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a b s t r a c t 

An improved method for detecting abnormal oceanic in situ temperature and salinity (T/S) profiles is developed. 

This procedure extends previous method developed by Udaya Bhaskar et al. [2017]. 

This method utilizes World Ocean Atlas 2013 gridded climatology which is on 0.25 ° x 0.25 ° resolution to 

build α convex hulls. These α shapes are then used to categorize good and bad in situ T/S data profiles. This 

extended method classify the entire profiles instead of data for standard depths to avoid any errors introduced 

by interpolation to standard depths. Like in previous method, an ’n’ sided polygon (convex hull) encompassing 

the T/S profile data is constructed using Jarvis March algorithm and Points In Polygon (PIP) principle is employed 

to judge the profile as good or bad. Extensive sensitivity experiments were done for arriving at the optimal α
value such that false positives and true negatives are minimized. All types of issues associated with the in situ 

oceanographic data are identified and quality flag assigned. Examples of this improved method as applied to few 

Argo floats are presented. 

• The T/S profiles corresponding to region of interest are used to build α convex hulls. 
• This extended method can be effectively used for quality control of entire profile and clearly demarcate the 

profile as good/bad. 
• This method has the advantage of treating bulk of oceanographic in situ profiles data in a single go which 

filters out erroneous profile data from the good. 
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Specifications Table 

Subject area: Earth and Planetary Sciences 

More specific subject area: Physical oceanography 

Method name: α convex hulls for detecting spurious in situ profiles. 

Name and reference of 

original method: 

Convex hull method: udaya bhaskar, T.V.S., Seshu, R.V., Timoty, P. Boyer, Rama Rao, E.P., 

2017: Quality control of oceanographic in situ data from Argo floats using 

climatological convex hulls, 4, MethodX, 469 - 479. doi.org/10.1016/j.mex.2017.11.007 . 

Jarvish March algorithm: Jarvis, R. A., 1973: On the identification of the convex hull 

of a finite set of points in the plane, Information Processing Letters, 2, 18–21. 

doi: 10.1016/0020-0190(73)90020-3 . 

Point-in-Polygon: Implemented using Ray Casting Algorithm. 

Jordan Curve Theorem: Jordan, C., 1893: Cours D’Analyse de l’ Ecole Polytechnique, 

Paris, second edition. 

Resource availability: World Ocean Atlas 2013. https://www.nodc.noaa.gov/OC5/WOA13/ 

Submission: Direct submission 

Method details 

Background 

Argo floats are autonomous CTD profiling floats that drift freely with the sub-surface ocean 

currents at prescribed parking depths and map temperature and salinity data from a profiling depth

to the sea surface at preset time intervals. While the float rises to the surface of the ocean, it

measures profiles of conductivity (C) and temperature (T) versus pressure through the water column. 

This measured temperature and salinity data are reported to various receiving centers via satellites 

and the autonomous floats sink back to its preset parking depth and continue their new cycles. The

Argo program aims to deploy 30 0 0 such autonomous profiling floats with a target profiling depth of

20 0 0 m to observe temperature and salinity within the upper layers of the global ocean, and currents

at the parking depths. Each profiling float is expected to have a mean lifespan of ~ 4 years giving

good measurements of temperature and pressure, with issues arising with salinity measurements 

owing to biofouling and other problems [10] . Since the inception of the Argo program in 1999,

the geographic distribution of oceanographic T/S profiles data has become more uniform. Abundant 

data obtained from these profiling floats is being used in operational ocean models, enhancement to

existing climatologies [1] and generation of value added products [8] . 

The oceanic environment is generally harsh for electronic sensors used for mapping, thus making it

inevitable to have some spurious measurements. A trustable dataset of observations requires a quality 

control (QC) procedure capable of detecting spurious data. While manual QC by human experts in the

field of ocean sciences minimizes errors, it is incompetent to handle large datasets and vulnerable

to inconsistencies between different experts. Udaya bhaskar et al. [9] originally proposed a method

for performing quality control of in situ data from Argo floats using climatological convex hulls. This

method was developed to detect outliers in the profiles measured by Argo profiling floats. However

the method proposed to use a convex hull built to individual standard depth levels, requires the

observed profiles to be interpolated. This might introduce some error due to interpolation. Also if

the spike in the profile data happens to lie between the standard depth they could go unnoticed. In

view of this, here we present further improvements to the originally proposed method by using an

α convex hull for the entire profile instead of at standard depths. The two main state variables of

the ocean, potential temperature, and salinity, S , are related to each other by definite patterns that

represent the mean characteristics of a region (e.g., [3 , 11] ). This relation between temperature and

https://doi.org/10.1016/j.mex.2017.11.007
https://doi.org/10.1016/0020-0190(73)90020-3
https://www.nodc.noaa.gov/OC5/WOA13/
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alinity (T/S) is used for detecting the erroneous profiles mapped by the profiling floats by building α
hapes of T/S profiles. 

From examination of many Argo floats, it is clear that the erroneous data or outlier might occur

nywhere in the profile and might not be picked up easily by building the convex hull to respective

tandard depths. Drift in the salinity can be observed only by comparing long term data sets from

 single float over a period of one year. TBTO (tributyltinoxide) is used to protect the conductivity

ell from biofouling. However, the cell itself can sometimes get contaminated by TBTO, thus resulting

n fresh salinity offsets. Usually the TBTO contamination is flushed out after several profiles, and

he salinity measurements will return to being correct [7] . The initial profiles appearing to be fresh

ompared to later profiles owing to Tri-Butyl Tin Oxide (TBTO) may not be effectively observed in

onvex hulls built to individual depths. Also, from the experience of handling floats since long, it

as observed that temperature and pressure sensors are found to be robust. It is only the salinity

ensors mounted on Argo floats which are susceptible to degradation owing to bio-fouling [10] . The

onductivity cell is more susceptible to fouling and associated drift because of the possible change in

he dimension of the conductivity cell due to fouling. 

uilding the α shapes of T/S profiles 

In computational geometry, α-shape is a family of piecewise linear simple curves in the Euclidean

lane associated with the shape of a finite set of points. The concept of alpha shape was first defined

y Edelsbrunner et al. [2] . The alpha-shape associated with a set of points is a generalization of the

oncept of the convex hull, i.e. every convex hull is an alpha-shape but not every alpha shape is a

onvex hull. Fig. 1 gives an illustration of convex hull, α shape and minimal spanning tree. When α is

ero, the shape attains the form of minimal spanning tree and when α is infinity the shape turns out

o be a convex hull. One needs to fine tune the α such that the resultant figure is neither convex hull

or minimal spanning tree. With this understanding α is fine tuned and α shape were built based on

he observations of (i) Temperature vs. Depth, (ii) Salinity vs. Depth and (iii) Temperature vs. Salinity.

nce the α shapes are built they are used for detecting and eliminating anomalous profiles either

artly of fully. 

The T/S data from World Ocean Atlas 2013 on 0.25 ° x 0.25 ° resolution was taken and the α shapes

f T/S were built for each month, season and annual scale. An ’ n ’ sided polygon ( α shape) with the

east area encompassing all the points is constructed using the Jarvis March algorithm [4] . The α
onvex hulls are built based on an optimal α value fixed, such that the area encompassed by the

onvex hull is least and either minimal or no points of climatological T/S points are left out during its

onstruction. The final α value used for building the convex hulls (monthly, seasonal and annual)

s arrived after an exhaustive iterative process which is also passed through visual inspections to

inimize the points being left out of the polygon. Extensive sensitivity experiments were done for

rriving at a α, which will provide equal number of false positives and true negatives. Fig. 2 shows

he sensitivity experiments done with α and the resulting points falling within α shape ( Fig. 2 a) and

he area of α shape ( Fig. 2 b). 

From the figure one can observe that as α increases, the number of points falling out/left out

ecreased. After a certain value of α, there seems to be no changes in the number of points left out

nd the curve looked more or less flat. Using such sensitivity experiments α values were derived for

ll the months, seasons and annual climatological data sets. These α values are then used to construct

he α convex hulls which were eventually used to detect anomalous T/S profiles obtained from various

n situ sources. The methods for classification of the good and bad profiles is somewhat similar to

hat is proposed by Udaya Bhaskar et al. [9] and as described below. 

mplementation methodology 

The principle of α convex hull and Point In Polygon (PIP) implemented using Ray Casting Algorithm

6] are together used to identify good vs bad T/S profiles. The steps for application of the improved

ethod is as follows: 
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Fig. 1. Example of (a) Convex hull, (b) Alpha shape and (c) minimal spanning tree associated with a set of points pertaining to Argo float trajectory. 



R.V. Shesu, T.V.S.U. Bhaskar and E.P.R. Rao et al. / MethodsX 8 (2021) 101337 5 

Fig. 2. Sensitivity experiments of α using WOA13 climatology data. (a) Percentage number of T/S data points observed to be 

falling out of α shape built using T/S, with increasing values of α. (b) Area extent of the α shape with increasing value of α. 

Fig. 3. α shape (convex hull) of annual T/S profiles from WOA13. Good profile falling within α shape is shown in blue color 

and anomalous profile falling outside α shape is shown in red color. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 1 

Details of the floats chosen for validation of α convex hull method. 

S.No WMOID First Cycle Last Cycle Total Cycles Ocean Basin Type of problem 

1. 2900782 22/06/2007 07/01/2012 167 Arabian Sea, Indian Ocean None 

2. 2900877 11/09/2007 04/09/2012 183 Arabian Sea, Indian Ocean TBTO Fouling 

3. 2900554 06/09/2005 27/06/2009 279 Arabian Sea, Indian Ocean Salinity drift 

4. 390 0 059 12/10/2001 30/09/2002 37 Pacific Ocean Salinity drift 

5. 6901565 05/06/2014 01/05/2019 180 Atlantic Ocean Salinity drift 
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Fig. 4. (a) Trajectory of the float 2900782 during its lifetime. (b) Observed profiles from Argo float overlaid on T/S α convex 

hull built from annual WOA13 profiles falling within the float trajectory. (c) Observed Salinity profiles from Argo float overlaid 

on Salinity-Depth α convex hull built from annual WOA13 profiles falling within the float trajectory. (d) Same as that of (c) for 

Temperature profiles. 

 

 

 

 

 

(1) The trajectory of observed Argo temperature and salinity profiles are obtained and region of 

interest (ROI) is defined. ROI is also defined as the optimal convex hull (alpha shape) which

contain the trajectory of the Argo float observations. 

(2) Use annual World Ocean Atlas (2013) temperature and salinity profile data corresponding to 

this ROI and build a T/S α convex hull with least area encompassing the mean ± 2 ∗standard

deviation fields of temperature and salinity profile fields. 

(3) Subsequently the PIP algorithm implemented using Ray Casting Algorithm [6] is used to check

if the observed temperature and salinity profile (obtained in step 2) falls within or outside this

climatological T/S α convex hull. 

(4) Set the quality flags as good(bad) for data falling within(outside) the α convex hull there by

identifying erroneous profile data as shown in Fig. 3 . 
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Fig. 5. (a) Trajectory of the float 2900877 during its lifetime. (b) Observed profiles from Argo float overlaid on T/S α convex hull 

built from annual WOA13 profiles falling within the float trajectory. Blue indicates good and red indicates outlier. (c) Observed 

Salinity profiles from Argo float overlaid on Salinity-Depth α convex hull built from annual WOA13 profiles falling within the 

float trajectory. (d) Same as that of (c) for Temperature profiles. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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The climatology used for the proposed method is the gridded fields of temperature [5] and

alinity [12] and their standard deviation fields obtained from World Ocean Atlas 2013 (WOA13) of US

ational Oceanographic Data center (NODC). These climatological mean and standard deviation fields

re then used to build polygons ( α convex hulls) of Temperature Vs Salinity, Temperature vs Depth

nd Salinity Vs Depth. The process of interpolating T/S profiles in situ data to standard depths was

liminated, as full length profiles are considered for quality check instead of data corresponding to

tandard depths, as proposed in earlier work [9] . Jarvis March (1973) algorithm which is also popularly

alled as gift wrapping algorithm was employed for building these α convex hulls corresponding to

onths, seasons and annual data sets. The T/S profiles from in situ platforms are checked to see if

hey are falling within the corresponding α convex hull obtained from WOA13 climatology for that
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Fig. 6. Same as that of Fig. 5 but for the float with WMO 2900554. 

 

 

 

 

 

 

 

 

corresponding month, season and annual. PIP algorithm was employed to see if the profile data is

falling inside or outside. As with the previous method, this method also has a complexity of O(nh)

where n is the number of points and h is the number of points on the α convex hull. For more

details on how the algorithm was used for building the α convex hull for individual standard depths,

kindly refer to Udaya Bhaskar et al. [9] . 

Validation of the proposed method 

Offsets, freshening due to Tri-Butyl Tin Oxide (TBTO), drift after a set of cycles are some of the well

noted problems with salinity sensors. Accordingly the α convex hulls obtained using T/S are used for

checking the quality of salinity data in this section. All the climatological temperature and salinity

profiles falling within the region encompassing the float trajectory are obtained from WOA13 and 

α convex hulls are built using the Jarvis March algorithm. Observed Argo float profiles are checked
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Fig. 7. Same as that of Fig. 5 but for the float with WMO 390 0 059. 
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gainst these n-sided α convex hulls (polygon) using the PIP algorithm. If any of the data points

appen to fall outside the α convex hulls, the Argo profiles are suspected to have a problem (drift,

ias, spike etc.). Because the climatology is thoroughly quality controlled by experts and has a large

umber of observations spanning decades, a float is suspected to have a problem if the profiles of

emperature and salinity fall outside the n-sided polygon. 

To demonstrate the robustness of the proposed method, 5 typical floats are chosen from different

cean basins (Pacific Ocean, Atlantic and Indian Ocean) which represent a float with no problems

good float) and floats with problems like drift, TBTO fouling etc. The details of the floats chosen

or the validation are given in the Table 1 . To demonstrate the robustness of the proposed method,

arious anomalous floats were considered. 

The first float with WMO 2900782 was deployed in central Arabian Sea and it is observed to be

onfined to 5 ° x 5 ° region and measured 167 T/S profiles in total. This float is typical example of

ood float which did not have any anomalous observations throughout its life time. Accordingly one

an see all the profiles falling inside the n-sided polygon ( Fig. 4 b), thereby indicating that the float
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is good and no issues are encountered with the sensors. The salinity profiles are also observed to be

fully falling inside the α convex hull built from annual WOA13 salinity profiles ( Fig 4 c). None of the

temperature profiles are observed to be falling outside the α convex hull built from annual WOA13

temperature profiles ( Fig 4 d). Overall the method proves the float to be good which is matching to

those flags set to the data available from Global Data Assembly center. 

The second float with WMO 2900877 was deployed in Arabian Sea near to Socotra island and

it moved south eastward and measured 183 T/S profiles in total ( Fig 5 a). This float is observed

to be contaminated by TBTO fouling which is clearly evident from the initial few profiles which

are represented by fresher salinity values. Sometimes this causes erroneous freshening in the initial 

profiles until the coating is washed off. Clearly one can see all the initial profiles falling outside the

n-sided polygon ( Fig. 5 b), thereby indicating the case of the TBTO contamination. This is also clearly

seen in salinity profiles falling outside the α convex hull build from annual WOA13 salinity profiles

( Fig 5 c). Few temperature profiles are also observed to be falling outside the α convex hull built from

annual WOA13 temperature profiles ( Fig 5 d). 

The third example is the float with WMO 2900554 which was deployed in the northern Arabian

Sea north of Oman. This float is also observed to move south eastward and measured 279 T/S profiles

during its lifetime ( Fig 6 a). Its salinity started to drift starting from cycle 200 onwards ( Fig 6 b)

indicated by the red dots falling outside the α convex hull built from WOA13 ( Fig 6 c). All the salinity

profiles corresponding to these cycles are set to quality flag 4 indicating bad quality. The temperature

profiles are also observed to be having many outliers ( Fig 6 d) indicating bad quality. 

The fourth example is the float with WMO 390 0 059 which was deployed in the Pacific Ocean

north of Equator. This float is observed to move north eastward and measured 37 T/S profiles during

its lifetime ( Fig 7 a). Its salinity started to drift starting from the fourth cycle onwards and all salinity

profiles are observed to be having drift compared to all the nearby buddies. Accordingly all the salinity

profiles starting from cycle 5 corresponding to the float are observed to be falling outside the n-sided

polygon ( Fig. 7 c). Very few spurious values corresponding to temperature are observed ( Fig 7 d). 

The last float chosen for testing the method is from the Atlantic ocean with WMO 6901565. This

float was deployed northwest of Spain and was confined within 5 ° longitude, latitude box ( Fig 8 a)

and measured 180 profiles during its lifetime. This float is found to have drift in salinity which

can be observed by the salinity profiles falling outside the α convex hull built from annual WOA13

( Fig 8 c). Few temperature profiles are also observed to be bad falling outside the α convex hull

( Fig 8 d). 

The sample floats used for testing the proposed method are only an illustration of some possible

cases of anomalous behavior of salinity and temperature sensors. This method can also be effectively

used to detect spike, offsets in all types of profile data. The method need to be tested thoroughly for

complex regions with multiple water masses though initial results showed that the method works 

hassle free. Further if a floats moves to quite long distance, the homogeneity of the water need to

tested and if needed different T/S convex hulls corresponding to different water masses/basins need 

to derived and tested for those sets of profiles falling in that region. This new/improved method is

definitely a significant improvement over the originally proposed method by Udaya Bhaskar et al. 

[9] as it treats the whole observed profile and eliminates the possible error that might creep in due to

interpolation. The applicability of the method for different ocean basins demonstrate the usefulness of 

the proposed method for identifying bad profiles over the global ocean to the extent possible thereby

minimizing manual invention by experts. The big advantage of using the α convex hull method 

is its applicability to handle bulk amounts of profile data from any oceanic basis. As it is nearly

impossible for experts to visually check the correctness of individual profiles, this method can be used

to detect good against bad profiles. The profiles rejected by this method can be passed through visual

inspection by experts making their task simpler and better. However this method needs climatology to

be updated continuously for obtaining the best possible α convex hulls for performing outlier analysis. 

Further, this method can be augmented with other methods in use by the oceanographic community

to make the data research quality and to be used for various applications. 
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Fig. 8. Same as that of Fig. 5 but for the float with WMO 6901565. 
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