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Integrative gene network analysis identifies key signatures,
intrinsic networks and host factors for influenza virus A
infections
Christian V. Forst1, Bin Zhou2, Minghui Wang 1, Tsui-Wen Chou2, Guy Mason2, Won-min Song 1, Eric Schadt 1, Elodie Ghedin2,3 and
Bin Zhang1

Influenza A virus, with the limited coding capacity of 10–14 proteins, requires the host cellular machinery for many aspects of its life
cycle. Knowledge of these host cell requirements not only reveals molecular pathways exploited by the virus or triggered by the
immune system, but also provides further targets for antiviral drug development. To uncover novel pathways and key targets of
influenza infection, we assembled a large amount of data from 12 cell-based gene-expression studies of influenza infection for an
integrative network analysis. We systematically identified differentially expressed genes and gene co-expression networks induced
by influenza infection. We revealed the dedicator of cytokinesis 5 (DOCK5) played potentially an important role for influenza virus
replication. CRISPR/Cas9 knockout of DOCK5 reduced influenza virus replication, indicating that DOCK5 is a key regulator for the
viral life cycle. DOCK5’s targets determined by the DOCK5 knockout experiments strongly validated the predicted gene signatures
and networks. This study systematically uncovered and validated fundamental patterns of molecular responses, intrinsic structures
of gene co-regulation, and novel key targets in influenza virus infection.

npj Systems Biology and Applications  (2017) 3:35 ; doi:10.1038/s41540-017-0036-x

INTRODUCTION
The influenza A virus (IAV), a member of the Orthomyxoviridae
family, is the causal agent of an acute respiratory tract infection
suffered annually by 5–20% of the human population. IAV can
cause high mortality in humans, with 250,000–500,000 deaths per
year worldwide.1 In pandemic years, influenza infection can lead
to even higher mortality rates, as seen in the most extreme case
with the 1918 Spanish influenza pandemic.2 Of particular concern
is the threat of emerging highly pathogenic avian influenza
viruses such as H5N1 and H7N9, which—although not easily
transmissible human-to-human—have an unusually high death
rate. Current treatments are focused on vaccines and drugs that
target viral proteins. However, both of these approaches have
limitations as vaccines require annual development to match the
antigenic strains circulating, while viral proteins have an
impressive capacity to evolve resistance against anti-viral agents.3

With the expression of 14 functional proteins for viral replication
and virulence, the repertoire of gene products on the pathogen
side is limited. The viral life cycle and the replication of the IAV are
dependent on hijacking host-cell biological processes to facilitate
entry, replication, assembly, and budding. The recognition that a
suite of mammalian host proteins is required for IAV infection and
replication presents additional targeting strategies that may be
less prone to deflections by the quickly mutating viral genome.
IAV entry is a dynamic process that is comprised of six different

steps:4 (i) attachment to the target cell, (ii) internalization into
cellular compartments, (iii) endosomal trafficking to the

perinuclear region, (iv) fusion of viral and endosomal membranes,
(v) uncoating, and (vi) import of the viral genome into the nucleus.
After nuclear import three more steps are required: genome
replication/transcription and translation; vRNP transport from the
nucleus to the cytoplasm; and virus assembly and release.5

Influenza infection activates a number of host defense path-
ways, including the innate and adaptive immune responses, the
induction of cytokines, and activation of apoptosis.6 The detection
of viral particles (in particular nuclear acids) by toll-like receptors
(TLR7) of the MyD88, NF-kB pathway,7,8 as well as cytosolic proteins
such as RIG-I (DDX58)9,10 of the MDAF/MAVS pathway and their
trigger of interferon expression via the activation of transcription
factors including IRF3 and IRF7, have been well studied.
Unfortunately, much less is known about downstream host
defense factors and signaling pathways.
Large-scale genome-wide studies of viral host factors and

corresponding cellular networks have been conducted since 2008.
Because RNAi-based screening technology was not well estab-
lished in mammalian cells at that time, Drosophila was tested as an
experimental platform to characterize host–virus interactions
during influenza infections.11 With the development of mamma-
lian RNAi-based screening, a comprehensive analysis of mamma-
lian host cell functions in influenza virus replication became
feasible.12–14 Known protein–protein interactions were used and
superimposed with the RNAi screening data to construct
functional host–pathogen interaction networks relevant for the
influenza life cycle. A different tactic was then employed15 to
combine yeast two-hybrid analyses, genome-wide transcriptional
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gene expression profiling, and an RNAi screening. More recent
approaches revisited transcriptomic data but used weighted gene
co-expression network analysis (WGCNA) to construct a host-
influenza regulatory network.16

In this study, we employed an integrative network-based
approach to identify host response co-expression networks in
influenza A virus infection. Integration of differential gene
expression, data driven correlation, and co-expression networks
enabled reconstruction of novel signaling maps underlying
influenza infection and host response. We predicted and validated
DOCK5 as a key driver and potential host factor that is important
for influenza virus infection.

RESULTS
Twelve cell-based time-series gene expression data sets from ten
published studies were assembled (Table 1) to identify key
processes and key regulators in influenza infections. Cell lines,
such as human alveolar basal epithelial cells (A549) and cultured
human airway epithelial cells (Calu-3), as well as primary human
bronchial epithelial cells (HBEC) were used to capture the overall
response of the primary target tissues after influenza infection.
The influenza A viruses used for infection include strains of
subtypes H1N1 (including the resurrected strain of the 1918
pandemic), H5N1, H5N2, and H9N2. The cell-based experimental
platforms include time-series data up to 72 h post-infection but
the majority cover time post-infection to 24 h. Thus this study
focused primarily on the initial steps of the influenza infection and
the host innate immune response.
These data sets were processed separately by an integrative

network analysis approach (Fig. 1), which was primarily based on
weighted gene co-expression networks.17,18 We first identified
differentially expressed genes in each data set that showed
significant change (significant response genes, SRG) or trend
(Jonckheere Trend Genes, JTG) during influenza infection.
Individual sets of differentially expressed genes (DEG) were further
assembled to consensus sets. Weighted co-expression network
analysis was applied to each data set to identify modules of highly
co-regulated genes that were further analyzed to derive
consensus modules through a clustering analysis of the
module–module similarity matrix (see details in the Methods
section). The consensus modules were prioritized by their
enrichment for both SRGs and JTGs, and the key regulators (hub
genes) in each module were determined by network connectivity.
A top key regulator (DOCK5) of the top ranked module involved in
viral replication was validated through CRISPR-Cas9-based

knockout experiments. The impact of DOCK5 knockout on the
replication of the virus in A549 cells was determined by titration of
the culture supernatants using a TCID50 assay. Molecular
responses to DOCK5 knockout, i.e., DOCK5’s target genes, were
determined by RNA sequencing of the DOCK5-knockout cell lines
and were used to validate the predicted gene networks and
differentially expressed gene signatures.
Gene set enrichment analysis with well-established gene sets

from gene ontology (GO)19 and MSigDB20 were used to assess
biological functions. Influenza-specific processes were evaluated
by enrichment calculations using published gene sets including
the influenza host factors,5,21 the inflammasome,22 the interferon
stimulated genes (ISGs)23, and the known host defense factors
from InnateDB.24 All p values reported in the text are corrected for
multiple testing unless otherwise specified. These gene sets, along
with a number of abbreviations used throughout the manuscript,
are described in Table 2.

Differential expression analysis uncovers genes responding to
influenza infection
Given the time series information across the different data sets, we
were particularly interested in the temporal response of expressed
genes. For this purpose, ANOVA was used to identify differentially
expressed genes across the time series (SRGs; see Supplementary
Information for details). In addition, a complementary non-
parametric Jonckheere trend analysis25 was used to identify
significant up-regulated or down-regulated genes across all
measured time points (JTGs) using a threshold of 0.05 for the
corrected p-values.
The conservation of SRGs and JTGs across the 12 data sets was

then evaluated. Although the data sets include a variety of
different cell lines infected with different influenza virus subtypes
and strains, the resulting SRG signatures significantly overlap with
each other based on the Fisher’s exact test (FET) (p-values range
between 1.37e−11 and 0). As shown in Fig. S1, there are three
groups without explicit preference of virus strain or cells, including
(i) a large group of H1N1, H5N1, and H5N2 virus strains infecting
A549 and Calu-3 cells; (ii) the H1N1/1918 strain with the original
(gn37_8) and modified NS1 protein (gn37_7); and (iii) H9N2 avian
influenza in A549 cells (gn31H9), and H1N1/PR8 in HBEC (gn19).
We identified 2898 SRGs, including 416 up-regulated JTGs

(JTGsup), 1526 down-regulated JTGs (JTGsdown), and 956 non-JTGs,
in at least 6 of the 12 studies at a false discovery rate of 5%, while
1462 SRGs (146 JTGsup, 711 JTGsdown, and 605 non-JTGs) were
common to at least seven studies (Fig. 2a). Enriched pathways
were characterized by gene otology (GO) categories and MSigDB

Table 1. Human cell-based gene expression profiles obtained from the GEO database

Expression set Model Virus MOIa # Probes # Sig. hits %

GSE19392 HBEC PR8 (H1N1) 5 22,277 546 2.5

GSE28166 Calu-3 H5N1 1 41,000 1704 4.2

GSE31524 A549 A/WSN/33 (H1N1) 4 54,675 408 0.8

subsets A/duck/Malaysia/F118/08/2004 (H5N2) 265 0.5

A/duck/Malaysia/01 (H9N2) 130 0.2

GSE33142 Calu-3 A/VN/1203/04 (H5N1) 1 45,015 401 0.9

GSE36555 A549 A/Mex/inDRE4487/2009 (H1N1) 0.1 49,707 1756 3.5

GSE37571 Calu-3 A/CA/04/2009 (H1N1) 3 41,000 2144 5.2

GSE37951 A549 r1918, NS1 Tx/91 (H1N1) 2 41,000 11,679 28.5

A549 r1918 (H1N1) 2 41,000 16,830 41.1

GSE40844 Calu-3 A/CA/04/2009 (H1N1) 3 41,000 576 1.4

Calu-3 A/Neth/602/2009 (H1N1) 3 41,000 1875 4.6

a Multiplicity of infection
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gene signatures (Fig. 2b; Table S1). As expected, the up-regulated
genes are involved in immune system response, in particular type
1 interferon signaling (FET p = 1.09e−6, 3.9-fold). Well conserved
are the host defense pathways comprised of MX1, IFITM, IRF7, and
OAS, which are known ISGs that control IAV infections,26 among
other interferon-induced genes. The down-regulated genes are
associated with small molecule/lipid metabolic processes and
localization. The heterogeneous nuclear ribonucleoprotein A1
(hnRNPA1) is the highest ranked gene significantly expressed in all
12 data sets and predominantly down-regulated (in 9/12 data
sets). It is a member of a family of ubiquitously expressed hnRNPs,
which are RNA-binding proteins associated with pre-mRNAs in the
nucleus and that influence pre-mRNA processing, as well as other
aspects of mRNA metabolism and transport. HnRNPA1 is one of
the most abundant core proteins of hnRNP complexes; it plays a
key role in the regulation of alternative splicing.27 Together with
splicing factor 2 (SF2), it regulates alternative splicing of interferon
regulator factor-3 (IRF3).28 Mediated by transportin 1 (TNPO1),29

hnRNPA1 shuttles between the nucleus and the cytosol.30 Other
highly ranked members of the hnRNP family involve the related
hnRNPD and the synaptotagmin binding cytoplasmic RNA
interacting protein (SYNCRIP), both significantly expressed in 11
data sets. Although SYNCRIP is not known to be involved in
influenza infection, it is a host factor involved in hepatitis C virus
RNA replication,31 and required by the HCV IRES for translation-

competent 48S complex formation.32 SYNCRIP has previously been
reported to be associated with immune functions.33 Other SRGs,
potentially responsible for host defense, include the CD59
molecule (a cell surface glycoprotein that is involved in
lymphocyte signal transduction), C–C motif chemokine ligand 5
(CCL5) and MALT paracaspase that may play a role in NFκB
activation. A list of the best DEGs together with their consensus
trend are shown in Table S2. Due to the diverse cell lines and virus
strains used, even well conserved SRGs such as hnRNPA1, which is
an SRG in all 12 data sets, show diverse gene expression with up-
regulation in 2 and down-regulation in 9 data sets. Similarly, host
defense genes experience diverse regulation depending on
infected tissue and viral strain. For example, IRF7 is up-regulated
in 10/12 data sets, MX1 is up-regulated in 9/12 data sets, and RIG-I
(DDX58) is up-regulated in 7/12 and down-regulated in 3/12 data
sets.

Co-expression network analysis reveals intrinsic gene–gene co-
regulation structures underlying influenza infection
To understand how the genes interact with each other during
influenza infection, we performed WGCNA of the 12 data
sets.17,34,35 The 12 weighted co-expression networks consist of a
total of 1191 modules with 9–8529 members (Fig. S2). We further
identified 282 consensus modules (CMs) of sizes between 20 and
2500 through an average link-based hierarchical clustering

Fig. 1 Overview of the proposed integrative network-based approach to influenza infection. a Twelve publically available gene expression
data sets for studying influenza infection were curated. b ANOVA was used to identify significant response genes (SRG) that were differentially
expressed by taking into account the time-series. c Genes showing significant up-regulation or down-regulation along the time-series were
identified by the Jonckheere trend analysis and they were called Jonckheere trend genes (JTG). d Weighted co-expression network analysis
was applied to each data set to identify modules comprised of highly co-regulated genes. Consensus modules were further determined by
the clustering analysis of the similarities between all the modules from the 12 data sets. e The consensus modules were rank-ordered by their
enrichment for both SRGs and JTGs. f Key regulators of the top-ranked module were determined by network connectivity. Key driver centered
un-weighted co-expression networks were then constructed by correlation analysis of the individual data sets. g Key regulator (DOCK5)
predicted by the network analysis was validated through CRISPR-Cas9-based knockout experiments. h The impact of DOCK5 knockout on the
replication of the virus in A549 cells was determined by titration of the culture supernatants using a TCID50 assay. i Molecular response to
DOCK5 knockout, i.e., DOCK5’s target genes, was determined by RNA sequencing data from the CRISPR-Cas9-based knockout experiments. j
The predicted gene networks and differentially expressed gene signatures were validated by their enrichment of DOCK5 target genes
identified through the validation experiments
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method using the Jaccard similarity measure for modules (see
Supplemental Information). These consensus modules were
ranked by the significance of the enrichment for the previously
identified DEG signatures (see Methods and Table 3). The most
important CM (turquoise) captures common system responses
against influenza infections enriched for GO biological processes,
such as translational elongation/termination (FET p = 4.7e−5, 4.8-
fold) and viral reproduction (FET p = 4.0e−7, 2.3-fold). Enrichment
analysis using the canonical pathway collection from MSigDB20

identifies similar virus response-related pathways, such as peptide
chain elongation (FET p = 3.6e−5, 4.4-fold) and influenza life cycle
(FET p = 2.5e−5, 3.6-fold) enriched in the top ranked consensus
module. This turquoise CM is also most enriched for the known
influenza targets. Other CMs are involved in more specific
processes during the influenza infection process. Figure S3 shows
the detailed information about the 100 top-ranked CMs through a
circular heatmap representation of the enrichment for the DEG
signatures, GO/MSigDB functions as well as influenza, inflamma-
tion, and innate immunity gene sets (Table 3).
Meta-analysis of connectivity in the co-expression networks of

the 12 data sets, by summing log10(network connectivity) obtained
from the weighted co-expression networks, identified MDM2
(MDM2 proto-oncogene) and DOCK5 (dedicator of cytokinesis 5)
as the top two most connected genes among the SRGs (see
Table S3). Both DOCK5 and MDM2 are differentially expressed in 9
of the 12 data sets.
While the functions of MDM2 have been well studied (it was

mentioned by 7312 papers in PubMed), very little is known about
DOCK5’s function in general (only 35 papers about DOCK5 in
PubMed). P53 modulation by MDM2 during viral infection has
been reported in the literature. MDM2 and p53 polymorphisms
were show to be associated with the development of hepatocel-
lular carcinoma in patients with chronic hepatitis B virus
infection.36 Furthermore, the MDM2-dependent inhibition of p53
is required for Epstein-Barr virus B-cell growth transformation and
infected cell survival.37 With respect to IAV infection, the
accumulation of p53 in IAV infected cells is due to the stabilization
of p53 associated with compromised MDM2-mediated ubiquitina-
tion of p53.38 Jonckheere trend analysis reveals that MDM2 is up-
regulated in 5 data sets and down-regulated in 4, whereas DOCK5
is up-regulated in 1 data set and down-regulated in 5 data sets
(Fig. 3). In comparison, typical host defense genes, such as

chemokine CCL5, interferon α inducible protein 27 (IFI27), OAS2,
and IRF7 are up-regulated in the majority of the data sets. In
contrast, known host factors, such as NXF1 (up-regulated and
down-regulated in 3 data sets and 1 data set, respectively), COPA
(up-regualted and down-regulated in 2 and 5 data sets,
respectively), or SF3B1 (up-regulated and down-regulated in 2
data sets and 1 data set, respectively) show similar diverse
expression across the data sets (Table S3). Thus, a simple
expression analysis is insufficient to decipher the functional role
of host factors during the influenza life cycle.

A DOCK5-centered network captures key biological processes in
influenza infection
As WGCNA does not generate actual networks, we explicitly
constructed DOCK5-centered unweighted co-expression networks
for comparison with DOCK5 knockout (DOCK5-ko) signatures. To
do this, we first identified the genes significantly (FDR < 0.05)
correlated with DOCK5 in each of our 12 assembled data sets, and
then defined the consensus correlations conserved across at least
7 of the data sets (Table S4). The genes significantly correlated
with DOCK5 in at least n data sets are termed DOCK5-correlated
consensus gene set, DOCK5-CCGS(n), where n = 2, 3, …, 12.
Table S4 shows the sizes of these DOCK5-CCGS with correspond-
ing genes listed in Table S5. Eight genes are correlated with
DOCK5 in 11 data sets, including abhydrolase domain containing 2
(ABHD2), acetyl-CoA acyltransferase 2 (ACAA2), CD47 molecule,
DEAD-box helicase 17 (DDX17), karyopherin subunit alpha 4
(KPNA4), tumor suppressor protein neurofibromin 2 (NF2), RuvB
like AAA ATPase 1 (RUVBL1), and the trans-golgi network protein 2
(TGOLN2). ABHD2 was shown to be important in Hepatitis B virus
propagation.39 DDX17 was shown to promote production of HIV-1
particles,40 facilitate viral RNA synthesis in H5N1 infection of
human cells,41 and regulate alternative splicing.42 KPNA4 is an
importin and docks proteins with NLS signals to the nuclear pore
complex. NF2 coordinates collective migration of epithelial cells.43

RUVBL1 regulates the Fanconi anaemia core complex.44

To understand the functions of DOCK5 in influenza infection
and defense, we performed a comprehensive functional analysis
of the DOCK5-centered network conserved in a majority of the
data sets, i.e., DOCK5-CCGS(7), through enrichment tests of known
pathways and relevant gene signatures, as well as the previously
identified differentially expressed gene sets including SRGs(7) and

Table 2. Abbreviations used in this manuscript

Data set Size Description

SRG Various Differentially expressed gene identified by ANOVA time series analysis. SRGs(n) refers to the DEGs conserved in at least n
data sets, n= 1,2,…,12

JTG Various Gene showing significant up- or down-trend across the time series identified by Jonckheere trend analysis. JTGs(n) refers
to the genes with up-trend or down-trend in at least n data sets, n= 1,2,…,12

sgDOCK5-DEGS Various Gene signatures differentially expressed during influenza infection scenarios between DOCK5-wt and DOCK5-ko
experiments (fold change≥ 1.2 or≤ 1/1.2 FDR< 0.05)

sgDOCK5-DEG+ 2863 A gene signature up-regulated by DOCK5 knockout (i.e., genes repressed by DOCK5) after H3N2 infection (absolute
values used, fold change≥ 1.2, FDR< 0.05)

sgDOCK5-DEG- 4512 A gene signature down-regulated by DOCK5 knockout (i.e., genes activated by DOCK5) after H3N2 infection (absolute
values used, fold change≤ 1/1.2, FDR< 0.05)

DOCK5-CCGS(n) Table S12 Genes correlated with DOCK5 in at least n data sets, n= 2, 3,…, 12

GO 4653 Gene ontology of biological processes (BP)19

MSigDB 1329 Molecular signatures database, curated, canonical processes (c2.cp)20

Watanabe 129 Host-factors identified after consensus siRNA studies5

Ward 280 Targets after siRNA studies by Ward et al.21

Inflammatome 2483 Inflammatome gene set22

ISG 395 Interferon Stimulated Genes from the Interferome database23

InnateDB 1371 Genes from InnateDB24
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JTGs(7). We distinguished JTGs(7) with up-trends, i.e., JTGsup(7),
from those with down-trends (JTGsdown). We considered the
following gene signatures in addition to functional GO and
MSigDB genes sets: (i) two sets of influenza host factors derived
from siRNA data5,21 (sets ia and ib, respectively), (ii) a set of
“inflammasome” genes,22 (iii) a set of host defense genes relevant
for innate immunity,24 and (iv) a set of interferon-stimulated
genes.23 DOCK5-CCGS(7) is enriched for a number of pathways
including the ER-nucleus signaling, response to ER stress, RNA
localization, Golgi vesicle transport, viral process, modulation by
virus of host morphology, RNA splicing, and cellular protein
metabolic process (Table S6). The 985 genes shared by DOCK5-
CCGS(7) and SRGs(7) (FET p < 1e−320, 4.3-fold) are involved in
processes required for both the viral life cycle and antiviral host-
defense. DOCK5-CCGS(7) and JTGsup(7) share 226 genes (FET p =

6.2e−76, 3.5-fold) that are associated with interferon signaling and
host response to virus, while the 762 genes shared by DOCK5-
CCGS(7) and JTGdown(7) (FET p = 1.1e−239, 3.2-fold) are involved in
lipid and fatty acid metabolism (Tables S7 and S8).
Known influenza host factors are enriched in DOCK5-CCGS(7)

(FET p = 0.035, 1.6-fold) (Table S9). The inflammasome signature is
significantly enriched in DOCK5-CCGS(7) (FET p = 3.6e-5, 1.2-fold),
SRGs(7) (FET p = 1.2e−8, 1.4-fold) and JTGsdown(7) (FET p = 5.4e−7,
1.4-fold) (Table S10). The innate immune system-related genes
curated by ImmuneDB are significantly enriched in DOCK5-CCGS
(7) (FET p = 9.3e−10, 1.4-fold), SRGs (FET p = 5.6e−12, 1.7-fold),
JTGsup(7) (FET p = 2.7e−15, 2.6-fold), but not in JTGdown(7),
indicating the typical activation of innate immune response. All
non-empty intersections between DOCK5-CCGS(7), SRGs(7), and
JTGsup(7) are also enriched for the ImmuneDB genes (Table S11).

Fig. 2 Conservation of the differentially expressed gene sets including ANOVA-based SRGs and Jonckheere trend analysis-based JTGs, across
multiple data sets. SRGs(n) and JTGs(n) refer to the SRGs and JTGs shared by n data sets (n= 1, 2, …, n), respectively. a The number of SRGs(n)
(black line), the number of up-regulated JTGs(n) (red line), and the number of down-regulated JTGs(n) (blue line). b A Venn diagram of the
overlap between SRGs(7), and the up-regulated and down-regulated JTGs(7). Biological functions refer to the pathways enriched in the
corresponding sets and the numbers in parentheses indicate the corrected FET p-values
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However, the down-regulated innate immune system genes from
the intersection of DOCK5-CCGS(7) and JTGsdown(7) (FET p = 0.05,
1.4-fold change) indicate potential modulation of the immune
system by DOCK5 (see next section). DOCK5-CCGS(7) and SRGs(7)
are significantly enriched for interferon stimulated genes (ISGs)
with FET p = 2.3e−20 (3.0-fold) and 5.3e−20 (2.2-fold), respectively
(Table S12), suggesting interferon stimulation in the DOCK5-
centered network and the overall response. The analysis above
demonstrates that the DOCK5-CCGS(7) network captures many
aspects of the immune response.

DOCK5 is a potential host factor for influenza infection
To validate the functional role of DOCK5 during influenza
infection, we knocked out DOCK5 in human lung epithelial A549
cell lines using the CRISPR/Cas9 genome editing system.45 Virus
replication in these knockout cell lines was compared to that in
the wild type parental A549 cell lines. Four DOCK5-ko A549 clones
(DOCK5-c20, c25, c28, and c41) were selected and compared to
the wild type A549 (A549-wt) for their capacity to support the
replication of influenza virus. The cells were infected with an H1N1
virus (A/Puerto Rico/8/1934) or an H3N2 virus (A/New York/238/
2005) and the viral titers at days 1, 2, and 3 post infection were
determined using a TCID50 assay. The influenza viruses replicated
to significantly lower titers in DOCK5-ko cells than in the parental
A549 cell line (Fig. 4a, b). At day 1, IAV replication in the DOCK5-ko
cells was statistically indistinguishable from replication in DOCK5-
wt. At day 2, the absence of functional DOCK5 protein resulted in a
20-fold decrease (or 1.30 log10 reduction) of the H1N1 viral titer
(8.12–363.08 fold decrease corresponding to 0.91–2.56 log10
reduction in the 4 DOCK5-ko cell lines compared to A549-wt)
and an 8.51 fold decrease (or 0.93 log10 reduction) of the H3N2
viral titer (3.16–40.73-fold decrease corresponding to 0.50–1.61
log10 reduction in the 4 DOCK5-ko cell lines compared to A549-
wt). At day 3, the effect of DOCK5 knockout was even more
pronounced: the H1N1 viral titer was reduced by 436.51-fold or
2.64 log10 reduction (81.28–8709.64-fold decrease corresponding
to 1.91–3.94 log10 reduction in the 4 DOCK5-ko cell lines) and the
H3N2 viral titer decreased by 52.48-fold or 1.72 log10 (7.41–87.10-
fold decrease corresponding to 0.87–1.94 log10 reduction in the 4
DOCK5-ko cell lines compared to DOCK5-wt). A hierarchical linear
model (hLM) was employed using both the time past infection
and wt/clone information as parameters. All 4 DOCK5-ko clones
showed significantly different time series responses compared to
the wild type cells (hLM p-values of range between 5.3e−7 and

5.7e−3; Table S13). Similar to some known host factors, DOCK5
moderately compromises influenza replication when using siRNA
depletion (Fig. 5). The compromised replication of both the H1N1
virus (Fig. 4a) and the H3N2 virus (Fig. 4b) in the absence of
functional DOCK5 protein indicates that DOCK5 is a potential host
factor involved in the life cycle of influenza virus.
Since the parental A549 cell line used for CRISPR/Cas9 knockout

is composed of a heterogeneous population of cells, the clonal
variability of the selected DOCK5-ko clones (DOCK5-c20, -c25, -c28,
and -c41) may have resulted in the variable, though significantly
reduced capacity of these cells to support the replication of
influenza viruses (Fig. 4a, b). DOCK5-c28, whose cellular morphol-
ogy and proliferation rate are closest to the A549-wt cells, was
chosen as a representative clone to determine the effects of
knockout perturbation on host RNA responses (Fig. 4c). Real-time
qPCR was used to further quantify the expression level of some
important genes in the wild type and DOCK5-c28 A549 cells, under
infection conditions of Mock, H1N1, and H3N2.

The DOCK5-regulated transcriptome involves cytokinesis, vesicle
trafficking, and splicing
The transcriptional program regulated by DOCK5 was character-
ized by sequencing mRNA from the cells of the representative
clone DOCK5-c28 under different conditions as combinations of
infection status (H1N1, H3N2, or Mock infection) and DOCK5
perturbation status (with or without DOCK5-ko). These data sets
are referred to as the “validation data set”. Differential expression
analysis was performed on the following “contrasts” using
Bioconductor’s limma package: relative DOCK5-ko vs. wild type
(the relative expression of a gene was the ratio of the gene’s
expression in H1N1/H3N2 infection to that in the corresponding
MOCK), and absolute DOCK5-ko vs. wild type (the absolute
expression values in H1N1, H3N2, and MOCK infections were
used). A fold change cutoff of 1.2 and an FDR threshold of 5%
were employed to identify the corresponding DEG signatures.
Without influenza infection (i.e., MOCK infection), DOCK5

predominantly modulates cell migration, as indicated by the
significant enrichment of cell receptor signaling (FET p = 1.3e−8,
2.4-fold), cell communication (4.9e−4, 1.3-fold), cell migration (FET
p = 6.1e−3, 1.9-fold), extracellular matrix receptor interaction (FET
p = 8.6e−3, 2.8-fold), and integrin pathways (FET p = 2.5e−2, 3.8-
fold) in the DEG signature in the MOCK DOCK5-ko cells in
comparison with the MOCK wildtype cells (Tables S14 and S15).
Similarly, enriched pathways can be observed in the case of

Table 3. The top ranked consensus modules based on the enrichment of various differentially expressed gene sets

Module Consensus size GO.BP.term Function

Turquoise 7 689 viral reproduction Influenza life cycle

Plum 1 668 mitochondrial RNA metabolic process A6b1 and A6b4 integrin pathway

Gray16 1 800 organelle organization AURORA A pathway

Coral 1 1297 organelle organization Telomerase pathway

Green2 1 644 single-organism cellular process MAPK targets nuclear events mediated by MAP kinases

Darkgoldenrod3 1 340 negative regulation of intrinsic apoptotic
signaling pathway

p38 gamma delta pathway

Darkorchid3 1 297 lipid metabolic process TAP63 pathway

Gray14 1 330 NK T cell proliferation Golgi associated vesicle biogenesis

Cornsilk4 1 209 transcription, DNA-dependent Generic transcription pathway

Cyan 1 666 regulation of timing of cell differentiation Developmental biology

Firebrick 1 265 ventricular zone neuroblast division RNA degradation

Darkseagreen1 1 320 hydrogen peroxide catabolic process Activation of the mRNA upon binding of the cap binding complex
and eIFs and subsequent binding to 43S

Black 1 654 response to external stimulus Acyl chain remodelling of pc
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infection (Tables S16–S18). During infection, pathways that are up-
regulated by the knockout of DOCK5 involve carbohydrate
metabolism (FET p = 3.3e−4, 1.5-fold), in particular aminoglycan
processes (FET p = 2.4e−3, 2.2-fold), lysosome functions (FET p =
5.8e−3, 2.1-fold), and phospholipid metabolism (FET p = 2.0e−2,
1.9-fold). Whereas down-regulated pathways in DOCK5-ko condi-
tions compared to DOCK5-wt include cell adhesion (FET p = 1.0e
−6, 1.6-fold), extracellular matrix receptor interaction (FET p = 9.4e
−6, 2.8-fold), and integrin pathways (FET p = 3.0e−3, 2.5-fold). After
removing genes responding to MOCK infection from the DOCK5-
ko DEG signatures in the case of infection, we performed
enrichment tests of functional pathways. DOCK5 knockout induces
downregulation of cell adhesion (FET p = 2.7e−13, 1.7-fold), GPCR
ligand binding (FET p = 6.1e−9, 2.2-fold), GPCR signaling (FET p =
5.2e−7, 1.9-fold), and extracellular matrix receptor interaction (FET
p = 2.8e−6, 2.7-fold). However, no pathways were enriched in the
case of upregulated genes by DOCK5-ko (Tables S19 and S20).
Figure 4c shows the highly significant overlap among these

DEG signatures of DOCK5-ko (Tables S21 and S22 for details). The
genes up-regulated by DOCK5-ko in both H1N1 and H3N2
infections are enriched for enzyme linked receptor protein
signaling, cell communication, cell adhesion, and cell migration
pathways; whereas the down-regulated genes are involved in

single-multicellular organism process, generic transcription, and
integrin pathways. Given the highly significant overlap between
these DEG signatures under the H1N1 and H3N2 infections, we
focus on the signature observed under H3N2 infection although
results for all DEG signatures are presented in the supplementary
documents. The 2863 up-regulated genes induced by DOCK5-ko
under the H3N2 infection are termed sgDOCK5-DEG+, while the
4512 down-regulated genes are called sgDOCK5-DEG.
The striking conservation of the expression of hnRNPs and

SYNCRIP across 11 studies suggests that splicing is a significant
process during influenza infection. To further investigate this
process, we evaluated differential exon splicing and exon usage
based on the RNAseq data from the samples in the DOCK5-ko
experiments. The number of genes that displayed differential exon
usage ranges between 13 and 2851, depending on the specific
scenario (Table S23). Among all the different scenarios, the
cysteinyl-tRNA synthetase 2 (CARS), glucosyltransferase ALG5, and
non-imprinted in Prader-Willi/Angelman Syndrome 1 (NIPA1)
showed the most significant different exon usage. There are 137
exon variants in a collagen gene COL7A1, 118 exon variants in
high density lipoprotein binding protein (HDLBP), and 112 exon
variants in microtubule-actin crosslinking factor 1 (MACF1).
COL7A1 is responsible for anchoring epithelial cells to the stroma,

Fig. 3 Expression profiles of DOCK5 in 12 data sets. The time-series responses of DOCK5 in the 12 data sets are shown together with the
adjusted p-value after ANOVA time series analysis and significant trend after Jonckheere trend analysis. DOCK5 can be observed to be
significantly up-regulated in 1 and down-regulated in 5 data sets - “Significant” is defined to be statistically significant after Jonckheere test
and requiring an overall fold change of 1.2 or greater between measurements at time t = 0 day and the last time-point in the time-series
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HDLBP is known to support cell proliferation, and MACF1 couples
the microtubule network to cellular functions. Despite a small
snapshot, these three top-ranked genes do suggest a role for
DOCK5 in cytokinesis. In the MOCK infection, genes and
corresponding pathways relevant for splicing are subject to
differential splicing/exon usage (Table S24). H3N2 infection
induces differential exon usage in pathways responsible for
cellular macromolecular metabolic processes, i.e., protein mod-
ification/protein phosphorylation/signaling as well as regulation of
apoptosis (Tables S25 and S26). A weaker, but nevertheless
significant, differential exon usage can be observed during H1N1
infection with respect to viral process pathways and pathways
responsible for virus-induced modulation of host morphology and
physiology (not shown).

Validation of the DOCK5-centered network
We validated the previously identified consensus modules and
DOCK5-centered networks (DOCK5-CCGS(n)) by the DEG signa-
tures identified from the DOCK5 knockout experiments (sgDOCK5-
DEGS) to achieve an in-depth understanding of the biological
functions of DOCK5 (Fig. 6). This analysis was done for the DEG
signatures from 15 configurations (Fig. S5 and S6; Table S27) a
detailed discussion was included in the Supplemental Information.
Among 282 consensus modules, 5 are significantly enriched for
the genes up-regulated or down-regulated by DOCK5 during
MOCK infection, 27 for the genes upregulated by DOCK5 knockout
during H1N1 infection, 31 for the genes upregulated by DOCK5
knockout during H3N2 infection, 7 for the genes down-regulated
by DOCK5 knockout during H1N1 infection, and 16 for the genes

Fig. 4 Effect of DOCK5 knockout on the replication of influenza virus in A549 cells. H1N1 virus (a) and H3N2 (b) virus were inoculated at MOI of
0.0005 TCID50/cell and 0.005 TCID50/cell, respectively, at day 0. The replication of the virus in the wild type and DOCK5 knockout A549 cells was
determined by titration of the culture supernatants over 3 days using a TCID50 assay. Error bars represent standard deviation (SD). c
Intersections among six selected DOCK5-ko DEG signatures are shown. The matrix of solid and empty circles at the bottom illustrates the
“presence” (solid green) or “absence” (empty) of the gene sets in each intersection. The numbers to the right of the matrix are set sizes. The
colored bars on the top of the matrix represent the intersection sizes with the color intensity showing the p-value significance. The
intersections are ordered by p-values of the super exact test. The corresponding function for each gene set was also shown at the bottom and
on the right hand-side of the matrix
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down-regulated by DOCK5 knockout during H3N2 infection.
Eleven of the top 13 modules in Table 3 are significantly enriched
for sgDOCK5-DEGS. These modules have different functions, such
as viral reproduction, single organism cellular process, and
organelle organization, indicating that DOCK5 regulates a diversity
of biological processes during IAV infection.
Highly significant overlap among DOCK5-CCGS(7), SRGs(7), JTGs

(7), and sgDOCK5-DEG+ by the Super Exact Test (SET)46 strongly
validated our predicted centered network, as shown in Fig. 7 (see
also Fig. S4 and S7). The intersection of DOCK5-CCGS(7), SRGs(7),
and sgDOCK5-DEG+ includes 24 interferon-stimulated genes, i.e.
ISGs (Table S28). Among the 24 genes, only ISG20, IL6, and STAT1
are predominantly up-regulated across the data sets while all
other genes are either up-regulated or down-regulated in
comparable numbers of data sets. ISG20, an antiviral ribonuclease
required for viral replication,47 shows a large difference in
expression between the DOCK5-wt cells and DOCK5-ko cells.
ISG20 was up-regulated by over 8-fold 2 days post-infection. In the
DOCK5-ko cells, the expression of ISG20 increased to over 20-fold
2 days after post-infection.
Although DOCK5-CCGS(7) is not significantly enriched for

sgDOCK5-DEG− (i.e., genes that are downregulated in DOCK5-ko
compared to DOCK5-wt under the H3N2 virus infection), the genes
in their intersection are involved in regulation of transcription and
phosphate metabolic processes. Some of the most conserved up-
regulated genes are in the overlap between DOCK5-CCGS(7) and
sgDOCK5-DEG- and they include the vesicle associated membrane
protein 5 (VAMP5), as well as cytokines. VAMP5 is a member of the
VAMP/synaptobrevin family and the SNARE superfamily, and may
participate in vesicle trafficking events potentially (indirectly)
controlled by DOCK5. VAMP5 is significantly upregulated in
DOCK5-wt cells. Under DOCK5-ko conditions, upregulation of
VAMP5 is significantly reduced. Furthermore, VAMP5 is a curated
target of the JUN transcription factor. Thus, VAMP5 expression
could be potentially modulated by JUN, alternatively under direct
control of DOCK5. The observed restriction of up-regulation in the
DOCK5-ko cells compared to the wild type may indicate a decline
in host defense response. As a functional DOCK5 is absent in
DOCK5-ko, so are the DOCK5-dependent processes during
influenza infection. Therefore expression of the predominately
host defense genes (such as CXCL11, IRF7, or JUN) may no longer
be required at a high transcriptional level. According to the
ENCODE data, JUN, as a transcription factor, could potentially

regulate DOCK5.48 In the RNAseq experiments, JUN itself is up-
regulated in DOCK5-wt and not in the DOCK5-ko cells. Data from
the library of integrated network-based cellular signatures (LINCS,
see Supplemental Information for details) indicates a feedback
between JUN and DOCK5, with JUN down-regulating DOCK5 as
transcription factor and DOCK5 (indirectly) activating JUN.
The overlap between DOCK5-CCGS(7) and the sgDOCK5-DEGs

consists of genes such as TGOLN2. As discussed above, TGOLN2 is
significantly correlated with DOCK5 in 11 out of 12 data sets. The
genes correlated with TGOLN2 within the DOCK5 neighborhood
include golgins such as GOLGA2, GOLGA4, GOLGB1, GLG1, and
GOLPH3. Proteomic analysis shows that GLG1 binds to the
influenza virus PB1-F2 protein49 though the consensus siRNA
screening result indicates it does not function as a host factor
during the influenza virus life cycle.50 The intersection of DOCK5-
CCGS(7) and the sgDOCK5-DEG+ also includes AP1S1, which is part
of the clathrin coat assembly complex linking clathrin to receptors
in coated vesicles. These vesicles are involved in endocytosis and
Golgi processing. The DOCK5 network neighbors also include a
member of the lysosomal ATPases (ATP6V1A) and COPG2, one of
the 7 subunits of the coatomer 1 vesicular transport complex
(COPI). The lysosomal (or vacuolar) ATPase complex was suspected
to be required for influenza vesicle entry.14 A similar assessment
has been made for COPI. Presumably, DOCK5 utilizes COPG2 as an
entry point for COPI modulation.
Another process potentially modulated by DOCK5, is mRNA

processing, in particular splicing. Prominent members of the
spliceosome include hnRNPA1, hnRNPD, and SYNCRIP that are all
commonly expressed as SRGs in almost all data sets, as discussed
above. These 3 genes are correlated with DOCK5 in at least 8 data
sets. SYNCRIP is a host factor that was shown to be involved in
hepatitis C virus RNA replication,31 and required by the HCV IRES
for translation-competent 48S complex formation.32 It was also
previously found to be associated with immune functions.33 Other
genes in the intersection between DOCK5-CCGS(7) and sgDOCK5-
DEG+ are the Influenza virus NS1 binding protein (NS1BP,
IVNS1ABP, or hnRNP-I) and splicing factors 3 (SF3A1, SF3A3, and
SF3B1). NS1BP is a required viral host factor relevant for pre-mRNA
processing, mRNA metabolism, and transport.5 It is also a key
mediator of IAV gene expression, in particular viral RNA splicing.51

Furthermore, NS1BP modulates tumor suppressor, and potential
host defense gene sirtuin 3 (SIRT3), which is down-regulated
during infection in 9/12 data sets (with no significant directional
change in expression in the remaining 3 data sets). The exosome
component 6 (EXOSC6) is another member in the overlap that is
differentially expressed in 9/12 data sets and significantly
correlated with DOCK5 in 10/12 data sets. The exosome controls
alternative splicing by mediating the gene expression and
assembly of the spliceosome complex.52 EXOSC6, hnRNPs, NS1BP,
and the splicing factors form a tight sub-network within DOCK5-
CCGS(7). Nuclear pore proteins assemble an additional class of
genes that are required for splicing/mRNA processing, as they are
responsible for the transport of vRNPs into the nucleus. Our data
show that NUP35, NUP50, NUP93, NUP133, and NUP210 are
correlated with DOCK5.
The potential overall effect of DOCK5-ko on general cellular

functions such as splicing has been evaluated by analyzing
functional processes of the corresponding DEGs between the
relative expression in DOCK5-wt vs. DOCK5-ko during H1N1/H3N2
infections, and the relative expression in DOCK5-wt vs. DOCK5-ko
during MOCK infections (Tables S29 and S30). Disregarding
directional DEG responses, functional processes involve multi-
cellular organismal processes, extracellular matrix and structure
organization, cell adhesion, and cell–cell signaling.
Pathways that are up-regulated in the DOCK5-wt scenario, i.e.,

pathways that we have identified to require DOCK5 functionality,
involve extracellular matrix receptor interaction, GPCR ligand
binding, and unfolded protein response. Whereas, pathways that

Fig. 5 Distribution of influenza host factors after siRNA screens. A
set of 254 siRNA-based host-factors5,21 have been used to assess
their effect on the influenza virus life cycle. Corresponding Z-scores
have been scaled and combined. Host-factors with the lowest Z-
scores, e.g., NXF1, induce most severe effect on viral replication after
siRNA knock-down
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are down-regulated, i.e., activated pathways after DOCK5-ko, are
cellular glucuronidation, fibroblast apoptotic process, and cellular
response to xenobiotic stimulus. These enriched functions may
indicate a potential breakdown of cellular integrity due to lack of
DOCK5 functionality. Although such a breakdown of cellular
integrity can also be caused by viral infection and induced cell
death, we are confident that such a scenario and the potential
influence on the identified role of DOCK5 can be excluded. First,
validation experiments and data sets with intermediate to high
multiplicity of infections (MOIs) were used, the latter well
controlled due to the consensus approach. Second, the identified
effects between DOCK5 and target genes are correlation-based
and the causal role of DOCK5 in this process has been identified in
combination with the DOCK5-ko experiments, as described. A
simple difference in proliferation/cell death would not display

such a causal pattern with DOCK5 as center. Furthermore,
pathways relevant for apoptotic processes have been observed
in DOCK5-CCGS(7) as discussed above, but not in overall
significantly expressed genes, such as SRGs(7) or JTGs(7) (see
Table S7). Also, apoptotic pathways were only identified as being
significantly expressed between DOCK5-wt and DOCK5-ko scenar-
ios (Tables S29 and S30). Thus, the causal role of DOCK5 in these
processes can be established and potential effects caused by
virus-induced cell death ruled out.
Given the information on differential exon splicing/usage from

the DOCK5-ko RNAseq data, genes and processes that show
differential splicing effects induced by DOCK5 were further
investigated. We specifically evaluated the overlap between
DOCK5-induced differentially spliced genes and the DOCK5
network neighborhood (Table S31). DOCK5-CCGS(7) is most

Fig. 6 Validation of DOCK5 centered gene co-expression networks (DOCK5-CCGS) by the gene signatures (sgDOCK5-DEGS) identified from the
DOCK5 knockout experiments. a The enrichment of the DOCK5 centered network for the differentially expressed gene sets induced by the
knockout of DOCK5 under H1N1, H3N2, and MOCK infections. The x-axis shows the DOCK5-centered co-expression network DOCK5-CCGS(n)
conserved in at least n data sets, n= 2,3,…,12. The y-axis indicates the—log10 of corrected FET p-values. Boxed labels show corresponding
fold-changes. b A subnetwork of DOCK5-CCGS(7), i.e., the genes correlated with DOCK5 in at least 7 data sets shows the genes shared by
DOCK5-CCGS(7), DOCK5’s knockout signature (sgDOCK5-DEG+) and the union of the consensus differential expression gene signature SRGs(7)
and the consensus down-regulated gene signature JTGsdown(7). The selected nodes are up-regulated by DOCK5 in either the H1N1 or H3N2
infection. The left and right color sectors in each node indicate whether it was differentially expressed in H1N1 infection (blue for significant
differential expression and grey for non-significant one) and H3N2 infection (cyan for significant differential expression and grey for non-
significant one), respectively
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significantly enriched for the gene set of differential exon usage
after H3N2 infection (FET p = 1.43e−119, 2.0-fold) and their overlap
is associated with protein modification, signal transduction,
regulation of localization, adherence junction, and regulation of
the SMAD2/3/4 transcriptional activity (Tables S32 and S33). In
particular, the overlap is enriched for influenza virus host factors,5

indicating that DOCK5 may be required for the regulation of
mRNA processing and splicing of genes relevant for the influenza
life cycle. We further explored if and how gene splicing affected by
influenza infection differs from gene splicing potentially induced
by DOCK5-modulated splicing processes. Differential splicing
between influenza-infected and mock-infected cells were com-
pared with or without the perturbation of DOCK5. DOCK5-CCGS(7)
is enriched for the differentially spliced gene signatures (WT: H3N2
vs Mock, FET p = 1.1e−24, 2.2-fold change; DOCK5-ko: H3N2 vs.
Mock, FET p = 5.8e−9, 2.0-fold change), the intersections are not
enriched for influenza host factor signatures or the inflammasome.
Furthermore, none of the original differentially spliced gene sets
show any significant overlap with influenza host factor genes or
inflammasome genes. Therefore, DOCK5 is likely to be required for
proper splicing, in particular of host genes relevant for the
influenza life cycle.
In order to verify the role of DOCK5 in modulating key cellular

processes predicted by the network analysis and confirmed by the
RNAseq data, we further measured mRNA levels of highly
responding genes in DOCK5-CCGS(7) using real-time quantitative
PCR (RT-qPCR). The genes were selected based on the transcrip-
tome sequencing data (requiring strong transcriptional response,
i.e., significant difference between DOCK5-wt and DOCK5-ko cells)
and network analyses. These genes include upstream transcription
factor JUN that may influence DOCK5 expression and two potential
downstream targets of DOCK5 (ISG20 and VAMP5) representing
examples of DOCK5-mediated processes such as immune system
quenching (ISG20/JUN) and vesicle transport (VAMP5). Their
expression profiles are similar to the DOCK5-c28 transcriptome
data, but significantly different from that in the wild type A549

cells (Fig. 8). For ISG20, its upregulated expression during both
H1N1 and H3N2 influenza infection in mRNA level was signifi-
cantly enhanced in DOCK5-ko cells compared to DOCK5-wt cells
(Fig. 8a, b). At day 1, neither ISG20 nor JUN showed significant
difference between DOCK5-wt and DOCK5-ko cells during the
infections but VAMP5 was already significantly down-regulated by
DOCK5-ko (H1N1: p = 0.0056, 0.1-fold change; H3N2: p = 0.0020,
0.19-fold change). At day 2, ISG20 was significantly up-regulated
by DOCK5-ko (H1N1: p = 0.03, 1.8-fold change; H3N2: p = 0.0013,
2.5-fold change; Fig. 8a, b) while JUN and VAMP5 were down-
regulated by DOCK5-ko during IAV infection (Fig. 8c–f). Specifically,
at day 2, JUN expression was down by about 70% (H1N1: p = 0.045,
0.35-fold change; H3N2: p = 0.076, 0.27-fold change) and VAMP5
was down by about 90% (H1N1: p = 0.0038, 0.087-fold change;
H3N2: p = 0.0046, 0.10-fold change) in DOCK5-ko cells compared
to DOCK5-wt cells.
We have further evaluated the potential effect of influenza

proteins on DOCK5 and identified cellular functions relevant for
the influenza life cycle. For this purpose, we used experimentally
obtained protein–protein interaction data of influenza protein
interactions with host factors. Durmuş and Ülgen assembled
pathogen–host interactions of 11 DNA virus families and 15 RNA
virus families, including influenza.53 We extracted the influenza A
specific network consisting of 11 influenza proteins and 1621
host factors. Significant overlap between human host factors
interacting with 9 viral proteins and 231 targets in DOCK5-CCGS(7)
were observed (Fig. S8 and Table S34). Among the most
significantly enriched overlap, with fold enrichment of 2 or higher,
are human host factors interacting with influenza proteins
HA, M1, M2, NA, and NP. Although primary functions of the
corresponding intersections are according to the processes
modulated by the specific viral protein (e.g., the M1 protein and
early phase of viral life cycle function, or ribonucleoprotein
complex assembly and RNA transport with respect to NP), a
majority of the functions involve mRNA processing and splicing
(Tables S35 and S36). Other functions involve viral process,

Fig. 7 Intersections amongst DOCK5-CCGS(7), SRGs(7), JTGsup(7), JTGsdown(7) and sgDOCK5-DEG+ by Super Exact Test. The bar chart plot shows
the combinations of the five gene sets with non-empty intersections. The matrix of solid and empty circles at the bottom illustrates the
“presence” (solid green) or “absence” (empty) of the gene sets in each intersection. The numbers to the right of the matrix are set sizes. The
colored bars on the top of the matrix represent the intersection sizes with the color intensity showing the p-value significance. The
intersections are ordered by p-values of the super exact test
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the proteasome, and protein localization and transport. The latter
processes are indicated by host factors interacting with the
viral M2 and NS1 proteins. Thus, these findings validate the
significant impact of DOCK5 on the genes discussed and
corresponding pathways.

DISCUSSION
In this study, we systematically analyzed a large amount of gene
expression data from 12 molecular studies of influenza infection
covering MOIs between 0.1 and 5 (median 2.5, see Table 1). We
first identified differentially expressed genes using ANOVA and

Fig. 8 Validation of the changes of expression of DOCK5 key targets under different scenarios as combinations of the DOCK5 perturbations
(DOCK5-wt and DOCK5-ko) and virus infections (H1N1 and H3N2 infections) by RT-qPCR at day 1 and day 2 post infection. The expression of
ISG20 (a, b), JUN (c, d) and VAMP5 (e, f) was measured by RT-qPCR during H1N1 (a, c, e) and H3N2 (b, d, f) infections. Difference in expression of
each gene between DOCK5-wildtype (WT) and DOCK5-ko (DOCK5) during either H1N1 or H3N2 infection was assessed by t-test. Significant
differences were indicated by *(p< 0.05), **(p< 0.01) and ***(p< 0.005)
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then derived robust consensus DEG signatures across multiple
studies. Many of those DEGs have been known to play essential
roles during influenza infections. By employing non-parametric
Jonckheere trend analysis we identified significant up-regulated
and down-regulated genes required for viral replication or
activated as a host defense. Type I interferon signaling and the
up-regulation of interferon stimulated genes or ISGs, such as MX1,
IFITM, IRF7, and OAS, among other ISGs, are well conserved across
all 12 studies. On the other hand, down-regulated genes are
associated with small molecule/lipid metabolic processes and
localization. The heterogeneous nuclear ribonucleoprotein A1
(hnRNPA1) is the highest ranked gene significantly expressed in all
12 data sets and predominantly down-regulated. Together with
splicing factor 2 (SF2), it regulates alternative splicing of interferon
regulator factor-3 (IRF3).28 Mediated by transportin 1 (TNPO1),29

hnRNPA1 shuttles between the nucleus and the cytosol.30 Other
highly ranked members of the hnRNP family involve the related
hnRNPD and the synaptotagmin binding cytoplasmic RNA
interacting protein (SYNCRIP), both significantly expressed in 11
data sets.
To further understand the co-regulation among the genes in

response to influenza infection, we performed gene co-expression
analysis to identify 1191 modules from 12 studies, which were
further used to derive 282 consensus co-expression modules.
These consensus modules have functions from viral reproduction
to RIG-I signaling and Golgi associated vesicle biogenesis. We
formally rank-ordered the 282 consensus modules by their

enrichment for the ANOA and Jonckheere Trend analysis-based
DEG signatures derived from the individual studies. Two members
of the top-ranked module, MDM2 and DOCK5, are most connected
across all 12 co-expression networks and they were predicted to
be the top drivers of the gene networks and potential host factors
for influenza infection. We sought to comprehensively examine
the role of DOCK5 during influenza infection. We explicitly
constructed DOCK5-centered networks, which capture many
known processes and host factors for influenza infection,
including the ER-nucleus signaling, response to ER stress, RNA
localization, Golgi vesicle transport, viral process, modulation by
virus of host morphology and RNA splicing, as well as the cellular
protein metabolic process. We validated experimentally DOCK5
and its co-regulated networks. DOCK5 was knocked out in human
lung epithelial A549 cell lines and virus replication was compared
to that in the wild type parental A549 cell lines. The influenza
viruses replicated to significantly lower titers in DOCK5-ko cells
than in the parental A549 cell line indicating impairment of viral
replication without functional DOCK5. We also characterized the
transcriptional program regulated by DOCK5 by sequencing mRNA
from infected and uninfected wild type and DOCK5-ko cells. Our
network approach, combined with knockout data and compara-
tive analysis between different genetic and infection scenarios,
validates the causal role—be direct or indirect—of DOCK5 in these
processes. Three genes, ISG20, JUN, and VAMP5, were selected and
their expression re-validated by RT-qPCR. The co-regulatory
network was validated by the DEG signatures identified from

Fig. 9 DOCK5 is a key regulator for splicing and transport. Virus entry and initial transport to the nucleus is shown with regulatory links to the
spliceosome, intracellular trafficking, and control of budding. In particular, CD81 potentially controls both entry/initial transport as well as
budding. DOCK5 causally influences the V-type ATPases and CLINT1 with respect to transport, as well as NS1BP, potentially for splicing. As a RAC
specific GEF, DOCK5 transduces signals for cytoskeleton rearrangement as a host defense response against IAV infection. DOCK5 also down-
regulates splicing by directly modulating hnRNPA1, NS1BP, and SYNCRIP as well as SF3A1/SF3B1 and DHX36, in addition to down-regulation of
NUP93 and NUP210. Blue colored nodes are down-regulated by DOCK5. Green nodes are in the DOCK5-CCGS(7) neighborhood but not causally
controlled by DOCK5. Closely spaced nodes indicate protein–protein interaction, black solid lines are material transport, blue dashed lines
indicate DOCK5 induced gene regulation, solid red lines denote induced functions based on published studies (see text)
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the DOCK5 knockout experiments to achieve an in-depth under-
standing of the biological functions of DOCK5. Our results
demonstrate that DOCK5 is a host factor that is potentially
required for viral replication in cell culture. We further demon-
strated by our coexpression network analysis approach that
DOCK5 not only modulates processes that are important for the
IAV life cycle but also potentially subverts the host defense
response by directly compromising key defense genes, or by
indirectly affecting cellular factors required for host defense.
In particular, we have identified three key processes in the

centered network: (i) vesicle transport, (ii) pre-mRNA processing,
and (iii) host defense. Figure 9 shows an overview of cellular
processes, in particular vesicle trafficking and splicing, controlled
by DOCK5. Cellular transport and viral trafficking are essential
processes during the viral life cycle and the data suggest that
DOCK5 could modulate influenza virus trafficking within the cell.
DOCK5 also potentially influences gene regulation of trafficking-
relevant genes. The trans-Golgi network protein 2 (TGOLN2),
golgins, and the Golgi phosphoprotein 3 display highly conserved
interactions between each other as well as with DOCK5 (Fig. 9 rhs/
”Budding”). Additional vesicle trafficking-associated genes, such as
VAMP5, are highly up-regulated during IAV infection. VAMP5 may
function together with TGOLN2 in the trans-Golgi complex (Fig. 9
rhs/”Budding”) though VAMP5 does not mediate vesicle fusion
with plasma membrane t-SNAREs.54 Loss of DOCK5 significantly
decreases VAMP5 expression, indicating the importance of DOCK5
for these cellular processes.
Other genes, such as a member of the adaptor protein complex

1 (AP1S2), which mediates the recruitment of clathrin to the Golgi
complex, as well as the V-type ATPases, relevant for acidification
and fusion of the cellular compartments, seem to be transcrip-
tionally controlled by DOCK5. Together with COPG2, another
cellular player for early processes during the influenza life cycle
(i.e., uncoating and fusion, which is mediated by viral hemagglu-
tinin, HA), as well as budding, DOCK5 potentially modulates these
first steps of IAV entry via AP1S1, ATP6V1A, and COPG2 (Fig. 9 lhs/
”Entry”). DOCK5 may function in a regulatory feedback loop
between COPI and NS1BP. Another potential regulatory depen-
dency was observed between transcription factor JUN and DOCK5.
According to LINCS data, JUN down-regulates DOCK5. Conversely,
JUN expression is significantly reduced under DOCK5-ko condi-
tions, indicating an (indirect) activation by DOCK5 and the
potential existence of a feedback loop.
The spliceosome, which is responsible for mRNA processing and

NS1BP in particular, is another target that is most likely modulated
by DOCK5. NS1BP binds to the predominantly cytosolic SYNCRIP,
which itself is a member of the heterogeneous nuclear
ribonucleoproteins. Other members of this complex, which are
all controlled by DOCK5, are hnRNFA1, hnRNPA3, hnRNPD, hnRNPR,
and hnRNPU, together with the splicing factor 3 components
SF3A1, SF3A2, and SF3B1 (Fig. 9 center/”Spliceosome”). DOCK5
seems to be required for the proper function of the splicing
machinery, by potentially mediating transport of splicing factors
(via KPNA4 and TNPO1), such as hnRNPA1 between the cytoplasm
and the nucleus, or by directly modulating alternative splicing
responsible genes, such as EXOSC6 and DDX17. Required influenza
host factors, such as splicing genes (PTBP1 and SF3A1, nuclear pore
protein NUP98) as well as trafficking genes, are differentially
spliced by DOCK5 induction. Compared to the modulation of
mRNA processing and splicing induced by NS1, DOCK5 seems to
be required for splicing of genes relevant for the influenza life
cycle.
Although not the predominant function, DOCK5 may be

responsible for inhibiting specific host defense mechanisms to
promote viral replication. We were able to identify 2 host defense
processes that were up-regulated by DOCK5—the interferon-
induced gene ISG20 and cytokine NAMPT.

Availability of data from different cell lines and IAV strains, with
different multiplicity of infection scenarios, allowed us to use a
consensus approach at all levels of our multi-scale analysis,
including capturing a consensus environment. This facilitated the
discovery of universal processes that are essential during IAV
infection. Thus, overall evidence indicates that DOCK5 plays an
important role in the gene-regulatory networks that potentially
modulate host processes required for influenza infection by
regulating intra-cellular trafficking and splicing, as well as
subverting host defenses.
By combining an integrative network approach, a state-of-the-

art gene knockout technique, and RNAseq data, this study
uncovered and validated fundamental patterns of molecular
responses, intrinsic structures of gene co-regulation, and novel
key targets in influenza virus infection. Our findings pave a way for
further functional investigations to identify novel therapeutic
targets against influenza infection.

METHODS
A brief description of key methods and sample description is provided
below, whereas complete details are discussed in the supplement.

Modulation of virus growth and validation
To abolish the expression of functional DOCK5 proteins in A549 cells, the
CRISPR/Cas9 genome editing system was used to introduce frameshift
deletions into the DOCK5 coding region of A549 cells. Briefly, CRISPR
sgRNA was designed using the CRISPR Design tool45 and two pairs of oligo
nucleotides (pair 1: 5′-CACCGTATGGCCCACGCGGACAATC-3′ and 5′-AAAC-
GATTGTCCGCGTGGGCCATAC-3′; pair 2: 5′-CACCGGATAAATCGGAGCGAG-
CATT-3′ and 5′-AAACAATGCTCGCTCCGATTTATCC-3′) were selected,
synthesized, individually annealed, and ligated into the pSpCas9(BB)-2A-
Puro (PX459) V2.0 vector, following established protocols.45 The resultant
plasmids pBZ321A6 and pBZ322A5 were transfected into human lung
epithelial A549 cells. After puromycin selection, cells were cloned and
sequenced to identify the ones with desired frameshift deletions. Four
DOCK5-ko A549 clones (DOCK5-c20, c25, c28, and c41) were expanded by
culture and compared to the wild type A549 (A549-WT) for their capacity
to support the replication of influenza A virus strains.
To compare the replication kinetics of the influenza A virus in A549-wt

and A549-DOCK5-ko cells, cells were seeded into 12-well plates to
approximately 80% confluency (~2 × 105 cells/well) at the time of infection.
A/Puerto Rico/8/1934 (H1N1) and A/New York/238/2005 (H3N2) viruses
were inoculated into the cells at MOI of 0.0005 (100 TCID50/well) and MOI
of 0.005 (1000 TCID50/well), respectively. The supernatants were collected
at days 1, 2, and 3 post-infection and titrated by TCID50 assay using MDCK
cells. The inoculum was also back-titrated and the titer was used to
represent the day 0 titer (Fig. 4). The medium for culture of the wild type
and knockout A549 cells was F12K supplemented with 10% FBS and the
medium for virus infection was MEM supplemented with 1% anti–anti
(Thermo Fisher Scientific), 0.15% BSA fraction V (Thermo Fisher Scientific),
and 1 μg/ml tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-trypsin
(Worthington, Lakewood, NJ). Three biological replicates were tested at
each time point for each genotype, resulting in a total of 24 samples per
each of the two viruses. A power analysis based on Cohen’s effect size
estimate55 indicates that our experimental design will allow a ~80% power
to detect an effect size of larger than 0.6 in viral production rate difference
between DOCK5 KO and wild-type.
A representative A549-DOCK5-ko clone, DOCK5-c28, was selected to

determine the effects of DOCK5 knockout on global gene expression upon
influenza virus infection. A549-WT and A549-DOCK5-c28 cells were each
infected at MOI of 0.5 TCID50/cell of the PR8 (H1N1) virus, the A/New York/
238/2015 (H3N2) virus, or Mock infected. Cells were harvested at 1 and
2 days post infection; total cellular RNA was extracted, and genomic DNA
removed by DNase treatment. The frameshift deletion in the DOCK5-c28
clone compared to the DOCK5-wt is shown in Fig. S9.

Analysis of RNA sequencing data
Single-ended RNA-seq data was generated using the Illumina HiSeq 2500
platform. The sequencing reads were aligned to the human hg19 genome
using star aligner (version 2.5.0b). Following read alignment,
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featureCounts56 was used to quantify gene expression at the gene and
exon levels based on Ensembl gene model GRCh37.70. Genes with at least
1 count per million (CPM) reads in at least one sample were considered
expressed, otherwise absent and hence discarded. The gene level read
counts data was normalized,57 multi-dimensional scaling, and cluster
analysis were performed to check for potential sample outliers.

Quantification of gene expression (RT-qPCR)
Wild type A549 and DOCK5-ko clones (c20, c25, c28, and c41) were infected
as described above, and extracted RNA was used as a template for RT-
qPCR. The RT-qPCR was performed using the TaqMan® RNA-to-Ct™ 1-Step
Kit and the TaqMan® Gene Expression Assays (Thermo Fisher Scientific,
Inc.). The assay IDs are Hs01103582_s1 for JUN, Hs01105383_g1 for VAMP5,
Hs00158122_m1 for ISG20, Hs00353740 and Hs99999905_m1 for NR3C1,
Hs00227848_m1 for DOCK5, and Hs00213893_m1 for WBSCR22. GAPDH
was used as an internal control for the quantification because its level is
unchanged upon virus infection. The 2−ΔΔCT method was used to analyze
the relative changes in gene expression.58

Data sets and sample processing
We compiled from GEO 8 microarray expression profiles (Table 1) of
human cell cultures infected with different IAV subtypes and strains
yielding 12 distinct data sets. We subjected the expression data to log2
transformation and quantile normalization.

Identification of differentially expressed genes
We used three distinct methods to identify differentially expressed genes.
The t-test was used to identify differentially expressed genes (DEGs)
between case and control. We used one-way ANOVA to determine
significantly responding genes (SRGs) depending on time post infection as
a single independent factor. Multi-factorial analysis of temporal expression
data between wildtype and DOCK5-ko genotypes were performed by a
hierarchical linear model (hLM) after Limma.59 Significantly up-regulated
and down-regulated genes depending on time post infection were
identified by the non-parametric Jonckheere trend analysis.25

Gene co-expression network analysis
We performed weighted gene co-expression network analysis (WGCNA) to
identify 1191 modules of highly co-expressed genes from the assembled
12 data sets. Using the Jaccard-Needham dissimilarity measure for
assessing module–module similarity and the hierarchical clustering
analysis, the 1191 modules were further grouped into 282 clusters, i.e.,
consensus modules.

Co-expression modules and consensus modules (CMs)
We performed WGCNA17,18 to identify 1191 modules of highly co-
regulated genes from the assembled 12 data sets. We further identified
consensus modules conserved across multiple data sets based on the
hierarchical clustering analysis of using the Jaccard-Needham dissimilarity
matrix for the 1191 modules.
The total relevance of each consensus module to influenza infection was

calculated by summarizing the enrichment of the DEG signatures:
Gj ¼

Q
i gji , where, gji is the relevance of a consensus j to a signature i.

gji is defined as maxj rji
� �þ 1� rji

� �
=
P

j rji , where rji is the ranking order of
the significance level of the overlap between the consensus module j and
the signature i.

Enrichment analysis and internal verification of data
To functionally annotate gene signatures and gene modules identified in
this study, we performed enrichment analysis of the established pathways
and signatures including the gene ontology (GO) categories and MSigDB,
and the subject area specific gene sets including influenza host factors,
inflammasome, interferome, and InnateDB.

Data availability statement
Analytic results are available in a large number of supplementary tables. All
raw RNA-sequencing data (single FASTQ files) as well as the processed
CPM matrix from this study have been deposited into the Gene Expression
Omnibus (GEO) under Accession Number GSE104168.

Code availability
The R code and the R package WINA for the coexpression network analysis
are available at doi:10.7303/syn7221264.2.
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