( ),
† † † †

where the array Ψ l =  (p+, p−)l denotes p-orbitals at site l. The corresponding link variables connecting the 
neighboring A sites along the clockwise direction are given by 2 ×  2 matrix Lmn with

L
e

e

cos 3 cos

cos cos 3 8

i

i12

3

3

( )
( )

π α α

α π α
=

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π

/

− /
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Figure 1.  (a) The representation of the system considered in the paper. Red-and-blue spheres refer to the 
composites. The thin lines denote the bonds in the original triangular lattice and the blue lines represent 
the bonds for the excess ↓  -fermions in the emerged dice lattice. On the composite occupied sites we have 
p-orbitals for the excess fermions while on vacant sites we have s-orbitals for the excess fermions. δ0,δ± 
correspond to the vectors connecting the nearest neighbors and the sites A,B,C symbolize the basis for the 
Dice lattice. (b) Left panel: The tunneling phases described in Eq.(6). Right panel: Three elementary cells 
present in the dice lattice and the corresponding fluxes in those cells. The arrows show the direction along 
which the fluxes are calculated. (c) The magnitude of the fluxes in each cell plotted as a function of the 
shaking phase Φ  (in the units of π). (d) The elementary plaquette for the A sites in the dice lattice along 
with the matrices Lll+1 coupling the sites l and l +  1.



www.nature.com/scientificreports/

5Scientific Reports | 5:11060 | DOI: 10.1038/srep11060

L23 ( 23) is given by changing π/3 →  − π/3 and δ+ →  δ− in the expression for L12 ( 23). Moreover, we 
find that L12 =  L34 and L23 =  L41 (with similar relations for  ij) and they depend on the staggered flux 
through the phase of the tunneling amplitudes. The link variables are not unitary, which makes it not 
straightforward to describe them as synthetic non-Abelian fields. Nonetheless one can polar decompose 
them, S ULmn mn mn= , where   1mn mn =

† . Such decompositions are possible as the Lnm matrices are 
positive semi-definite. Then one can define a corresponding Wilson loop parameter36

   W Tr [ ] 912 23 34 41= . ( )

The Wilson loop parameter has (i) an intrinsic contribution (appearing at Φ  =  π/2), with no staggered 
flux through an individual plaquete in Fig. 1(b) due to the appearance of the sp-band tunneling and (ii) 
an extrinsic contribution due to the external staggered flux induced by shaking. As a result, the link 
matrices are of non-Abelian nature (W ≠ 2 ) for any shaking phase Φ .

Spontaneous magnetization.  First, we study the behavior of the system in the absence of staggered 
flux realized for N =  1,Φ  =  π/2 Fig.  (1). The effective non-Abelian field is intrinsic in nature and the 
corresponding dispersion relation for the lowest energy band is shown in Fig. 2a. The main character-
istic of the dispersion relation is the appearance of two non-equivalent Dirac cones and disappearance 
of flat bands. This is in contrast to the dispersion relation in a normal Dice lattice where the dispersion 
relation contains an intersecting Dirac cone and a flat band. Moreover, above a certain Fermi energy 
(of the excess fermions), the first two bands are degenerate. When we introduce the staggered flux, the 
dispersion changes and the gap opens at the band touching points (Fig. 2b). Once the Fermi energy is 
higher than the gap, the two bands become degenerate again. This is in a stark contrast to other situations 
with nearest neighbor tunneling where staggered flux leads only to the movement of the Dirac cones37,38 
and to opening a gap one either needs long-distance tunneling13,17, uniform magnetic field or synthetic 
non-Abelian fields along with magnetic field39.

Anomalous Hall effect.  Consider the local magnetization (z) in position space as well as magnet-
ization in momentum space defined as




n n
n n 10

z i i

k k k

= − ,

= − . ( )
+ −

+ −

ˆ ˆ
ˆ ˆ

A non-zero local magnetization characterizes the breaking of time-reversal symmetry as the particles 
acquire local angular momentum due to the particle number difference between the p+ and p− orbitals. 
First, we find that the presence of non-zero staggered flux immediately results in non-zero z and in 
opening of the gap. Thus, appearance of non-zero z can be used as an indirect evidence for the presence 
of a gap in our system. The local magnetization is shown in Fig.2c (dashed line) for a small staggered flux. 
It vanishes only when the first two bands are totally filled. The presence of spontaneous magnetization 
(spontaneous time-reversal symmetry breaking) is reminiscent of spin-orbit coupled ferromagnets4. 
Moreover, to look into the topological nature of the system, we define the intrinsic Hall conductivity,

k 2
11

xy n
n F

∑σ π= Ω ( )/ .
( )ε ε<

The Berry curvature, Ω n(k), for the n-th band is given by Ω n(k) =  ∇ k ×  〈 unq | ∇ k | unq〉  where |unq〉  
denotes an eigenvector for the n-th band. The total Hall conductivity σxy then depends on the Fermi 
energy εF of the system as shown in [Fig.2c (solid line)]. We find that the local Berry curvature is con-
centrated near the Dirac points which results in a non-zero contribution to xy

nσ  when εF is in the band. 
As εF enters the band gap, we find that xy

nσ  flattens at a value > 1/2. This can be ascribed to the presence 
of two Dirac cones near the band gap. As we increase εF, the contribution from the next band begins to 
play a role and eventually the conductivity changes sign. The second peak appears when the Fermi energy 
reaches the maximum of the first band. Such structures in conductivity have been predicted to arise due 
to the presence of magnetic monopoles in the momentum space40.

Quantum Anomalous Hall effect.  Finally, consider the strong flux limit, e.g the case of Φ  =  0 where 
the flux through each plaquette is 2π/3. Strong flux results in lifting the degeneracy between the first two 
bands (Fig. 3, top plot). The middle two bands still touch each other in the form of Dirac cones. With 
the degeneracy lifted, one can define Chern numbers given by ν =  (2,− 4,2) resulting in the appearance 
of quantum Anomalous Hall effect. We have also calculated the Hall conductivity and when the Fermi 
energy of the excess fermions resides in the band gap, conductivity becomes integer valued (Fig. 3, bot-
tom plot). The magnitude of the band gap is ≈  Jsp. For a triangular lattice (lattice constant a =  500 nm)
with lattice depth of 6ER and transverse frequency of 10ER, the sp tunneling strength in the harmonic 
approximation is given by Jsp ~ 0.008ER assuming the scattering length of − 400 Bohr radius. This corre-
sponds to a band gap of about ~10 nano-Kelvin which determines the temperature regime where the Hall 
phase can be observed. For the Dice lattice with dilute impurities, the Hall conductivity presented in this 
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paper remain unchanged due to the topological nature of the Berry curvature for the dispersion bands4. 
The band topology discussed here can be measured in principle by using recently proposed methods of 
Ramsey interferometry and Bloch oscillations41,42, or from momentum distribution from Time-of-Flight 
images43. Moreover, the generation of local orbital angular momentum due to broken time-reversal  
symmetry in the chiral p-orbitals can also be detected by time-of-flight measurements44.

Conclusions
To summarize, we considered an unequal mixture of attractively interacting fermions in a shaken trian-
gular lattice. Pairing produces immobile composites that gives rise to dice lattice for the excess fermions. 
Adjustments of shaking frequency and amplitude allow to make intra-band tunnelings negligible while 
resonantly enhancing interaction-induced sp-tunnelings for the excess fermions. Moreover, shaking leads 
to the controlled staggered magnetic field and induces (on the p-orbitals) non-Abelian character of the 
system. Their joint effect leads to spontaneous chiral magnetization (due to time reversal symmetry 
breaking) along with appearance of Anomalous Hall effect. Many fascinating question related to the 
findings here can be investigated further including the role of impurities, long-range interaction etc. 
Moreover, by using dipolar atoms, one can further study many-body effects like superconductivity45,46, 
density-waves in presence of the artificial non-Abelian gauge fields presented here.

Figure 2.  (a) The dispersion relation for the lowest energy band as a function of a lattice momentum k for 
zero staggered flux, ϕ1 =  ϕ2 =  ϕ3 =  0 corresponding to shaking phase Φ  =  π/2 and N =  1. The dark blue part 
denotes low energy regions. The ×  and +  denote positions of Dirac points. (b) The dispersion εk for the 
first two band in the presence of small staggered flux for Φ  =  π/4. The presence of the staggered flux along 
with the non-Abelian nature of the system helps to open a gap near the Dirac points. The tunneling strength 
is given by J′ sp =  JspJ1(K1/Ω ). (c) The magnetization (10) and Hall conductivity as a function of Fermi energy 
for Φ  =  π/4 and N =  1. Spontaneous magnetization appears due to time-reversal symmetry breaking. The 
Berry curvature has a non-zero contribution near the band-touching points. Contribution of local Berry 
curvature from such band-touching points results in a finite Hall conductivity which shows plateau like 
structure due to the presence of the gap between the first two bands. (d) The magnetization k in 
momentum space (from Eq. (10)) as a function of crystal momentum k shows sharp peaks near the two 
Dirac points for Φ  =  π/4 and N =  1. They correspond to the presence of monopole like structure in the 
corresponding Berry phase.
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Methods
The model Hamiltonian.  We consider an unequal mixture of two-species ultracold fermions 
(denoted by ↑ , ↓  ) assuming strong attractive interactions between two species. It is energetically favora-
ble for fermions to pair, the low energy system is then effectively composed of paired composites and the 
excess ↓  fermions. We denote the creation and annihilation operators for ↑  fermions as s i↑ˆ

†  and s i↑ˆ . For 
the more abundant ↓  fermions we include both s and p orbitals denoting the corresponding operators as 
s s p pi i i i, , ,↓ ↓ ↓± ↓±
ˆ ˆ ˆ ˆ† † . In the main text, for simplicity, we have neglected ↑  -fermion tunneling and all the 
intra-band tunnelings for ↓  -fermions from the beginning. Here, let us derive the Hamiltonian without 
these assumptions and show that, indeed, these effects may be neglected.

The full time-dependent Hamiltonian H(t) consists of three parts H(t) =  Htun +  Honsite +  Hshaking. The 
first, Htun describes the tunnelings, Honsite describes the on-site interactions and Hshaking describes the 
shaking. Together they read:

( )
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∑ ∑

∑ ∑

∑

∑ ∑ ∑
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+ + +
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= + + ,
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Figure 3.  (a) The dispersion relation for Φ  =  0 which corresponds to staggered flux with ϕ1 =  ϕ2 =  2π/3 and 
N =  1. The numbers on the right hand side of the figure show the invariant Chern numbers corresponding 
to the respective bands. As we have seen in Fig.2(a), there are multiple Dirac cones which touch each other 
in the zero flux limit. Thus, when there is a band gap, there are contributions to Berry curvature coming 
from all such points. This gives rise to bands with large Chern numbers (2,− 4,2). Plot (b) represents the 
Hall conductivity σxy and the magnetization z for that case.
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Here, ni
↑ (↓)ˆ , denote number operators of ↑  ( ↓  ) fermions respectively while n i±

↓ˆ  are number operators for 
the ↓  p-fermions with ± -chirality. The same amplitude, J0 corresponds to the standard tunneling between 
s orbitals, the corresponding tunneling in the p-band is described by J1

σδ. Moreover, we include density 
induced (bond-charge) intra-band tunneling for p-orbitals with strength J11

δσ . Jsp is the amplitude of the 
hopping between s and p bands which is also induced by the interaction with ↑  fermions. The various 
tunneling processes in Hamiltonian (12) are shown in Fig. 4. The tunneling amplitudes are given by

∫ ∫
∫ ∫

= ( , ) ( , )

= ( , ) ( , )

= ( , ) ( , ) ( , ) , ( )

δ

δ
δ

δ
δ

σ σ σ

σ σ σ
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+

+∬

⁎
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J x y H x y dxdy

J x y H x y dxdy

J g x y x y x y dxdy

[ ]

[ ] [ ] 13
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i i

i i i
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00

1 latt

11 2D
00 2

where  x yi
00( , ) is the Wannier function of the s-band and  x yi ( , )

σ  with σ =  ±  are the Wannier  
functions corresponding to p+ -and p−-bands in the harmonic approximation for the triangular lattice 
potential. The single particle Hamiltonian for the triangular lattice is denoted by Hlatt.

Note that the Hamiltonian (12) does not contain tunnelings of the composites themselves. Such a pair 
tunneling term can arise due to interaction28 but is 3-4 orders of magnitude smaller than other tunneling 
terms. The composites can also tunnel via higher-order processes (discussed in22). The leading term of 
this collective tunneling is of the second order24 with the corresponding amplitude being proportional to 
J U0

2
2/ , i.e. very small assuming strong attraction. The effect is further reduced by assumed shaking - 

modification of effective J0 - so such tunnelings can be safely neglected.

Low-energy and resonant subspaces.  Now we define the low-energy subspace and the resonant 
subspace which are coupled by the driving (shaking). First we assume the strong interaction limit i.e. 
J J J J U Usp0 1 11 2 01, , , ,δ δσ σ



. Yet larger energy scale is set by single particle energy of the p band E1 and 
the shaking frequency. Thus we assume U2,Usp  E1 ~ Ω . |U2| - the strength of attraction between ↑  and 
↓  fermions sets the low-energy scale, thus we restrict the analysis to the subspace of Hilbert space where 
all ↑  minority fermions are paired with their ↓  partners. Thus the low-energy local subspace is spanned 
by ,↓ ↑ ↓ˆ ˆ ˆ† † †s s s0 0i i i  states. As we will show below, due to the sp tunneling and periodic driving this 
subspace is resonantly connected to the subspace where a paired site can be occupied by p-orbital fer-
mions, | 〉σ↓ , ↓ ↑ˆ ˆ ˆ† † †p s s 0i i i with energy E1 +  U01. Therefore, from now on our Hilbert space will consists of 
s s s p s s0 0 0i i i i i i, , σ↓ ↑ ↓ ↓ , ↓ ↑ˆ ˆ ˆ ˆ ˆ ˆ† † † † † †  states.

We now apply the unitary transformation, U iH t i H t dtexpt
t

onsite 0 shaking∫= 

− − ( ′) ′


ˆ  transferring the 

time-dependence in the total Hamiltonian H(t) into the tunneling amplitudes. The new Hamiltonian 
H U HU iU d U[ ]t′ = −ˆ ˆ ˆ ˆ† †

 is given by

Figure 4.  Pictorial representation of different tunneling processes in Hamiltonian, Eq.(12). The top left 
panel describes the resonant tunneling process where a ↑  fermion from a composite tunnel to a neighboring 
excess ↓  -fermion occupied site. This tunneling process corresponds to the first term in Hamiltonian Htun. 
The top right panel describes the process when an excess fermion can tunnel in the p-band resonantly 
provided both the sites are already occupied by composites. This reflects the third term in Hamiltonian Htun. 
The bottom figure depicts the interaction induced sp tunneling amplitude.
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where dtW Ft
t

t0∫= ′′ . We expand the exponential functions in (14) as: 
i K in tWexp[ ] exp[ ]t n nδ− ⋅ = ∑ ( /Ω) − Ωδ . Then as U2  Ω , after rotating-wave approximation 

(RWA) and projecting on our local Hilbert space, the first term of Hamiltonian (14) may be resonant 
only if U2 contribution vanishes. Since this term corresponds to ↑  -fermion tunneling (which appear 
paired only in our subspace) this process is possible only if a paired state and a ↓  -fermion in s-orbital 
are neighbors (Fig. 1(a)). Otherwise the pair (composite) is pinned. Similarly, the second term may be 
resonant (n n 0s si i= =δ

↑
+
↑ ) when a ↓  -fermion in s-orbital tunnels to a neighboring empty site. The third 

term gives a resonant contribution via the tunneling process depicted in Fig.4(b). After RWA, all the 
time-independent tunneling amplitudes of the above intra-band tunnelings are changed by a factor 
 K0( /Ω)δ . We see that to minimize the ss and pp tunnelings we have to tune the shaking amplitude 
such that  K 00 0( )/Ω =δ  and  K 00( /Ω) =δ−

. This assures that for the shaking phase Φ  =  0, there is 
no intra-band tunneling along the δ+ direction as K K=δ δ+ −

.
In the last term of Hamiltonian (14) the fast oscillation with E1 +  U01 frequency must be compensated 

by appropriate Fourier component yielding the sp resonant condition E1 +  U01 =  NΩ . Inspecting the tun-
neling term we see that, the tunneling in p-band is resonantly enhanced only when the composite density 
in neighboring sites i and i +  δ follows the relation n n 1i i( )− =δ

↑
+
↑ . Due to the type of sp coupling in 

Hamiltonian, (14), p-fermions may appear only in composite occupied sites. This may occur only from 
a site occupied by a lonely ↓  -fermion (if there were a composite at that site, an additional energy differ-
ence, U2, the pair energy would appear bringing the system out of the chosen resonance). After carrying 
RWA and in the limit of vanishing intra-band tunneling, the effective Hamiltonian reads,

H
J

K i p n s
2

exp tan
15

sp
N y x

i
i i i

1( )∑ σ δ δ′ = ( /Ω) 

− / 


,

( )δ
δ δ

σ
σ

, , =±

−
↓ ,

↑
↓ +ˆ ˆ ˆ†

where  xN( ) defines Bessel function of order-N. We see that, one can control the different tunneling 
amplitudes by tuning the shaking amplitude, frequency and interaction strength.

When the shaking phase Φ  ≠ 0, along δ0 and δ− directions the intra-band tunneling still vanishes, 
but remains nonzero along δ+ direction. Amplitude of the latter can be tuned to values smaller than 
the sp-tunneling amplitude by changing the interaction strength. Moreover, once the Dice structure of 
the composites is created, the only possible tunneling along δ+ direction is the inter-band sp tunneling 
(compare Fig.1(a) in the main text). So, adding small intra-band tunneling due to a finite shaking phase 
will not destabilize the Dice structure.

Effects of tunneling on the emergent lattice.  In this section, we discuss the effect of the tunneling 
on the Dice lattice structure. As discussed before, a composite can tunnel to a vacant site only via higher 
order processes22,24 which are negligible for large |U2|. So the only way a composite can tunnel is if the 
minority fermion tunnels to a site already occupied by a majority fermion in s-orbital site as shown in 
the first figure in Fig.4. Such a process can be described by an effective tunneling for the composite cou-
pled to the tunneling of the excess fermions in the opposite direction. To investigate the effect of such a 
tunneling we use a one-dimensional minimal model,

H
J

p n s h c J c c s s
2 16

p

ij
i i

c
j

ij
i j j imin

s
0∑ ∑= − 

 + .  −




, ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †

where at each site i we have only s- and p-orbitals, and 〈 ij〉  denotes the nearest neighbors. We have 
introduced operators c ci i,ˆ ˆ† as the composite annihilation and creation operators. The first term denotes 
the composite density dependent sp tunneling of the excess fermions and the last term just denotes the 
composite tunneling and excess fermion tunneling. When J0 =  0, the ground state is given by the com-
posite structure, n n1 0i

c
i

c
2 2 1= , =+  when composite filling is nc =  1/2. Such a density wave structure is 

equivalent to the Dice lattice structure we study in a triangular lattice. Due to the hardcore bosonic 
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nature of the composites, we use a factorized variational composite wavefunction, |Φ c 〉=  Π i|Φ ci〉, where 
θ θΦ = +cos 1 sin 0c i c c2

 and |Φ c〉 2i+1 =  cosθ|0〉 c +  sinθ|1〉 c and |1〉 c,|0〉 c denote a composite occu-
pied or empty site. In the composite wavefunction ansatz, θ is the variational parameter. The density wave 
state at J0 =  0 is obtained for θ =  0. Using such an ansatz, we can integrate over the composite subspace 
and get an effective Hamiltonian,

H
J

p s h c
J

p s h c J s s
cos

2

sin

2
sin 2

4 17i
i i

i
i i

ij
i jeff

sp
2

2 2 1
sp

2

2 1 2 0

2

∑ ∑ ∑
θ θ θ

= 
 + .  +


 + .  − .

( )
+ +

ˆ ˆ ˆ ˆ ˆ ˆ† † †

Then we write the energy for excess fermion filling n =  1/4 (this is 1/2 of the previous value due to 
the doubling of number of degrees of freedom) for θ  1 and Jsp  J0 as E O[ 1 ]

J
var

2 2 2 4sp θ θ= − + + ( )
π

, 
which is independent of composite tunneling. From that we conclude that the energy is minimized for 
θ =  0. For larger tunneling strength J0, we have compared the energy of the homogenous state with 
θ =  π/4 and the density wave state with θ =  0 finding that the density wave state has lower energy as long 
as Jsp >  3J0/4. Though the present calculation is one-dimensional, the essential physics also applies to the 
more complicated situation of triangular lattice, where we expect the Dice lattice density wave structure 
to be stable even in the presence of small composite tunneling.
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