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Abstract 

Non-small cell lung cancer (NSCLC) is a heterogeneous disease, and its demarcation contributes to various therapeu-
tic outcomes. However, a small subset of tumors shows different molecular features that are in contradiction with 
pathological classification. Unsupervised clustering was performed to subtype NSCLC using the transcriptome data 
from the TCGA database. Next, immune microenvironment features of lung adenocarcinoma (LUAD), lung squa-
mous carcinoma (LUSC), and lung adenoid squamous carcinoma (LASC) were characterized. In addition, diagnostic 
biomarkers to demarcate LASC among LUSC were screened using weighted gene co-expression network analysis 
(WGCNA) and validated by the in-house cohort. LASC was identified as a novel subtype with adenoid transcriptomic 
features in LUSC, which exhibited the most immuno-escaped phenotype among all NSCLC subtypes. In addition, 
FOLR1 was identified as a biomarker for LASC discrimination using the WGCNA analysis, and its diagnostic value was 
validated by the in-house cohort. Moreover, FOLR1 was related to immuno-escaped tumors in LUSC but not in LUAD. 
Overall, we proposed a novel typing strategy in NSCLC and identified FOLR1 as a biomarker for LASC discrimination.
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To the editor,
Lung cancer is the leading cause of cancer-related death 
worldwide. Its histological and biological heterogeneity 
contributes to various therapeutic outcomes [1]. Lung 
cancer can be mainly classified as small cell lung can-
cer (SCLC) and non-SCLC (NSCLC). NSCLC, account-
ing for about 85% of the lung cancer cases, dominatingly 
consists of lung adenocarcinoma (LUAD) and lung squa-
mous carcinoma (LUSC) [2]. Although LUAD and LUSC 
are the largest NSCLC subgroups, they appear to be dis-
parate diseases with distinct molecular, pathological, 
and clinical features [3]. For example, LUAD seems to be 
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more immune-escaped compared with LUSC. Tumor-
infiltrating lymphocytes (TILs) and PD-L1 expression are 
shown to be higher in LUAD. However, TILs and PD-L1 
expression showed inter- and intra-tumor heterogeneity 
in both LUAD and LUSC [4]. However, due to the hetero-
geneity, a small subset of tumors shows different molec-
ular features that are in contradiction with pathological 
classification.

Considering the limited treatment options for LUSC 
with LUAD [5], we sought to identify a subtype in LUSC 
with the genomic signatures similar to LUAD. Firstly, we 
performed unsupervised clustering of LUAD and LUSC 
patients and identified four clusters (Additional file 2: Fig. 
S1A, B). Notably, we found that several LUSC patients 
mingled in clusters enriched with LUAD patients (Addi-
tional file 2: Fig. S1C), and we defined these LUSC as lung 
adenoid squamous carcinoma (LASC) (Fig.  1A). Nota-
bly, KRT7, KRT18, and NAPSA, selectively expressed 
in LUAD, were highly expressed in LASC, while KRT5, 
TP63, and DSG3, the biomarkers for LUSC, were lowly 
expressed in LASC (Fig. 1B, C). In addition, critical tar-
getable mutations were also higher in LASC compared 
with LUSC (Fig. 1D). Previous study showed that onco-
genic mutations in EGFR, KRAS, BRAF, HER2, and 
ALK were extremely rare or absent in patients with pure 
LUSC, whereas LUSC with minor glandular component 
(LUSC-mGC) had a relatively high frequency of EGFR, 
ALK, or KRAS mutations [6], similar genomic alterna-
tions to the third subtype of LASC found in our study. 
However, whether LASC belongs to LUSC-mGC is need 
to be further explored. Moreover, the prognosis of LASC 
was worse than LUSC in terms of overall survival (OS), 
progression-free survival (PFS), and disease-special sur-
vival (DSS) (Fig.  1E). Given difference in TILs between 

LUAD and LUSC [4], we next characterized the immune 
features in three NSCLC subtypes. LASC exhibited the 
highest immune score, stromal score, and ESTIMATE 
score, while the lowest tumor purity (Additional file  2: 
Fig. S2A). In addition, most immune-modulators and 
most TILs were the highest in LASC, followed by LUAD 
(Additional file  2: Fig. S2B, C). Furthermore, the most 
immune checkpoints were the highest in LASC (Addi-
tional file 2: Fig. S2D).

We next explored discriminating biomarkers for LASC 
using the WGCNA algorithm (Additional file  2: Fig. 
S3A–D). We visualized the gene network with a heatmap 
and meta-modules ((Additional file  2: Fig. S4A, B), and 
two modules were extracted (Additional file 2: Fig. S4C). 
The genes in the turquoise and blue modules were mainly 
associated with tumor immunity-related with processes 
and surfactant homeostasis, respectively (Additional 
file  2: Fig. S4D, E). Given genes in the turquoise mod-
ule were TIL markers, we utilized the genes in the blue 
module as biomarkers for LASC. The score of these genes 
was highly expressed in LASC compared with LUSC and 
exhibited high diagnostic values (Fig. 2A, B). In addition, 
FOLR1 exhibited the highest value among these genes 
(Fig. 2C). Moreover, the results from the validated cohort 
showed that FOLR1 was upregulated in LUAD compared 
with LUSC (Fig. 2D, E), which could be a novel biomarker 
in the discrimination between LUAD and LUSC. In addi-
tion, high FOLR1 was associated with poor prognosis in 
LUSC (Fig. 2F).

Subsequently, we investigated the correlation of FOLR1 
with immune features. In LUSC, immune score, stromal 
score, and ESTIMATE score were higher, while tumor 
purity was lower in the high-FOLR1 group (Additional 
file  2: Fig. S5A). In addition, most immune-modulators 

Fig. 1   Identification of LASC as a novel subtype in LUSC. A Unsupervised clustering of LUAD, LUSC, and LASC samples. B, C Expression levels of 
KRT7, KRT18, NAPSA, KRT5, TP63, and DSG3 in LUAD (n = 512), LUSC (n = 430), and LASC (n = 66) samples. Significance was calculated with One-way 
ANOVA with Tukey’s multiple comparisons test. ns no statistical difference, **P < 0.01, ***P < 0.001. D Mutant profiles of EGFR, KEAP1, KRAS, STK11, 
TP53, CDKN2A, PIK3CA, ROS1, and NF1 in LUAD, LUSC, and LASC samples. E Prognostic analysis of patients in LUAD, LUSC, and LASC subtypes. 
Significance was calculated with log-rank test

(See figure on previous page.)

(See figure on next page.)
Fig. 2   FOLR1 is a biomarker for LASC discrimination and correlated immune feature in LUSC. A Levels of the score of genes in the blue calculated 
by the ssGSEA method in LUAD (n = 512), LUSC (n = 430), and LASC (n = 66) subtypes. Significance was calculated with One-way ANOVA with 
Tukey’s multiple comparisons test. B Diagnostic value of the score of genes in the blue for the discrimination LASC in LUSC. C Diagnostic value 
of the single gene in the blue for the discrimination LASC in LUSC. D, E Representative images revealing FOLR1 expression in LUAD (n = 30) and 
LUSC (n = 90) subtypes and semi-quantitative analysis. Significance was calculated with Student’s t-test. F Prognostic value of FOLR1 expression in 
LUSC. Fifty-three patients with low FOLR1 expression, and 47 patients with high FOLR1 expression. Significance was calculated with log-rank test. G 
Representative images revealing low and high FOLR1 and PD-L1 expression in LUSC. H Correlation between FOLR1 and PD-L1 expression in LUSC. 
Significance was calculated with Pearson test. I Representative images revealing low and high FOLR1 and PD-L1 expression in LUAD. J Correlation 
between FOLR1 and PD-L1 expression in LUAD. Significance was calculated with Pearson test
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and TILs were enriched in the high-FOLR1 group (Addi-
tional file 2: Fig. S5B, C). Moreover, FOLR1 was positively 
correlated with most immune checkpoints (Additional 
file 2: Fig. S5D). However, these correlations could not be 
observed in LUAD (Additional file  2: Fig. S6A–D). The 
results from the validated cohort showed that FOLR1 
was positively correlated with PD-L1 in LUSC but not 
in LUAD (Fig. 2G–J). We also assessed the expression of 
FOLR1 in different cell types in NSCLC and the results 
showed that FOLR1 was highly expressed in tumor cells 
(Additional file  2: Fig. S7A, B). FOLR1 is often overex-
pressed in multiple cancers, which is often associated 
with tumor progression and poor patient prognosis [7]. 
In lung cancer, FOLR1 is mainly expressed in LUAD and 
more highly expressed in metastatic lymph node, and 
nanoparticle targeted FOLR1 enhanced photodynamic 
therapy [8]. In addition, high FOLR1 expression corre-
lates with adenocarcinoma histology and EGFR mutation 
in lung cancer [9]. Furthermore, trans-differentiation of 
LUAD to LUSC depending on the signaling of Lkb1 [10], 
Whether FOLR1 mediates trans-differentiation between 
LUAD and LUSC and its association with Lkb1 signaling 
might be an interesting topic.

Immune feature-based risk stratification is criti-
cal for prognostic and therapeutic assessment in both 
lung cancer and other cancer types [11–14]. To sum 
up, we proposed a novel typing strategy in NSCLC and 
indicated LASC could be a dominant subtype benefit-
ing from immunotherapy. We also identified FOLR1 as 
a biomarker for LASC discrimination. However, due 
to limited clinical features and genetic alterations pro-
vided by Outdo Biotech, we fail to compare the associa-
tions between FOLR1 expression and clinical features 
in detail, which should be further explored. Overall, the 
importance of FOLR1 detection should be emphasized in 
LUSC for the identification of the novel subtype.

Abbreviations
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LUSC: Lung squamous carcinoma; LUSC-mGC: LUSC with minor glandular 
component; NSCLC: Non-small cell lung cancer; SCLC: Small cell lung cancer; 
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 Additional file 1. Additional methods. Additional file 2: Figure S1. 
Demarcation of patients using a SNN modularity optimization-based 
clustering algorithm. A Unsupervised clustering of NSCLC samples with 
four clusters. B Unsupervised clustering of LUAD and LUSC samples. C 
Distribution of LUAD and LUSC samples in four different clusters. Figure 
S2. Associations between NSCLC subtypes and TME features. A Levels of 
stromal score, immune score, ESTIMATE score, and tumor purity in LUAD 
(n = 512), LUSC (n = 430), and LASC (n = 66) subtypes. Significance was 

calculated with One-way ANOVA with Tukey’s multiple comparisons test. 
***P < 0.001. B Expression levels of 122 immunomodulators in LUAD, LUSC, 
and LASC subtypes. C The levels of TILs calculated using five algorithms 
in LUAD, LUSC, and LASC subtypes. D Expression levels of immune 
checkpoints in LUAD, LUSC, and LASC subtypes. Figure S3. Determination 
of soft-thresholding power in WGCNA. A Analysis of the scale-free fitting 
indices for various soft-thresholding powers (β). B Mean connectivity 
analysis of various soft-thresholding powers. C Histogram of the connec-
tion distribution when β = 14. D Checking the scale-free topology when 
β = 14. According to Figure S3C-D, k and p(k) are negatively correlated 
(correlation coefficient 0.78), indicating that a gene scale-free network 
can be resumed. Figure S4. Identification of FOLR1 as a biomarker for 
LASC discrimination. A Visualization of the gene network with a heatmap. 
B Clustering dendrograms of genes based on dissimilarity topologi-
cal overlap and module colors. C Heatmap of the correlation between 
module eigengenes and subtypes of NSCLC. D BP enrichment analysis 
of genes in the turquoise module. E BP enrichment analysis of genes in 
the blue module. Figure S5. FOLR1 identifies the inflamed TME in LUSC. 
A Levels of stromal score, immune score, ESTIMATE score, and tumor 
purity in the high- (n = 182) and low-FOLR1 (n = 314) groups. Significance 
was calculated with Student’s t-test. ***P < 0.001. B Expression levels 
of 122 immunomodulators in the high- and low-FOLR1 groups. C The 
levels of TILs calculated using five algorithms in the high- and low-FOLR1 
groups. D Correlations between FOLR1 and common inhibitory immune 
checkpoints. ***P-value < 0.001. Figure S6. FOLR1 can’t identify the 
inflamed TME in LUAD. A Levels of stromal score, immune score, ESTIMATE 
score, and tumor purity in the high- (n = 188) and low-FOLR1 (n = 324) 
groups. Significance was calculated with Student’s t-test. ns: no statistical 
difference, *P < 0.05. B Expression levels of 122 immunomodulators in the 
high- and low-FOLR1 groups. (C) The levels of TILs calculated using five 
algorithms in the high- and low-FOLR1 groups. D Correlations between 
FOLR1 and common inhibitory immune checkpoints.  *P-value < 0.05; ns: 
P > 0.05. Figure S7. FOLR1 is highly expressed in tumor cells in NSCLC. A 
Single-cell expression profile of FOLR1 in the GSE117570 dataset. B Single-
cell expression profile of FOLR1 in the GSE131907 dataset.
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