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ABSTRACT: A tandem relay catalytic protocol using both Pd
and isothiourea catalysis has been developed for the
enantioselective synthesis of @-amino acid derivatives contain-
ing two stereogenic centers from readily accessible N,N-
disubstituted glycine aryl esters and allylic phosphates. The

A" 0pP(0)(0EY),

o R

k/’l‘ 2 o Ar = Pd/Isothiourea
PNPO R 2 relay catalysis
+ AN PNPO)J\/\/ y y:

Allylic substitution =
R N~ R2

m Up to >95:5dr
and >99:1 er

[2,3]-rearrangement

optimized process uses a bench-stable succinimide-based Pd precatalyst (FurCat) to promote Pd-catalyzed allylic ammonium salt
generation from the allylic phosphate and the glycine aryl ester. Subsequent in situ enantioselective [2,3]-sigmatropic
rearrangement catalyzed by the isothiourea benzotetramisole forms syn-a-amino acid derivatives with high diastereo- and
enantioselectivity. This methodology is most effective using 4-nitrophenylglycine esters and tolerates a variety of substituted
cinnamic and styrenyl allylic ethyl phosphates. The use of challenging unsymmetrical N-allyl-N-methylglycine esters is also
tolerated under the catalytic relay conditions without compromising stereoselectivity.

1. INTRODUCTION

The functionalization of a-amino acids through enantio-
selective a-alkylation is an enduring challenge in synthetic
chemistry." For example, the direct stereoselective transition-
metal-catalyzed a-alkylation of amino acid ester derivatives
through allylic substitution has received considerable attention.”
In such processes, the use of palladium-based catalysts typically
results in formation of the linear substitution product,*
whereas catalysts based on either molybdenum,’ ruthenium,’
rthodium,” or iridium® can be branched selective (Scheme 1a).
In reactions with achiral allylic precursors and prochiral amino

Scheme 1. Direct a-Allylation of Ester Enolates
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acid enolates, product stereochemistry is usually derived from
either chiral ligands on the metal center, or from the use of
chiral enolate counterions. Alternatively, Snaddon and co-
workers reported that chiral ammonium enolates, derived from
the reaction of isothiourea catalyst BTM 1 with aryl acetic
esters, undergo enantioselective linear a-allylation with achiral
Pd-allyl complexes in a dual-catalytic process (Scheme 1b).”
This methodology uses pentafluorophenyl arylacetic esters as
ammonium enolate precursors, demonstrating that an isothio-
urea/phenoxide-rebound strategy for Lewis base catalyst
turnover is compatible with Pd catalysis. Hartwig and co-
workers have reported a related enantioselective, stereo-
divergent branched allylic substitution of aryl acetic esters
using synergistic Ir/isothiourea catalysis.'”""

A conceptually different way of preparing branched a-allyl a-
amino acid derivatives has been reported by Tambar and co-
workers (Scheme 2a).'” The process uses a Pd-catalyzed linear
allylic amination reaction between allylic carbonates 2 and
glycine esters 3 to generate quaternary allylic ammonium salts
in situ, which undergo stoichiometric Bronsted base-promoted
[2,3]-rearrangement to form racemic anti-q@-amino acid
derivatives 4 with high diastereoselectivity.

However, despite the synthetic potential, the development of
enantioselective [2,3]-rearrangements of allylic ammonium
ylides for the synthesis of a-amino acid derivatives has
remained a significant challenge.'”'* Previous strategies toward
such processes have traditionally relied on substrate control
and/or the use of chiral auxiliaries."> Alternatively, Somfai and
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Scheme 2. Catalytic [2,3]-Rearrangements of Allylic
Ammonium Ylides

a) Tambar, 2011: Pd-catalyzed allylic amination and [2,3]-rearrangement
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co-workers reported the use of a stoichiometric chiral Lewis
acid for the enantioselective synthesis of a-amino amide
derivatives.'® In 2014, we reported the first catalytic enantio-
selective [2,3]-rearrangement of allylic quaternary ammonium
salts § using the isothiourea BTM 1 as a Lewis base and co-
catalytic hydroxybenzotriazole (HOBt) to form syn-a-amino
acid derivatives 6 with excellent stereoselectivity (Scheme
2b)."” In this process the HOBt additive (i) aids catalyst
turnover through interception of a post—[2,3]—rearrangement
acylammonium species and (ii) leads to increased diastereo—
and enantioselectivity of the [2,3]-rearrangement products.'® A
recognized challenge encountered by ourselves and others'” for
such [2,3]-rearrangement processes is the problematic synthesis
and isolation of the required allylic quaternary ammonium salts.
In our case,'” only limited ammonium salts were amenable to
isolation, typically being obtained in moderate yields (ca. 30—
90%) from the corresponding allylic amine and 4-nitrophenyl
bromoacetate. Although an in situ one-pot salt-formation/
[2,3]-rearrangement protocol was developed, the products were
formed in moderate overall yields and with reduced enantio-
selectivity compared with the use of the isolated salts.
Building upon the precedent of Tambar, we questioned the
teasibility of merging a Pd-catalyzed allylic amination with an
enantioselective isothiourea-catalyzed [2,3]-rearrangement
(Scheme 2c). Such a process would allow for the rapid
generation of complex enantiomerically enriched @-amino acids
7 bearing two new stereocenters from readily available allylic
alcohol derivatives and glycine esters, avoiding the problematic
isolation of ammonium salts. To proceed effectively, this relay
catalytic system must overcome the inherent challenges
associated with combining transition metal and organo-
catalyzed processes,”””' with all reactants compatible with
each independent catalytic cycle. Notably, the inherent
substrate bias for [2,3]-rearrangement under the basic Pd-
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catalyzed conditions developed by Tambar generates anti-a-
amino acid derivatives 4,'> whereas the isothiourea-catalyzed
process forms the opposite syn-diastereoisomer 6. The
proposed relay system must therefore undergo minimal
Brensted base-catalyzed [2,3]-rearrangement (anti-selective)
to allow the desired products from the tandem isothiourea-
catalyzed pathway to be formed with high syn-diastereo-
selectivity. The desired process must also be tolerant of glycine
derivatives bearing labile phenol esters that are required both
for initiation of the Lewis base-catalyzed process and to
generate the phenoxide necessary to fac1htate catalyst turn-
over.”” The nucleophilic isothiourea catalyst® and generated
phenoxide must also not interfere with, or inhibit, the Pd-
catalyzed allylic substitution process.”*

In this context, this manuscript documents the merger of
transition metal and Lewis base catalysis for an unprecedented
tandem relay catalytic allylic amination followed by enantio-
selective [2,3]-rearrangement. The methodology uses a bench-
stable succinimide-based Pd precatalyst (FurCat) to promote
allylic substitution and an isothiourea catalyst to perform the
enantioselective [2,3]-rearrangement, forming functionalized a-
amino acid derivatives in good yields with high stereoselectivity.
The scope and limitations of this new process have been fully
explored, including the use of unsymmetrical N,N-disubstituted
glycine esters. The utility of the products has been
demonstrated through various derivatizations, while crossover
and control experiments are used to probe the mechanism of
the allylic amination step.

2. RESULTS AND DISCUSSION

2.1. Reaction Optimization. 2.1.1. Identification of a
Suitable Allylic Precursor. To achieve high levels of diastereo-
and enantioselectivity during the proposed relay catalysis, it is
imperative that any base-promoted [2,3]-rearrangement of the
in situ-generated allylic ammonium salt into racemic product is
minimized. We hypothesized that the counterion generated
from Pd-promoted allylic ammonium salt formation could play
a key role in this area. With this in mind, a series of control
experiments based upon Tambar’s original report'” was
performed to identify a suitable allylic precursor for the
proposed relay catalysis (Table 1). First, N,N-dimethylglycine
ethyl ester 8 was reacted with cinnamyl ethyl carbonate 9 in the
presence of Pd(dba), (2 mol%) and PPh; (4 mol%) using
excess Cs,COj as base (Table 1, entry 1). This gave [2,3]-
rearrangement product 12 in good 88% yield and a 65:35 dr in
favor of the anti-diastereoisomer, consistent with the literature

Table 1. Identifying Suitable Allylic Precursors

o Ph/g\_ﬂ/\ox o Pn
JK/NMez Pd(dba), (2 mol %) W
EtO PPhs (4 mol %) . EtO
8 (1.5 equiv) MeCN, rt, 16 h NMe;
(#)-12
entry X Cs,CO; yield (%) dr”
1 C(O)OEt (9) 3 equiv 88 65:35
2 C(O)OEt (9) - 75 68:32
3 C(0O)OPh (10) 3 equiv 0 N/A
4 C(O)OPh (10) - 0 N/A
S P(O)(OEt), (11) 3 equiv 80 66:34
6 P(O)(OEt), (11) - 0 N/A

“Determined by 'H NMR analysis of the crude material.

DOI: 10.1021/jacs.7b05619
J. Am. Chem. Soc. 2017, 139, 11895—11902


http://dx.doi.org/10.1021/jacs.7b05619

Journal of the American Chemical Society

for such base-mediated processes.” In the absence of Cs,CO;
the reaction still proceeded to give product 12 in 75% yield
(Table 1, entry 2). This suggests that the ethyl carbonate and/
or ethoxide released during allylic substitution is sufficiently
basic to promote the [2,3]-rearrangement step, and that ethyl
carbonates are not suitable precursors for a catalytic enantio-
selective relay process. To reduce the basicity of the released
counterion, cinnamyl phenyl carbonate 10 was investigated;
however, this did not lead to product formation in either the
presence or absence of external base with the starting materials
mostly returned in both cases (Table 1, entries 3 and 4).”
Next, cinnamyl ethyl phosphate 11 was tested and, as required,
only led to product formation in the presence of external base
(Table 1, entries S and 6), consistent with no phosphate-
mediated [2,3]-rearrangement under these conditions.

2.1.2. Development of Pd/Isothiourea Relay Catalysis.
Having identified easily accessible allylic phosphates™ as
potentially suitable precursors, efforts were focused on
developing a catalytic enantioselective relay allylic substitu-
tion/[2,3]-rearrangement process (Table 2). Readily accessible
N,N-dimethyl 4-nitrophenyl ester hydrochloride salt 13 was
chosen as a suitable glycine derivative that would allow for
Lewis base incorporation, while the released 4-nitrophenoxide
should also be capable of facilitating catalyst turnover.
However, initial attempts at reacting 13 and cinnamyl ethyl
phosphate 11 with Pd(dba), (2 mol%) and PPh; (4 mol%) in

Table 2. Optimization of the Enantioselective Relay Process

o Ph”X"0p(0)(0EY), o Ph
Me, 11 (2 equiv) )W
PNPO HO [Pd], L (4 mol %), BTM1 ~ PNPO Y
13 i-ProNH (2.2 equiv) NMe,
MeCN, rt, 16 h 14

PNP = 4-NO,CgHy

(0]
X g P(2-Fur) N
), e S o

B “P(2-Fur)s

X=S15 17 FurCat 18 BTM 1
016
yield

entry  [Pd] (mol%) L 1 (mol%)  (%)“ dr” er”

1 Pd(dba), (2) PPh, 20 (<) N/A  N/A
2 Pd(dba), (2) 15 20 (11) N/D N/D
3 Pd(dba), (2) 16 20 (13) N/D N/D
4 Pd,(dba);- 16 20 47 95:5 98:2

CHCI, (1)

5 17 (1) 16 20 70 >95:5  >99:1
6 18 (5) - 20 79 >95:5  99:1
7 18 (5) - 10 60 946  97:3
8 18 (5) - S 56 88:12  89:11
9 18 (5) - - 0 N/A  N/A
0 - - 20 0 N/A N/A
117 18 (5) - 20 58 92:8 97:3
12° 18 (5) - 20 65 >95:5  >99:1
137 18 (5) - 20 60 >95:5  96:4

“Yields in parentheses determined by 'H NMR using 1,4-
dinitrobenzene as an internal standard. “Determined by 'H NMR
analysis of the crude material. “Determined by HPLC analysis after
derivatization into the corresponding benzyl amide. “Free base of 13
and i-Pr,NH (1.2 equiv) used in place of 13-HCl and i-Pr,NH (2.2
equiv). °N,N-Dimethyl-3,5-bis-trifluoromethylphenylglycine ester used
in place of 13.Cinnamyl trifluoroacetate (2 equiv) used in place of 11.

the presence of the isothiourea BTM 1 (20 mol%) using i-
Pr,NH as base in MeCN at room temperature led to <5%
product formation (Table 2, entry 1). The use of electron-
withdrawing heteroaryl phosphines 15 and 16 gave the first sign
of the desired reactivity,26 giving [2,3]-rearrangement product
14 in low conversion by '"H NMR (Table 2, entries 2 and 3).
Altering the source of palladium led to significant improve-
ments in reactivity. Using Pd,(dba);-CHCl; (1 mol%) and P(2-
faryl); (4 mol%) allowed product 14 to be isolated in 47% yield
and 95:5 dr (Table 2, entry 4), while using [Pd(allyl)Cl], 17 (1
mol%) under the same conditions gave 14 in 70% yield as a
single diastereoisomer (Table 2, entry S). In these cases, the
syn-configured diastereoisomer is favored and was formed with
excellent enantioselectivity (up to >99:1 er),”” providing proof-
of-principle for the desired catalytic relay process. The high
stereoselectivity observed is consistent with competitive
racemic [2,3]-rearrangement processes having been completely
suppressed without recourse to the addition of additives such as
HOBLt.'”'® The use of the defined, bench-stable succinimide-
based Pd complex 18 (FurCat, S mol%), first developed by
Fairlamb and co-workers for use in Stille cross-coupling™® gave
further improvement while simplifying the catalytic system,
allowing syn-14 to be isolated in 79% yield as a single
diastereoisomer in 99:1 er (Table 2, entry 6). Decreasing the
catalyst loading of BTM 1 led to reduced yields and
stereoselectivity (Table 2, entries 7 and 8). Control experi-
ments in the absence of either the Pd catalyst 18 or BTM 1 led
to no product formation under the otherwise optimal
conditions (Table 2, entries 9 and 10). Alternatively the free
base of 4-nitrophenyl ester 13 and i-Pr,NH (1.2 equiv) can be
used in this protocol, giving syn-14 in reduced 58% yield, 92:8
dr and 97:3 er (Table 2, entry 11).”” Screening alternative N,N-
dimethylglycine aryl esters under the optimized conditions
showed that the 3,5-bis-trifluoromethylphenyl ester gave good
conversion into the corresponding rearrangement product with
high stereoselectivity (Table 2, entry 12). However, use of
either 2,4,6-trichlorophenyl, 2,3,5,6-tetrafluorophenyl, or penta-
fluorophenyl esters resulted in low conversions into the
respective products.”® This contrasts the findings of both
Snaddon’ and Hartwig,'® who showed that pentafluorophenyl
arylacetic esters were optimal in their enantioselective a-
allylation protocols using isothioureas in combination with
either Pd or Ir catalysis, respectively. To further probe the effect
of the allylic leaving group a range of alternative cinnamyl
alcohol derivatives was also tested under the previously
optimized conditions. While both cinnamyl acetate and
cinnamyl methyl carbonate gave poor conversion into product
14, use of cinnamyl trifluoroacetate gave 14 in good yield
with high stereoselectivity (Table 2, entry 13).

2.2. Scope and Limitations of Pd/Isothiourea Relay
Catalysis. 2.2.1. Variation of the Allylic Phosphate. The
scope of this process was next assessed through variation of the
cinnamic aryl substituent within the allylic phosphate
component (Table 3). Aryl rings bearing electron-withdrawing
substituents (4-NO, and 4-CF;) were well tolerated, forming
rearranged products 19 and 20 in high yield with excellent
stereoselectivity (up to >95:5 dr and 97:3 er). Halogen-
substituted aryl rings, including sterically demanding 2-BrC¢H,
substitution, were also well tolerated, forming 21—23 as single
diastereoisomers with high enantioselectivity (up to 99:1 er).
The reaction of the allylic phosphate bearing a 4-BrC4H,
substituent was also performed on a preparative laboratory
scale (3.8 mmol) to give 1.5 g of 22 as a single stereoisomer in
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Table 3. Scope of Allylic Ethyl Phosphates™"*
R™X"0p(0)(0EY,

o o R
NMe, (2 equiv) M A~
PNPO FurCat 18 (5 mol %) PNPO”
':;3' BTM 1 (20 mol %) NMe,
i-ProNH (2.2 equiv)
PNP = 4-NO,CgH, VCN. T 16
NO,

0
A~z

O Ph :
PNPO)W PNPOJ\/\/ PNPO™ ™
NMe, NMe, NMe,
1479% 19 89% 20 83%

>95:5dr, 99:1 er >05:5dr, 96:4 er 95:5dr, 97:3 er

Br

o
298
\

(0] (0] Br
PNPOJ\/\/ PNPO PNPOJ\/\/
NMe, NMe,
21 80% 22 83% 2367%

>05:5dr, 99:1 er >095:5dr, 99:1 er

(91%, >95:5 dr, >99:1 er)?

95:5dr, 97:3 er

OTs
OMe @ ©/0Me
o 0 Y
PNPOW PNPO)W PNPO)W
NM62 NM92 NM82
2479% 2588% 26 82%

91:9dr, 99:1 er >95:5dr, 97:3 er

“or

PNPOJ\M PNPO PNPO

NMe2 NMe, NM62

27 68% 28 61% 29 63%
>05:5dr, 99:1 er >05:5 dr, >99:1 er >95:5dr, 98:2 er

>95:5dr, 98:2 er

\,
°

g
g

“Reactions performed on a 0.5 mmol scale. bdr determined by 'H
NMR analysis of the crude material. “er determined by HPLC analysis
after derivatization into the corresponding benzyl amide. “Reaction
performed on a 3.8 mmol scale.

91% yield. The presence of a 3-MeOC¢H, substituent led to a
slight reduction in diastereoselectivity (91:9 dr), but the major
product 24 was still obtained in high 99:1 er. The methodology
was also applicable to allylic phosphates bearing oxygenated
aryl rings that can be synthesized from the three monolignols,
4-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol,
which are the building blocks of lignin biopolymers.”” The relay
catalysis allowed amino acid derivatives 25—27 to be isolated in
good yields with excellent stereoselectivity (up to >95:5 dr and
99:1 er), demonstrating that complex enantiomerically pure
products can be expediently accessed from renewable lignin
resources. Alkenyl and heteroaromatic substituents could also
be tolerated, forming 28 and 29 in slightly reduced yields but
with excellent diastereo- and enantioselectivity. Notably, the
yields and stereoselectivity of this relay Pd/isothiourea catalysis
generally exceed those obtained from the previously reported
isothiourea-catalyzed [2,3]-rearrangement of isolated allylic

ammonium salts."” The reactions of non-aryl-substituted allyl
phosphate with 13 under the standard relay conditions gave no
[2,3]-rearrangement products, with the major product obtained
being the corresponding aryl ether formed from allylic
substitution with 4-nitrophenoxide.”

The presence of a 4-nitrophenyl ester within the [2,3]-
rearrangement products allows facile derivatization into a range
of a-amino acid derivatives through reaction with suitable
nucleophiles (Scheme 3). For example, reacting isolated 22

Scheme 3. Product Derivatizations™"©
O Ar
ar PNPO” 9 A
HO N NMe,  —s BnHN)W
NMe; Ar = 4-BrCgH, 22 NMe,
34,95% >95:5 dr, >99:1 er? 30, 90%
>95:5 dr, 99:1 er (iv) (ii) >05:5 dr, >99:1 er
s L A~
N O Ar N
Me,N+HCI A NMe,
33,95% Meo)W 31, 85%
95:5 dr, 97:3 er? NMe, >95:5dr, 99:1 er
32, 93%

>095:5dr, 97:3 er

“Reaction conditions: (i) BaNH, (5.0 equiv), CH,Cl, rt, 16 h; (ii)
pyrrolidine (5.0 equiv), CH,CL, rt, 16 h; (iii) NaOMe (1.5 equiv),
MeOH, 0 °C to 1t, 1 h; (iv) H,O/HC], 110 °C, 16 h; (v) LiAlH, (1.5
equiv), THF, 0 °C to rt, 1 h. “dr determined by 'H NMR analysis of
the crude material. “er determined by HPLC analysis. “er determined
after derivatization into the corresponding benzyl amide.

(>95:5 dr, >99:1 er) with either primary or secondary amines
gave the corresponding amides 30 and 31 in high yields with no
erosion of stereointegrity. Transesterification with methoxide
provided a-amino ester 32 in 93% yield as a single
diastereoisomer in 97:3 er. The corresponding @-amino acid
33 could be readily obtained as its hydrochloride salt upon
hydrolysis, while reduction with LiAIH, provided enantiomeri-
cally pure amino alcohol 34 in excellent yield.*!

2.2.2. Variation of the Glycine Ester N-Substituents. Next,
variation of the N-substituents within the glycine ester was
investigated in the Pd/isothiourea relay catalysis (Table 4).
Cyclic N-pyrrolidinyl substitution was tolerated under the
previously optimized conditions, forming 35 in 75% yield as a
single stereoisomer. However, increasing the ring size to either
N-piperidinyl or N-azepanyl resulted in lower yields (33% for
36 and 38% for 37) and reduced diastereoselectivity (75:25 dr
and 73:27 dr, respectively) under the standard reaction
conditions. Increasing the Pd catalyst loading to 10 mol%
gave products 36 and 37 in improved yields, and although these
reactions again proceeded with lower diastereoselectivity
(88:12 and 80:20 dr, respectively), the enantioselectivity of
the major syn-diastereoisomer remained high (>98:2 er).
Limitations of the relay process include the use of N-
morpholinylglycine ester 38, which was unreactive under
both the standard reaction conditions and with an increased
10 mol% loading of FurCat 18. The use of glycine esters
bearing symmetrical N,N-dialkyl substituents such as N,N-
dibenzylglycine ester 39 and N,N-diallylglycine ester 40 was
also unsuccessful, with unreacted starting materials returned in
both cases.

DOI: 10.1021/jacs.7b05619
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Table 4. Use of Symmetrical N,N-Dialkylglycine Esters®"*

o R Ph " 0p(0)(0EY), o A
)k/,{,‘ 11 (2 equiv) P
PNPO HO R FurCat 18 (10 mol %) PNPO™ ™
BTM 1 (20 mol %) N,
PNP = 4-NO,CqHs i-ProNH (2.2 equiv) ROR
MeCN, rt, 16 h
O Ph o Ph o Ph

35 75%7 36 42% 37 47%
95:5dr, 99:1 er 88:12dr, 99:1 er

|
—
PNPO)J\/N\) PNPOLNVPh PNPOJ\/N\/\

*HCI *HCI
38 39¢ 40

Unreactive N,N-dialkyl substituents:

“Reactions performed on a 0.5 mmol scale. “dr determined by 'H
NMR analysis of the crude material. “er determined by HPLC analysis
after derivatization into the corresponding benzyl amide. 9Reaction
performed using 5 mol% FurCat 18. “Reaction performed using i-
Pr,NH (1.2 equiv).

Previous studies found that isolated allylic quaternary
ammonium salts bearing N,N-diallyl substituents undergo
isothiourea-catalyzed [2,3]-rearrangement,” therefore it is
likely that this represents a limitation within the Pd-catalyzed
allylic substitution step in the relay procedure using 40. The use
of unsymmetrical N-allyl-N-methylglycine ester 41 was then
studied in the Pd/isothiourea relay catalysis (Table 5).** Such a
substrate is particularly challenging as the proposed Pd-
catalyzed allylic substitution would lead to an intermediate
ammonium salt 42 containing a stereogenic nitrogen atom,
which may impact upon the stereoselectivity of the subsequent
[2,3]-rearrangement. Furthermore, there is the potential for
rearrangement via either the N-cinnamyl or N-allyl substituent
in this case. Initial investigations found that the Pd/isothiourea
relay [2,3]-rearrangement of 41 required 10 mol% of Pd
precatalyst 18 for good conversion into product. Exclusive
[2,3]-rearrangement through the N-cinnamyl substituent gave
a-amino ester 43 in 40% yield with excellent stereoselectivity
(95:5 dr, 99:1 er). The high chemoselectivity of this process is
in contrast to the observations of Tambar and co-workers, who
reported an 80:20 mixture of N-cinnamyl versus N-allyl
rearrangement for the base-promoted reaction of an
ammonium salt generated from N-allyl-N-methylglycine tert-
butyl ester and cinnamyl carbonate.'** The relay reaction of 41
was further explored through variation of the allylic ethyl
phosphate. The use of allylic phosphates bearing electron-
withdrawing aryl substituents (4-NO,CsH, and 4-CF,C¢H,)
led to improved reactivity, forming products 44 and 45 in
higher yields (63% and 64%, respectively), while maintaining
excellent stereoselectivity. Conversely, the presence of oxy-
genated aryl substituents led to decreased yields of 46 and 47,
although stereoselectivity remained high. The relative and
absolute configurations of the products from this series were
confirmed bz X-ray crystallographic analysis of the benzyl
amide of 47.*

The presence of the N-allyl substituent within the products
allowed for further derivatization of 45 into a stereodefined

Table S. Use of Unsymmetrical N,N-Dialkylglycine Esters”

O Me A X" 0p(0)OEY, o A

M (2 equiv) A
PNPO” > j\ FurCat 18 (10 mol %)  PNPO™ ™
4 X BTM 1 (20 mol %) _N
i-ProNH (2.2 equiv) Me
PNP = 4-NO,CgH; I=FTa < €q .
MeCN, rt, 16 h

via: (E0),(0)P0° | (j
OPNP : o 0 Y

: ' Ph
| o%\ w o PNPO)W pro/LJ\/\/
| %\/r,\j Me” N Me”
Me i k k
. (£)-42 ; 43 40% 44 63%
--------------- 95:5 dr,? 99:1 er® 93:7 dr, 95:5 er®
CF3 OTs

el e

H B Q <>
PNPOJ\/V/ PO~ PNPOT T
N

N .
Me” Me Me
A A AN

45 64% 46 38% 47 32%
95:5 dr, 97:3 er® >95:5 dr,? 99:1 er® 94:6 dr,9 98:2 er®

“Reactions performed on a 0.5 mmol scale. bdr determined by 'H
NMR analysis of the crude material. “er determined by HPLC analysis
after derivatization into the corresponding benzyl amide. “dr of
isolated material.

piperidine (Scheme 4). Facile methanolysis of 45 generated N-
allyl-N-methyl amino ester 48, which undergoes catalytic ring-

Scheme 4. Product Derivatization™”

(i) Hoveyda-Grubbs Il (5 mol %)

Ar., p-TsOH (1.5 equiv) Ar.,
h PhMe, 80 °C, 18 h O
MeO,C NNF (ii) Pd/C (10 mol %) MeO,C" N
Me AcOH, H,, (1 atm) Me

Ar=4-CF;CgH, 48
>95:5 dr, 98:2 er

49 89% (2 steps)
>95:5 dr, 97:3 er

EtOAc, rt, 48 h

“dr determined by 'H NMR analysis of the crude material. “er
determined by HPLC analysis.

closing metathesis in the presence of Hoveyda—Grubbs II (S
mol%) followed by Pd/C-catalyzed hydrogenation to form
substituted piperidine 49 in 89% yield (over two steps) as a
single diastereoisomer in 97:3 er.

2.3. Mechanistic Control Experiments. The relay
protocol is thought to proceed via a Pd-catalyzed allylic
substitution of an allylic phosphate with a glycine ester to form
an intermediate allylic ammonium salt, which undergoes an
enantioselective isothiourea-catalyzed [2,3]-rearrangement to
give the observed a-amino ester products. Having previously
reported detailed investigations into the mechanism of the
isothiourea-catalyzed [2,3]-rearrangement of isolated allylic
ammonium salts,'® control experiments were performed to
probe the Pd-catalzrzed allylic substitution step within this relay
methodology.'”*> The reaction of branched cinnamyl
phosphate 50 with glycine ester 13 under the standard reaction
conditions gave rearranged product 14 (Scheme Sa), albeit in
slightly reduced yield (49%) and lower diastereoselectivity

DOI: 10.1021/jacs.7b05619
J. Am. Chem. Soc. 2017, 139, 11895—11902


http://dx.doi.org/10.1021/jacs.7b05619

Journal of the American Chemical Society

Scheme S. Mechanistic Control Experiments™”"*

a) OP(O)(OEt),
50
ph” NF
(i) 49%, 93:7 dr, 99:1 er
o) o Ph
)K/NMe PN
PNPO 2 PNPO™ 14
*HCI Ph Z
13 \/\ NMe,
@ OP(O)(OEt),  |74%, >95:5 dr, 99:1 er
51 (86:14 Z:E)
y o A
O N
PNPOW 54
N
PNPO , “HCl FurCat 18 (5 mol %) ( 7
5 BTM 1 (20 mol %)
i-Pr,NH (2.2 equiv) *
MeCN, rt, 16 h o Ar
PNPoJ\ J PNPO)W 21
NMe,
21:5491:9¢

4 FC6H4

“Reaction conditions: (i) allylic phosphate (2 equiv), FurCat 18 (S
mol%), BTM 1 (20 mol%), i-Pr,NH (2.2 equiv), MeCN, rt, 16 h. bar
determined by 'H NMR analysis of the crude material. “er determined
by HPLC analysis after derivatization into the corresponding benzyl
amide. “Product ratio determined by “F{'H} NMR analysis.

(93:7 dr, 99:1 er) compared with the use of linear cinnamyl
phosphate 11 (79%, >95:5 dr, 99:1 er).* This suggests that the
proposed Pd-z-allyl intermediate preferentially reacts at the
least sterically hindered terminal position to glve the required
ammonium salt for [2,3]-rearrangement.”” Reacting (Z)-
cinnamyl phosphate 51 (86:14 Z:E) with glycine ester 13
under the relay conditions led to the formation of the same syn-
diastereoisomer of 14 (>95:5 dr and 99:1 er) in 74% yield
(Scheme Sa), which is comparable to the result obtained
starting from (E)-11. As (Z)-cinnamylammonium salts formed
in situ are only poorly reactive in the isothiourea-catalyzed
[2,3]-rearrangement,'”* this suggests that #>-Pd-z-allyl complex
56 formed from (Z)-51 undergoes 7—o—7 isomerization into

the more favorable 7°-Pd-z-allyl complex 55 grlor to
ammonium salt formation and [2,3]-rearrangement.” Further
analysis of the "H NMR spectrum of the crude material showed
that the Z/E ratio of the unreacted allylic phosphate 51 had not
changed, while a control experiment reacting (Z)-51 with only
FurCat 18 also showed no isomerization into (E)-11. This
demonstrates that isomerization of (Z)-51 is unlikely to occur
prior to the initial oxidative addition.

Next, a 50:50 mixture of isolated allylic ammonium salt $3
and N-pyrrolidinylglycine ester 52 was reacted under the relay
catalysis conditions (Scheme Sb). The major product obtained
was from the expected [2,3]-rearrangement of $3 into 21;
however, small amounts of crossover rearrangement product 54
were also observed (91:9 21:54). In the absence of FurCat 18,
no crossover product 54 was obtained, suggesting that 53 is a
suitable substrate for Pd-z-allyl complex formation and that
allylic ammonium salt formation is at least partially reversible
under the reaction conditions.

The proposed overall relay catalytic cycle for the reaction of
cinnamyl phosphate 11 with glycine ester 13 is depicted in
Scheme 6. The active Pd catalyst is generated in situ from
FurCat 18,” although the specific ligands associated with the
Pd species and its oxidation state have not been determined.
Coordination, followed by oxidative addition into allylic
phosphate 11, generates #°-Pd-z-allyl complex 55. Nucleophilic
attack of free-base glycine ester 57 reversibly generates
coordinated ammonium salt §8, which can dissociate to form
the key allylic ammonium salt 59 that links the two tandem
catalytic cycles. Acylation of the isothiourea BTM 1 with 59
forms dication 60, with subsequent deprotonation into
ammonium ylide 61 using 4-nitrophenoxide (PNPO™). Stereo-
selective [2,3]-sigmatropic rearrangement affords acyl-
ammonium 63, which reacts with PNPO™ to affect isothiourea
turnover and release product 14. The observed diastereo- and
enantioselectivity can be ratlonahzed by the [2,3]-rearrange-
ment proceeding via endo-TS 62."° Ammonium ylide 61 is
thought to have significant enolate character, favoring a (Z)-
conformation that is further stabilized by a nonbonding 1,5-S---
O interaction resulting from ng to 6*_g overlap between the
carbonyl and the isothiourea sulfur atom.*"~** Rearrangement
occurs on the face opposite to the stereodirecting phenyl
substituent on the catalyst, with an endo-conformation

Scheme 6. Proposed Relay Catalytic Mechanism
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preferred due to a z-cation interaction between the cinnamyl
substituent and the isothiourea core. The presence of this
favorable interaction may account for the selective rearrange-
ment through the N-cinnamyl substituent over the unsub-
stituted N-allyl terminus in the reaction of unsymmetrical N,N-
dialkylglycine esters.

3. CONCLUSIONS

In conclusion, a tandem Pd/isothiourea relay catalysis has been
developed for the synthesis of functionalized @-amino acid
derivatives from readily available glycine ester derivatives and
allylic phosphates. The process is thought to proceed via Pd-
catalyzed allylic ammonium salt formation followed by an
isothiourea-catalyzed enantioselective [2,3]-rearrangement re-
action to form the a-amino acid products with high levels of
stereoselectivity. The methodology works for a range of
substrates, including unsymmetrical N-allyl-N-methylglycine
derivatives that would contain a stereogenic nitrogen atom in
the intermediate ammonium salt. The @-amino acid products
undergo a series of derivatization reactions to further
demonstrate the synthetic utility of this process. Ongoing
studies within this laboratory are aimed at developing further
catalytic, enantioselective rearrangement processes.
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