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Abstract: Accumulation of reserve compounds (i.e., lipids and chrysolaminarin) in diatoms
depends on the environmental conditions, and is often triggered by stress conditions, such as
nutrient limitation. Manipulation of CO2 supply can also be used to improve both lipids and
carbohydrates accumulation. Given the high diversity among diatoms, we studied the two marine model
diatoms—Thalassiosira pseudonana and Phaeodactylum tricornutum, a freshwater diatom, Asterionella formosa,
and Navicula pelliculosa—found in fresh- and sea-water environments. We measured the accumulation
of reserve compounds and the activity of enzymes involved in carbon metabolism in these diatoms
grown at high and atmospheric CO2. We observed that biomass and lipid accumulation in cells
grown at high CO2 differ among the diatoms. Lipid accumulation increased only in P. tricornutum
and N. pelliculosa grown in seawater in response to elevated CO2. Moreover, accumulation of
lipids was also accompanied by an increased activity of the enzymes tested. However, lipid
accumulation and enzyme activity decreased in N. pelliculosa cultured in fresh water. Chrysolaminarin
accumulation was also affected by CO2 concentration; however, there was no clear relation with lipids
accumulation. Our results are relevant to understand better the ecological role of the environment
in the diatom adaptation to CO2 and the mechanisms underpinning the production of storage
compounds considering diatom diversity.
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1. Introduction

Diatoms are important primary producers in fresh and seawater environments. They contribute up
to 20% of global CO2 fixation [1]. Carbon partition in diatoms involves the production of carbohydrates,
specifically the soluble carbohydrate chrysolaminarin, and lipids (as triacylglycerols; TAGs) as main
storage compounds [2]. Chrysolaminarin is stored in the vacuole [3], while lipids are accumulated in
diatoms mainly as oil bodies in the cytoplasm and, in less amounts, in the chloroplasts [4].

Lipid production in microalgae has gained increasingly attention for their potential in industrial
applications, including the production of third generation biofuels [5–7] and pharmaceutical and
cosmetical products [8]. Lipid accumulation in some microalgae species can reach up to 73% of their
dry weight and show higher productivities compared to crop plants [9,10]. Within microalgae species,
diatoms have emerged as a good source of lipids because of their exceptional photosynthetic efficiency
and their ability to accumulate high amounts of lipids in many different culture conditions [6,11–13].

Several studies show that lipids can accumulate in diatoms after mild or acute nutrient deprivation,
generally at the expense of a decrease in biomass [14,15]. Increase in lipid accumulation after nitrogen
starvation has been observed in some diatom species, such as Phaeodactylum tricornutum, Chaetoceros muelleri,
and Thalassiosira weissflogii [16,17]. Other nutrient limitation stresses involved in an increased lipid
accumulation are phosphorous and silicon deprivation [17,18]. In Chaetoceros gracilis, a combined mild
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deprivation of both silicon and sodium chloride produced a lipid accumulation reaching up to 73% of
the total cell dry weight [10]. Other approaches to enhance lipid production in diatoms involve the use
of phytohormones and other hormone-derived compounds [19,20], as well as the pharmacological
modulation of signaling pathways involved in the synthesis of lipids [20,21]. In addition, thanks to the
new molecular engineering approaches in diatoms, it is also possible to enhance lipid accumulation in
these organisms by genetic transformation. For instance, overexpression of several genes involved in
the biosynthesis of TAGs can increase lipid accumulation in P. tricornutum (reviewed in [18]). It can be
expected that metabolic engineering will be more widely used as more sequences of diatom genomes
become available.

Chrysolaminarin has been less studied compared to lipids, however there is a growing interest
in its production because of its potential biotechnological applications, including its antioxidant and
immunomodulatory effects in aquaculture, as well as its antitumor effects in human cancer [22–24].
In the diatom Skeletonema costatum under severe nutrient deprivation and subsaturating light intensity,
it has been shown that chrysolaminarin can accumulate up to 80% [25].

CO2 is essential for diatom growth and metabolism and since the synthesis of storage compounds
requires a carbon supply, it is likely that increased carbon availability might also improve lipid
accumulation. In agreement with this hypothesis, some studies have shown that diatoms accumulate
more lipids under high CO2 conditions [26–28]. In fact, the mechanisms of carbon capture and
assimilation have been studied for many years [29], for instance, the CO2-concentrating mechanisms
(CCMs), which involve bicarbonate transporters and carbonic anhydrases whose expression is often
modulated by environmental CO2 concentrations [30–32]. However, the effect of CO2 on biomass and
lipid accumulation is yet poorly understood and is also overlooked on chrysolaminarin production.
Furthermore, carbon fixation and metabolism is a tightly regulated process and diatom regulation of
CO2 fixation (i.e., the Calvin–Benson–Bassham cycle) differs in many aspects from that of green algae
and land plants [33]. In addition, to date, most studies regarding the effects of CO2 and the production
of storage compounds in diatoms have been done on marine species, and much less is known about
freshwater species.

Diversity makes diatoms attractive models to study their capacity to produce either lipids or
carbohydrates and we therefore studied different species. In this work, we studied four diatom species,
the two most explored diatoms living in seawater environment: the centric (Thalassiosira pseudonana)
and the pennate (Phaeodactylum tricornutum) diatom; in parallel, we also studied the pennate freshwater
diatom Asterionella formosa and a pennate species capable to grow both in seawater and in freshwater
environments (Navicula pelliculosa). We analyzed the production of their main storage compounds at
two different CO2 concentrations (400 and 20,000 ppm).

2. Materials and Methods

2.1. Strains and Culture Conditions

Thalassiosira pseudonana Hasle & Heim., strain CCMP1335 subcultured in the lab since 2013,
Phaeodactylum tricornutum Bohlin, strain CCMP2561, and Navicula pelliculosa (Brébisson ex Kützing)
Hilse, strain CCAP 1050/9, were grown in artificial sea water enriched with Guillard’s “F/2” nutrients
plus silicon (F/2+Si) as described previously [34]. The diatom N. pelliculosa was also cultured in a
freshwater medium in the absence of NaCl and KCl, and NaH2PO4·2H2O (0.036 mM) was replaced by
KH2PO4 (0.036 mM). Asterionella formosa Hassal, isolated from the English Lake District (Esthwaite
Water; strain BG1), was grown in Diatom Medium (DM) as described [19]. Cultures were maintained at
18 ◦C in a growth cabinet (Innova 4230; New Brunswick Scientific, Edison, NJ, USA) with continuous
light at 50 µmol photon m−2 s−1, constantly shaken at 90 rpm, and bubbled with air containing either
400 ppm or 20,000 ppm CO2 at a gas flow rate of 320 mL min−1 L−1 of culture. For growth curves,
optical density was followed at 750 nm using a Perkin Elmer Lambda 25 UV/VIS spectrophotometer
(Waltham, MA, USA).



Biology 2020, 9, 5 3 of 17

2.2. Biomass Determination

Twenty-five to 50 mL of cell culture were filtered using a 0.45 µm nylon filter membrane
(Merck-Millipore, Burlington, MA, USA), then dried overnight in an oven at 60 ◦C. Cell dry biomass
was determined by the difference in the weight of the dried membrane versus the same membrane
before filtering cells. Biomass productivity was determined as in Hempel et al. [35], using the formula
Pbiomass (mg L−1 day−1) = (X2 −X1)·(t2 − t1)−1, where X2 and X1 correspond to the biomass concentration
(mg L−1) at the end (t2) and start (t2) time of cultivation, respectively.

2.3. Lipid Extraction and Measurement

Lipids were extracted as previously mentioned in [21]. Diatom cultures of 250 mL were harvested
by centrifugation at 3500 g for 20 min. Pellets were immediately resuspended in 2–3 mL of a
chloroform/methanol solution (2:1, v/v) plus 0.2 mL of 1 N HCl and kept at −20 ◦C in glass vials.
To complete lipid extraction, samples were mixed with one volume of ultrapure H2O and vortexed
vigorously. The mixtures were centrifuged at 1000× g for 5 min at 4 ◦C to fully separate the two phases.
The lower (organic) phase was recovered and washed once with a NaCl-saturated solution, followed by
centrifugation at 3500× g for 20 min and the organic phase was recovered again. The lipid-containing
organic phase was finally transfer to a glass vial for storage (−20 ◦C). Neutral lipids were separated by
thin layer chromatography on silica-coated rods (SIII Chromarods) and detected by flame ionization
using a MK-6 Iatroscan TLC-FID apparatus (Iatron Laboratories, Tokyo, Japan) as described previously
in [36]. Data acquisition and processing was performed with the i-Chromstar 6.3 integration software
(SCPA GmbH, Bremen, Germany). The amount of TAGs was estimated from a calibration curve.
Lipid productivity (mg TAGs L−1 day−1) was calculated as Pbiomass·Cf, where Pbiomass is the biomass
productivity, calculated as shown above, and Cf corresponds to the final concentration of TAGs at
exponential or stationary phase.

2.4. Chrysolaminarin Measurement

Chrysolaminarin was measured according to the method performed by Granum and Myklestad [37]
with some modifications. Briefly, 2 mL of cell culture were centrifuged at 3500× g for 15 min at 4 ◦C. Cell
pellet was resuspended in a solution of 50 mM H2SO4 and incubated 1 h at 60 ◦C. The suspension was
then centrifuged at 16,000× g for 10 min at room temperature. The supernatant was recovered and put
in an oven at 60 ◦C. Dried samples were resuspended in 1 mL of concentrated H2SO4 and 30 µL of a
fresh solution of 3% phenol and incubated at 85 ◦C for 1 h. Absorbance was measured at 493 nm and
chrysolaminarin content was calculated using a calibration curve with glucose as standard. Cells were
counted prior to chrysolaminarin extraction and measurement, using a hemocytometer (improved
Neubauer chamber).

2.5. Protein Extraction

Cultures of 250–500 mL were centrifuged at 3500× g for 10 min at 4 ◦C. Pellets were resuspended
in buffer 20 mM TRIS, 50 mM NaCl (pH 8), plus lysozyme (final concentration: 40 µg mL−1) and
a protease inhibitor cocktail (Sigma®, St. Louis, MO, USA; Concentrations: 2 mM AEBSF, 0.3 µM
Aprotinin, 116 µM Bestatin, 14 µM E-64, 1 µM Leupeptin, and 1 mM EDTA). Cells were broken using
an ultrasonicator (Sonics & Materials Inc, Vibracell, Bioblock, Danbury, CT, USA) with four cycles
consisting of 10 pulses followed by 1 min pause (40% power, 60% pulse). Lysates were centrifuged at
16,000× g for 30 min at 4 ◦C and the supernatant was collected and kept at −80 ◦C for further analysis.
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2.6. Enzyme Activity Measurements

Prior to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) measurements, bisphosphoglyceric
acid (BPGA) was synthesized. BPGA synthesis was performed as follows: a reaction containing
phosphoglyceric acid (PGA; 66 mM), 33 mM ATP and ~4.5 units of phosphoglycerate kinase (PGK)
was incubated in glycyl-glycine buffer (50 mM glycyl-glycine, 0.5 mM EDTA, 15 mM MgCl2, 50 mM
KCl, pH 7.7) for 20 min at 30 ◦C. To determine GAPDH activity the consumption of NADPH to NADP+

(ε340 nm = 6 220 M−1 cm−1) was followed using a Perkin Elmer Lambda 25 UV/VIS spectrophotometer
(Waltham, MA, USA) at 340 nm in a reaction mix containing 50 µL of the freshly prepared BPGA,
0.2 mM NADPH, and 2–20 µL of protein crude extract in a total volume of 1 mL in buffer. Additionally,
dithiothreitol (DTT) might be added at 5 mM final concentration for redox assays.

Phosphoglycerate kinase (PGK) activity was measured indirectly by coupling the PGK-mediating
synthesis of BPGA to the NADH-consuming GAPDH-mediated synthesis of glyceraldehyde
3-phosphate (G3P). The reaction mix contained 1 mM ATP, 2 mM PGA, 0.15 mM NADH, and 0.5 unit
of rabbit GAPDH in a total volume of 1 mL. PGK activity was related to NADH consumption followed
at 340 nm as previously.

For pyruvate kinase (PK) activity, the conversion of phosphoenolpyruvate (PEP) to pyruvate
catalyzed by PK was coupled to lactate production by the lactate dehydrogenase (LDH), which
produces lactate using pyruvate as substrate, and consuming NADH. The reaction mix contained
5 mM PEP, 0.2 mM NADH, 2 units of LDH, and 1 mM ADP in a total volume of 1 mL, and NADH
consumption was followed at 340 nm.

2.7. Statistical Analysis

Unpaired t-test analysis was performed to compare two group of samples using Graphpad
Prism 6 software. Three independent biological replicates were done for each experiment, unless stated
otherwise in the main text or figure legends, and comparisons done between groups of cells grown at
high CO2 versus low CO2.

3. Results

3.1. Growth and Biomass as Response to High CO2

The growth of seawater and freshwater diatom species grown at atmospheric CO2 (400 ppm;
low) or at high CO2 (20,000 ppm) was followed by measuring the optical density of the cultures at
750 nm (Figure 1).From all diatom species studied, the growth of A. formosa was the most affected
in cells grown at high CO2 and the calculated growth rate was 0.57 ± 0.09 day−1 at high CO2 and
0.26 ± 0.02 day−1 at low CO2. In contrast, the growth rate of the other diatom species did not show
significant differences (not shown) and their growth curves were only slightly or even not affected by
CO2 (Figure 1). Nonetheless, we observed that the growth of T. pseudonana cells cultured at high CO2

was arrested after six days with a concomitant strong cell flocculation and precipitation, impeding the
continuity of these cultures.

Biomass productivity was significantly increased only in T. pseudonana in the stationary phase and
in N. pelliculosa grown in sea water in both exponential and stationary phase as response to high CO2

(Table 1).
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Figure 1. Growth curves of diatoms (a–e) grown at low (400 ppm; black and solid lines) or high (20,000 
ppm; red and dotted lines) CO2. Each point represents the average (n = 3) ± SD. 
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Diatom Species Growth Phase 
CO2 

Concentration 
(ppm) 

Biomass 
Productivity 

(mg L−1 day−1) * 

TAG Productivity 
(µgTAG L−1 day−1) * 

Percentage of 
TAGs (DW) * 

T. pseudonana 
Exponential 

400 61.7 ± 7.0 11.8 ± 3  2.3 ± 1.0 
20,000 68.6 ± 9.0 45.5 ± 26 5.3 ± 4.2 

Stationary 
400 45.3 ± 3.0 13.6 ± 2 5.5 ± 3.3 

20,000 55.8 ± 2.0 b↑  19.0 ± 5 7.2 ± 5.3 

P. tricornutum 
Exponential 

400 28.5 ± 4.0 3.36 ± 1 0.67 ± 0.65 
20,000 36.7 ± 6.0 8.47 ± 7 1.2 ± 1.4 

Stationary 
400 51.0 ± 4.0 50.2 ± 15 10.1 ± 3.6 

20,000 56.9 ± 1.0 75.7 ± 9 13.5 ± 1.3 

N. pelliculosa 
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Exponential 
400 40.7 ± 4.0 0.03 ± 1 - 

20,000 49.3 ± 3.0 a↑  1.09 ± 1 0.22 ± 0.2 

Stationary 
400 48.8 ± 5.0 117.4 ± 12 25.7 ± 3.0 

20,000 58.6 ± 1.0 b↑  158.4 ± 29 b↑  27.0 ± 0.8 

N. pelliculosa 
(freshwater)  

Exponential 
400 42.8 ± 13.0 44.9 ± 10 11.5 ± 5.0 

20,000 47.6 ± 12.0 55.8 ± 6 12.0 ± 1.8 

Stationary 400 45.1 ± 8.0 142.3 ± 12 32.0 ± 5.0 
20,000 38.2 ± 1.0 97.25 ± 5 b↓  25.5 ± 0.7 

A. formosa 
Exponential 

400 6.4 ± 1.0 1.43 ± 0.4 2.2 ± 0.3 
20,000 5.6 ± 2.0 1.08 ± 1.7 1.4 ± 2.0 

Stationary 
400 2.3 ± 1.0 0.01 ± 0.003  0.06 ± 0.01 

20,000 2.5 ± 4.0 0.40 ± 0.8 1.7 ± 0.3 

* All data is shown as average (n = 3) ± SD. a Significant difference between high and low CO2 in 
diatoms at exponential phase for a given species. b Significant difference between high and low CO2 
in diatoms at stationary phase for a given species. ↑ and ↓ indicate increase or decrease, respectively. 
DW: Dry weight. 
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Figure 1. Growth curves of diatoms (a–e) grown at low (400 ppm; black and solid lines) or high (20,000
ppm; red and dotted lines) CO2. Each point represents the average (n = 3) ± SD.

Table 1. Biomass and lipid (TAG) productivity and content in diatoms grown at different CO2 concentration.

Diatom
Species

Growth
Phase

CO2 Concentration
(ppm)

Biomass Productivity
(mg L−1 day−1) *

TAG Productivity
(µgTAG L−1 day−1) *

Percentage of
TAGs (DW) *

T. pseudonana
Exponential 400 61.7 ± 7.0 11.8 ± 3 2.3 ± 1.0

20,000 68.6 ± 9.0 45.5 ± 26 5.3 ± 4.2

Stationary 400 45.3 ± 3.0 13.6 ± 2 5.5 ± 3.3
20,000 55.8 ± 2.0 b

↑ 19.0 ± 5 7.2 ± 5.3

P. tricornutum
Exponential 400 28.5 ± 4.0 3.36 ± 1 0.67 ± 0.65

20,000 36.7 ± 6.0 8.47 ± 7 1.2 ± 1.4

Stationary 400 51.0 ± 4.0 50.2 ± 15 10.1 ± 3.6
20,000 56.9 ± 1.0 75.7 ± 9 13.5 ± 1.3

N. pelliculosa
(seawater)

Exponential 400 40.7 ± 4.0 0.03 ± 1 -
20,000 49.3 ± 3.0 a

↑ 1.09 ± 1 0.22 ± 0.2

Stationary 400 48.8 ± 5.0 117.4 ± 12 25.7 ± 3.0
20,000 58.6 ± 1.0 b

↑ 158.4 ± 29 b
↑ 27.0 ± 0.8

N. pelliculosa
(freshwater)

Exponential 400 42.8 ± 13.0 44.9 ± 10 11.5 ± 5.0
20,000 47.6 ± 12.0 55.8 ± 6 12.0 ± 1.8

Stationary 400 45.1 ± 8.0 142.3 ± 12 32.0 ± 5.0
20,000 38.2 ± 1.0 97.25 ± 5 b

↓ 25.5 ± 0.7

A. formosa
Exponential 400 6.4 ± 1.0 1.43 ± 0.4 2.2 ± 0.3

20,000 5.6 ± 2.0 1.08 ± 1.7 1.4 ± 2.0

Stationary 400 2.3 ± 1.0 0.01 ± 0.003 0.06 ± 0.01
20,000 2.5 ± 4.0 0.40 ± 0.8 1.7 ± 0.3

* All data is shown as average (n = 3) ± SD. a Significant difference between high and low CO2 in diatoms at
exponential phase for a given species. b Significant difference between high and low CO2 in diatoms at stationary
phase for a given species. ↑ and ↓ indicate increase or decrease, respectively. DW: Dry weight.

3.2. Storage Compounds (TAGs)

As expected, TAG accumulation in the stationary phase was higher than in the exponential phase
for most studied diatoms, except for the freshwater diatom, A. formosa (Figure 2e, Table 1). At high
CO2 TAG productivity, in the stationary phase, for P. tricornutum and N. pelliculosa cultured in seawater
medium significantly increased by 1.7-fold and 1.4-fold, respectively (Figure 2b,c), while production of
TAGs was barely present in the exponential phase regardless of the CO2 treatment. In contrast, in the
exponential phase, N. pelliculosa cultured in freshwater medium accumulated higher levels of TAG
than in the seawater medium, with no significant difference between high and low CO2. On the other
hand, in the stationary phase, N. pelliculosa grown under high CO2 had lower TAG content compared
to low CO2 (Figure 2d), contrary to what was observed in N. pelliculosa grown in seawater medium
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(Figure 2c and Table 1). In T. pseudonana, TAG accumulation was not significantly affected by high
or low CO2 neither at the exponential nor at the stationary phase (Figure 2a). TAG production in
A. formosa was much lower than those of the other diatoms analyzed, and of interest, there was no
TAG accumulation in the stationary phase of cells grown at low CO2 (Figure 2e).
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3.3. Storage Compounds (Chrysolaminarin)

The contents of the carbohydrate chrysolaminarin in the diatom species studied were different
and ranged from ~1 to up to 40 pg cell−1 (Figure 3). In T. pseudonana, the chrysolaminarin content
from the cells grown at high CO2 compared to low CO2 significantly decreased by 0.38- and 0.44-fold
in the exponential and stationary phase, respectively, (Figure 3a). In contrast, in P. tricornutum, the
chrysolaminarin production was similar in the exponential phase of cells grown at low or high CO2;
however, a significant 1.5-fold increase was found in the stationary phase of cells grown at high CO2

(Figure 3b). Only a 4.4- and 2.6-fold increase in the stationary phase, compared to the exponential
phase, was observed in N. pelliculosa grown either in seawater or in freshwater medium, respectively,
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with no effect of CO2 concentration in neither of the two cultures (Figure 3c,d). A. formosa accumulated
up to 40 pg of chrysolaminarin cell−1 at low CO2 and a strong 65% reduction was observed in cells
grown at high CO2 versus low CO2 at the exponential phase (Figure 3e).
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3.4. Activities of Key Enzymes from Carbon Metabolism

3.4.1. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH)

The NADPH dependent activity of the chloroplast glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was measured from crude extracts of cells maintained at 400 ppm or 20,000 ppm CO2

(Figure 4).
In T. pseudonana, GAPDH activity and its regulation by metabolites were similar for cells grown at

400 or 20,000 ppm (Figure 4a). Whatever CO2 conditions during the growth, GAPDH was strongly
activated by its cofactor, NADPH (0.2 mM) alone, but not by the reducing agent, dithiothreitol (DTT)
alone (5 mM). However, for this diatom, GAPDH activity was slightly increased by pre-incubation
with both NADPH and DTT compared to pre-incubation of these compounds alone.
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Figure 4. NADPH-dependent activity of chloroplast glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) in diatoms (a–e). All panels show activity measurements of diatom crude extracts from
cultures grown at low CO2 (L-CO2; 400 ppm, dark grey bars) or high CO2 (H-CO2; 20,000 ppm, light
grey and dashed bars), as specified in panel (a), and without any treatment (none) or treated with either
0.2 mM NADPH or 5 mM DTT, or both prior to assay. Average and error bars (SD) are represented
(n = 3). * p ≤ 0.05 and ns, not significant.

In contrast, the activity of GAPDH from P. tricornutum cells grown at 400 ppm CO2, required, prior
to assay, pre-incubation with both DTT and NADPH (Figure 4b). However, GAPDH extracted from
cells grown at 20,000 ppm CO2, was always active whatever the pre-incubation mixtures and its activity
increased up to 8-fold compared to GAPDH mixed with DTT and NADPH prior to assay and extracted
from cells grown at 400 ppm. The GAPDH from N. pelliculosa cultured in seawater or freshwater media
and grown at 400 ppm CO2 was only activated by reducing conditions (i.e., with DTT; Figure 4c,d).
Like in P. tricornutum, the enzyme was active in all conditions tested for cells grown at 20,000 ppm CO2

in seawater and freshwater media. Moreover, the GAPDH activity value in N. pelliculosa was 2.3-fold
greater when cells were cultured in the seawater medium compared to freshwater for cells grown at
high CO2. GAPDH activity in A. formosa only slightly increased, but not significantly, when cells were
grown at 20,000 ppm CO2 (Figure 4e) and, for cells grown at both CO2 concentrations, activity was
only inhibited after treatment with NADPH in oxidized conditions (i.e., without DTT).

3.4.2. Phosphoglycerate Kinase (PGK)

PGK activity was also measured from cell crude extracts. No changes were observed for PGK
activity of T. pseudonana cells grown at 400 or 20,000 ppm CO2 (Figure 5a). PGK activity increased in
P. tricornutum and N. pelliculosa (seawater) cells grown at 20,000 ppm CO2 by around 5- and 2.5-fold,
respectively (Figure 5b,c). In contrast, PGK activity of N. pelliculosa cultured in freshwater medium
and grown at 20,000 ppm CO2 decreased by 60% (Figure 5d). Moreover, PGK activity in N. pelliculosa
cells from cultures in fresh water and grown at 400 ppm CO2 was 2-fold higher than in cells cultured
in sea water and grown at 20,000 ppm CO2. PGK activity from A. formosa only slightly, but not
significantly, increased in cells grown at 20,000 ppm CO2 (Figure 5e). In addition, we did not observe
redox regulation in PGK as result of DTT treatment in any of the diatoms tested, in contrast to what
was previously described in P. tricornutum [38].
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Figure 5. Phosphoglycerate kinase (PGK) activity in diatoms (a–e). All panels show activity
measurements of diatom crude protein extracts from cultures grown at low CO2 (L-CO2; 400 ppm,
dark grey bars) or high CO2 (H-CO2; 20,000 ppm, light grey and dashed bars), as specified in panel (a),
and without any treatment (none) or treated with 5 mM DTT prior to assay. Average and error bars
(SD) are represented (n = 3). * p ≤ 0.05 and ns, not significant.

3.4.3. Pyruvate Kinase (PK)

The pyruvate kinase (PK) activity was measured in all diatoms studied. The PK activity in all
diatom cells grown at 20,000 ppm CO2 (Figure 6) was much higher compared to the PK activity in
cells grown at low CO2. The PK activity in T. pseudonana showed a 2-fold increase after high CO2

treatments (Figure 6a). The PK activity in P. tricornutum was almost absent in cells grown at 400 ppm
compared to high CO2, where activity increased dramatically (Figure 6b). N. pelliculosa cultured in
seawater and freshwater had similar PK activities when grown at high CO2. However, at low CO2

PK activity was 5-fold higher in N. pelliculosa grown in freshwater medium compared to sea water
(Figure 6c,d). A. formosa, showed similar results, including a high PK activity at high CO2 that was up
to 16-fold compared to low CO2.
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4. Discussion

In this work, we showed that the content of storage compounds varied among diatoms and that
the response to high CO2 is species-specific. In addition, the effect of CO2 can be also affected by the
culture media used for diatom growth, at least for diatoms that have the capacity to grow indistinctly
in seawater or freshwater environments.

In our experimental conditions, we observed that lipid productivity in T. pseudonana is doubled
in the stationary phase compared to the exponential growth (Figure 2a). However, neither TAG
accumulation nor growth were affected by high CO2 compared to low (atmospheric) CO2 (Figures 1a
and 2a). Our data differs from what other authors have shown about the positive effect of CO2 in biomass
and lipid content in T. pseudonana [27,39,40]. One explanation could be the different experimental
setup used in all studies, especially the differences in light intensity, photoperiod, and CO2 supply.
For instance, we kept our cultures at continuous light and photon flux of ~50 µmol m−2 s−1, while other
authors used higher light fluxes and light photoperiod (light:dark) [11,26,27]. In addition, different
CO2 concentrations up to 20–30% (200,000–300,000 ppm) have been also reported [11], although it
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has been observed that very high CO2 concentrations and high light can have deleterious effect on
growth [40,41].

In P. tricornutum, we observed an increase in lipid productivity of 1.7-fold in cells grown at
20,000 ppm CO2 (Figure 2b); this value is only slightly higher than the 1.5-fold increase reported by
Wu et al. in this species grown at 1500 ppm [42].

In the freshwater diatom A. formosa, lipid productivity is very low compared to other diatom
species (Figure 2e and Table 1). This might be related to a very low growth compared to other species.
In fact, although we observed a high increased growth of A. formosa grown at high CO2, the OD750

reached a plateau of about 0.08, compared to 0.8–1.0 in the other diatoms analyzed. There is no data in
the literature about lipid accumulation in A. formosa grown at high CO2, however an increase in both
growth and lipid content has been reported in this species grown in bicarbonate (5 mM, compared to
0.15 mM in control) [13]. This difference suggests that A. formosa performance highly depends on the
nature of the carbon source supplied to the culture medium and the mechanism used by this diatom to
uptake carbon from the environment. In addition, it has been shown that A. formosa relies more on the
use of CO2 as a source of carbon than HCO3

− [43], which might explain the high effect observed on
growth in this diatom at high CO2 concentration.

The oleaginous diatom N. pelliculosa [44,45] accumulated high amounts of lipids (up to 32% of
the total cell dry weight; not shown) and has the highest lipid productivity in the stationary phase
compared to all the other diatom species studied here (Figure 2c,d and Table 1). However, we
observed important differences when this diatom was cultured in seawater or freshwater. In seawater
condition, growth slightly increased at high CO2, and lipid productivity in the stationary phase was
40% higher than with cells grown at low CO2. Interestingly and in contrast to seawater condition,
N. pelliculosa cultured in freshwater medium had decreased lipid productivity at high CO2 compared
to low CO2 (Figure 2d). Previous work showed that, at high CO2, the affinity for CO2 (shown as
a reduced half-saturation constant) is 7.5-fold higher in N. pelliculosa cultured in seawater than in
freshwater, although the overall CO2-concentrating mechanisms (CCMs) are not different in these two
conditions [43]; thus, the higher lipid accumulation observed in cells grown in seawater medium at
high CO2 might be more related to a change in the carbon conversion/metabolism than to a change in
CO2 uptake. N. pelliculosa is a diatom species with a high tolerance to salinity as it can grow in fresh
water and marine media. Salinity is one of the major chemical factors influencing lipid production
in microalgae [46], and in diatoms, a change in lipid composition as a result of high salt stress that
might be linked to a modification of the permeability and fluidity of the cell membrane has been
observed [47]. Moreover, in the marine diatom, Chaetoceros gracilis, a moderate low salt (NaCl) and
silicon stress can synergistically induce lipid accumulation, although both treatments have detrimental
effects on cell growth [10]. Here, we observed that cell growth of N. pelliculosa is not affected by salinity
and, therefore, it cannot be considered as a stress condition for this diatom species. This suggests that
salinity is able to induce a metabolic reprogramming which affects lipid biosynthesis in response to
elevated CO2 without affecting biomass accumulation. More work is needed to unravel this metabolic
innovation in N. pelliculosa, and this might be also relevant for other microalgae species showing high
tolerance to varying environmental conditions.

Studies on diatoms show that an impairment in one of the main two storage compounds synthesis
pathways could shift the balance towards the synthesis of the other one. For instance, in P. tricornutum
a reduction of vacuolar chrysolaminarin synthesis caused by a mutation of the vacuolar β-1,3-glucan
synthase showed increased TAGs accumulation at both N-replete and N-deplete conditions [48];
similar effects were also observed when the same gene was knocked-down in T. pseudonana [49]. On the
other hand, upregulation of chrysolaminarin synthesis as a consequence of the overexpression of the
phosphoglucomutase gene results in a down-regulation of lipid accumulation [50]. Here, we did not find
this negative correlation between lipid and chrysolaminarin production as response to CO2 treatment
(Figures 2 and 3). In fact, the only diatom species where we observed an increase in chrysolaminarin
when grown at high CO2—P. tricornutum—also had increased lipid production (Figures 2b and 3b).
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The same effect has been observed in other microalgae. In the green alga Chlamydomonas reinhardtii
both lipids and starch contents (storage carbohydrate in algae and equivalent to chrysolaminarin in
diatoms) increased in cultures grown at 5% (50,000 ppm) [51] and at 2% (20,000 ppm) CO2 [52], as well
as in Chlorella sorokiniana grown at 2% CO2 [53]. It is possible that in some microalgae CO2 treatment
can have a synergistic effect on the accumulation of both storage compounds.

Chrysolaminarin content in P. tricornutum was reported by some authors to be around 1.5 pg cell−1 [54],
this is ten times less than the lowest chrysolaminarin content showed in this work in the same species.
Similar was the case of chrysolaminarin content in T. pseudonana, where we observe a content between
4–8.5 pg cell−1, while in other works only 1.5 pg cell−1 was found [49]. This might be also related to
the differences on the culture conditions used here, as it was discussed above for lipid productivity.
Moreover, in contrast to P. tricornutum, in which both lipids and chrysolaminarin were increased at high
CO2 in the stationary phase, in T. pseudonana accumulation of chrysolaminarin was decreased (Figure 3a),
which might reveal different adaptation mechanisms in these two marine species. Interestingly,
N. pelliculosa had the same chrysolaminarin content regardless of CO2 or when grown in freshwater
or seawater culture, in contrast to what was observed for lipid productivity; unfortunately, there is
no transcriptomic or proteomic data on this species that could help to understand the modulation of
the chrysolaminarin or lipid biosynthetic pathway in different growth conditions. From all diatoms
studied, A. formosa showed the highest amount of chrysolaminarin content per cell; this in contrast to
an extremely low lipid production. Other diatom species, like the marine Chaetoceros pseudocurvicetus,
also have much higher chrysolaminarin accumulation than lipids [55]. In addition, other freshwater
microalgae—like Chlorella sp., Arthrospira sp., and Chlorococcum sp.—also have preference to store
carbohydrates (starch) than lipids [53,56–58]. This preference for chrysolaminarin accumulation over
lipids in A. formosa needs to be further investigated.

Regulation and activity of the chloroplast GAPDH was different in all the diatoms studied
(Figure 4). Redox regulation of GAPDH mediated by the formation of an inhibitory complex formed in
oxidized condition and involving GAPDH, phosphoribulokinase (PRK), and the small intrinsically
disordered CP12 that has been well studied in some plants and green algae [59–63]. Here, we showed
that in T. pseudonana and P. tricornutum GAPDH is not regulated by DTT (reduced conditions) alone;
however, activity is boosted after incubation with both DTT and NADPH, similar to previous studies
in the case of T. pseudonana, although a lower activity value was reported [64,65]. In P. tricornutum,
the formation of the regulatory complex GAPDH/PRK/CP12 has been already discarded [66], and there
is no evidence of its formation in T. pseudonana. Moreover, it has been shown that the formation of
this ternary complex requires the presence of two cysteine residues on PRK, that are absent in diatom
PRK [67]. This suggests that regulation of GAPDH in these two diatoms relies on a different mechanism.
In contrast, N. pelliculosa is highly regulated by reduction, using DTT alone, suggesting that a complex
similar to the GAPDH/PRK/CP12 is feasible, but no sequences are available and this needs to be further
studied. In A. formosa, a regulatory complex involving GAPDH, CP12, and ferredoxin-NADP reductase
(FNR) has been observed [68]. In P. tricornutum and N. pelliculosa cultured in seawater, GAPDH activity
increased by 7- and 8-fold, respectively, when cells were grown at high CO2 concentrations (Figure 4b,c).
This increase in GAPDH activity correlates with the increased lipid productivity observed in these two
species. GAPDH activity and lipid accumulation are also shown to increase in A. formosa cultured in the
presence of plant hormones and high bicarbonate concentrations [13]. This is consistent with GAPDH
producing trioses-phosphate that are required building blocks for lipid biosynthesis. In addition, we
did not observe any significant increase neither in lipid productivity nor in GAPDH activity in both
A. formosa and T. pseudonana grown at high CO2.

The pattern of PGK activity, as that of GAPDH, also correlates with lipid productivity in diatoms
(Figure 5). P. tricornutum and N. pelliculosa in seawater culture showed both higher lipid productivity
and higher PGK activity in cells grown at high CO2 (Figure 2b,c, and Figure 5b,c). In contrast, in
T. pseudonana (Figures 2a and 5a) and A. formosa (Figures 2e and 5e), PGK activity and lipid productivity
were rather similar in cells grown at high or low CO2. Wu et al. [42] showed that in P. tricornutum
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grown at high CO2 concentrations, PGK mRNA increases 3-fold. Furthermore, increased PGK activity
is associated with oil accumulation in sunflower seeds during the synthesis of storage lipids [69].
In agreement with this, we found a positive correlation in N. pelliculosa cultured in freshwater media
and grown at high CO2 concentration, with a decrease in both PGK activity and lipid productivity
(Figures 2d and 5d).

PK activity increased in all the diatoms tested. Thus, it is not clear whether there is a correlation
in PK activity and lipid productivity. In some higher plants and fungi that PK expression is directly
related to lipid biosynthesis and accumulation [70–73]. In contrast, in mammals, a PK isoform that
is expressed in tumor cells (PKM2) does not affect lipid production when the gene that encodes this
protein is knocked-out [74]. Moreover, in the green alga C. reinhardtii there is no change in the gene
expression of PK in cells that accumulate TAGs as response to N-deprivation [75]. On the other hand,
a proteome analysis of P. tricornutum during lipid accumulation induced by N-deprivation, showed
upregulation of three PK isoforms [76], which agrees with our observations for this diatom species,
however PK might not be involved in the same way in lipid accumulation in the other diatom species
studied here.

To conclude, diatoms are important primary producers within phytoplankton communities [1,77],
however, compared to land plants, there are fewer studies that emphasize the effect of CO2 in marine
and freshwater microalgae and its ecological relevance [78–80]. The results of this work show that
CO2 change is tackled differently by the different diatoms we have studied. Responses at the protein
levels (activity and regulation) and storage compounds levels varied between freshwater and seawater
diatoms under uniform conditions. Moreover, increasing the knowledge on genomes of diatoms from
different aquatic ecosystems is essential to understand their role in the global biogeochemical cycling of
carbon, especially when related to modern issues on climate change as result of human activity [81–84].
This work therefore brings some new elements on CO2 effect on some diatoms using short term
experiments and reinforces the need to study more diatoms for a better understanding of the different
mechanisms (carbohydrate, lipid synthesis) involved in these ecologically important organisms.
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