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A B S T R A C T

Purpose: Adolescent major depressive disorder (MDD) is a highly prevalent, incapacitating and costly illness.
Many depressed teens do not improve with cognitive behavioral therapy (CBT), a first-line treatment for ado-
lescent MDD, and face devastating consequences of increased risk of suicide and many negative health outcomes.
“Who will improve with CBT?” is a crucial question that remains unanswered, and treatment planning for
adolescent depression remains biologically unguided. The purpose of this study was to utilize machine learning
applied to patients' brain imaging data in order to help predict depressive symptom reduction with CBT.
Methods: We applied supervised machine learning to diffusion MRI-based structural connectome data in order to
predict symptom reduction in 30 depressed adolescents after three months of CBT. A set of 21 attributes was
chosen, including the baseline depression score, age, gender, two global network properties, and node strengths
of brain regions previously implicated in depression. The practical and robust J48 pruned tree classifier was
utilized with a 10-fold cross-validation.
Results: The classification resulted in an 83% accuracy of predicting depressive symptom reduction. The re-
sulting tree of size seven with only three attributes highlights the role of the right thalamus in predicting de-
pressive symptom reduction with CBT. Additional analysis showed a significant negative correlation between the
change in the depressive symptoms and the node strength of the right thalamus.
Conclusions: Our results demonstrate that a machine learning algorithm that exclusively uses structural con-
nectome data and the baseline depression score can predict with a high accuracy depressive symptom reduction
in adolescent MDD with CBT. This knowledge can help improve treatment planning for adolescent depression.

1. Introduction

Adolescent major depressive disorder (MDD) is increasingly re-
cognized as a highly prevalent, incapacitating, and costly illness. The
lifetime and 12-month prevalence of adolescent MDD is estimated to be
11% and 7.5%, respectively (Avenevoli et al., 2015). Adolescent de-
pression episodes are often chronic and recurrent, persisting into
adulthood (Naicker et al., 2013; Rohde, 2005). The disease has serious
negative psychosocial consequences, including but not limited to:

impaired academic and work functioning, social difficulties, substance
abuse, and suicide (Birmaher and Brent, 2007).

Cognitive behavioral therapy (CBT) is the most widely-researched
non-pharmacological approach (Callahan et al., 2012) and one of the
most empirically-supported treatments for adolescent MDD (Spirito
et al., 2011). The CBT treatment approach is rooted both in behavioral,
and cognitive formulations of depression (Ferster, 1966; Beck, 1976;
Seligman, 1975; Hetrick et al., 2016). The main goal of the cognitive
component is to help the depressed patient become aware of
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pessimistic, negative, and disproportionately self-blaming thoughts and
eventually replace them with more constructive cognitions (Rohde,
2005). The main goal of the behavioral component is to increase en-
gagement in behaviors that either elicit positive reinforcement or avoid
negative reinforcement from the environment (Rohde, 2005).

Unfortunately, a large percentage of depressed adolescents do not
respond to CBT treatment. CBT has been shown to be effective only for
approximately 43% to 65% of adolescent patients suffering from de-
pression (March et al., 2004, 2007). “Who will respond to CBT?” is a
crucial question to investigate and our ability to answer it will sig-
nificantly improve treatment planning and efficacy, and therefore de-
crease burden for the patients and their support network.

As with treatment-resistant depression in general (when an MDD
patient does not respond to multiple or any available standard treat-
ments), responsiveness or non-responsiveness to CBT can be linked to
multiple core processes involved in MDD such as stress, genetics and
epigenetics, and brain structural and functional plasticity (Akil et al.,
2018). Brain imaging, in particular MRI, offers a means to identify
potential predictive biomarkers that are grounded in the neurobiology
of the treatment and the pathophysiology of adolescent MDD. Several
recent studies used MRI in combination with traditional statistical ap-
proaches to predict clinical improvement after treatment in adult de-
pression. For example, anterior cingulate volume predicted improve-
ment after CBT in 10 adults with MDD: the degree of improvement in
depressive symptoms was positively correlated with gray matter (GM)
volume in the caudal portion of the anterior cingulate cortex (Fujino
et al., 2015). Other recent studies used functional activation and con-
nectivity during rest or task to predict clinical improvement after
treatment. Dunlop et al., analyzed resting-state functional connectivity
data using a bilateral subcallosal cingulate cortex (SCC) seed in 122
depressed patients who completed 12 weeks of randomized treatment
with CBT or antidepressant medication (Dunlop et al., 2017). The au-
thors achieved overall classification rates of 72%–78% for clinical re-
mission and 75%–89% for treatment failure. Positive summed SCC
functional connectivity was associated with clinical remission with CBT
and treatment failure with medication, whereas negative summed
functional connectivity scores were associated with clinical remission to
medication and treatment failure with CBT. In older, depressed adults,
functional MRI (fMRI) activation during executive function also pre-
dicted clinical improvement after CBT (Thompson et al., 2015).

Along with traditional statistical approaches that suit hypothesis-
driven studies, supervised machine learning methods have been gaining
popularity as they allow for a data-driven search for brain regions that
are most predictive of improvement after clinical treatment. To predict
clinical response after treatment in depressed adults, Costafreda et al.,
used support vector machines (SVMs): a supervised pattern recognition
method allowing predictions at the individual level (Costafreda et al.,
2009). Patients received antidepressants (18 patients) or CBT (12 pa-
tients). The whole brain structural neuroanatomy predicted 89% of the
clinical response. Supervised machine learning methods have also been
used more recently to predict long-term clinical improvement after a
13-week Internet-delivered CBT (iCBT) in 26 adult patients with social
anxiety disorder (SAD) (Månsson et al., 2015), which is highly co-
morbid with MDD (Angold and Costello, 1993). The authors also used
SVMs and trained them to separate long-term responders after treat-
ment from those who failed to respond based on blood oxygen level-
dependent (BOLD) responses to self-referential criticism. From multi-
variate BOLD responses in the dorsal anterior cingulate cortex (dACC)
together with the amygdala, they were able to predict long-term clinical
response rate after iCBT with an accuracy of 92%.

The analyses in the studies mentioned above were focused on spe-
cific brain regions, functional activation or functional connectivity.
Apart from the knowledge about involvement of specific regions, the
importance of anatomical white matter connections between these re-
gions and their role within the brain network as a whole are becoming
increasingly recognized and studied within the framework of MRI

connectomics. MRI connectomics treats the brain as a complex network,
which can be characterized in terms of local and global properties using
graph theory (Hagmann et al., 2010a). MRI connectomics has been
applied to both the adult and developing brain (Hagmann et al., 2010b;
Tymofiyeva et al., 2013). This framework has also been applied to study
the neural signature of adult depression (Sacchet et al., 2016; Qin et al.,
2014; Korgaonkar et al., 2014; see Gong and He, 2015 for review), as
well as adolescent depression (Tymofiyeva et al., 2017; Ellis et al.,
2017) and anxiety (Sharp and Telzer, 2017).

Whitfield-Gabrieli et al., used both, resting-state functional and
diffusion MRI-based structural connectivity to predict how well CBT
treatment improved anxiety symptoms for SAD in adults (Whitfield-
Gabrieli et al., 2016). They found that both brain structure and neural
connectivity among different regions predicted how well CBT reduced
clinical symptoms. Importantly, clinician estimates of clinical im-
provement after treatment using a behavioral assessment tool ac-
counted only for 12% of the variance in clinical benefit, but adding
information from neuroimaging increased by fivefold the estimates of
successful clinical improvement in patients after CBT. It should be
noted that in the study by Whitfield-Gabrieli and colleagues diffusion
MRI was used only to examine one single track, the right inferior
longitudinal fasciculus (ILF), because it was the tract most associated
with fMRI-derived occipital-temporal regions predictive of clinical im-
provement after CBT in SAD patients. Connections among other regions
implicated in the disorder may carry additional important information
for predicting clinical improvement after CBT. With respect to MDD
populations, commonly implicated brain areas in the published litera-
ture include cortical regions – the prefrontal cortex (PFC) (e.g., Menon,
2011; Kimbrell et al., 2002; Tymofiyeva et al., 2017), the anterior
cingulate cortex (ACC) (e.g., Connolly et al., 2013; Yang et al., 2009;
Lichenstein et al., 2016; Ho et al., 2017), the orbital frontal cortex
(OFC) (e.g., Cheng et al., 2016), and the insula (e.g., Henje Blom et al.,
2015); subcortical limbic brain regions – the amygdala (e.g., Yang et al.,
2010; Connolly et al., 2017; Perlman et al., 2012), hippocampus (e.g.,
Frodl et al., 2006), and the thalamus (e.g., Greicius et al., 2007); and
the basal ganglia – the striatum and specifically the caudate (e.g., Kim
et al., 2008; Pizzagalli et al., 2009; Tymofiyeva et al., 2017). Connec-
tions among these brain regions, as well as connections between these
regions and the rest of the brain, can be expected to play a role in
predicting clinical improvement after CBT in depressed populations.

To our knowledge, no published studies have attempted to apply a
structural MRI connectomics or machine learning approach to predict
depressive symptom reduction after CBT in adolescents with MDD. The
goal of this study was to assess the accuracy that can be achieved by
applying a practical and robust system for decision tree induction called
C4.5 (Quinlan, 1993; Frank et al., 2016) to MRI connectomics attributes
to predict depressive symptom reduction after CBT in adolescents with
MDD. We hypothesized that a machine learning algorithm applied to
brain network features will be able to predict improvement with CBT
significantly better than the “best guess” based on the class frequency.

2. Methods

2.1. Participants and clinical information

The study was approved by the Institutional Review Boards at the
University of California San Diego (UCSD), University of California San
Francisco (UCSF), Rady Children's Hospital in San Diego, and the
County of San Diego. All participants provided written informed assent
and their parent(s) or legal guardian(s) provided written informed
consent in accordance with the Declaration of Helsinki.

The study protocol, recruitment procedures, inclusion/exclusion
criteria, clinical assessments, and MRI data acquisition and post-pro-
cessing have been described previously (LeWinn et al., 2014;
Tymofiyeva et al., 2017, 2018) and are included here in brief. A subset
of 30 postpubertal (Tanner stage 3–5) adolescents with MDD according
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to the DSM-IV from Tymofiyeva et al. (2017), who received CBT
treatment and had a three-month follow-up assessment were included
in this study. Among these subjects 15 were female and 15 were male.
The mean age at the baseline was 16.0 yrs. (standard deviation 1.3 yrs.;
range 13.2–17.8 yrs.). Depressive symptoms were assessed for each
participant using the clinician-administered Children's Depression
Rating Scale-Revised (CDRS-R) (Poznanski, 1996). This assessment was
performed twice: at baseline and after three months, during which the
patients underwent CBT treatment. Six of the subjects were receiving
antidepressant medication in addition to CBT and 24 subjects were
unmedicated.

2.2. MRI data acquisition and connectome construction

MRI data were collected at the baseline using a 3 T MRI system
(MR750, GE Healthcare, Milwaukee, Wisconsin, USA) at the UCSD
Center for Functional Magnetic Resonance Imaging (CFMRI). High-re-
solution anatomical T1-weighted images were acquired using a fast
spoiled gradient recalled (SPGR) pulse sequence (TR/TE = 8.1/
3.17 ms, flip angle = 12°, slice thickness = 1 mm, FOV = 250 ×
250 mm, matrix = 256 × 256, voxel size = 0.98 × 0.98 × 1 mm). The
diffusion-weighted images were acquired using a dual spin echo, single-
shot echo-planar imaging (EPI) sequence, 30 directions, b-
value = 1500s/mm2, TR/TE = 7200/86.5 ms, FOV = 180 × 180 mm,
matrix = 96 × 96, voxel size = 1.875 × 1.875 × 2.5 mm, two
averages.

The T1-weighted images were bias-field-corrected, skull-stripped,
and transformed to MNI152 space using an affine transform in FSL
(Smith et al., 2004). A DTI quality assurance step and head motion
assessment were performed as previously described by our group
(LeWinn et al., 2014). DTI reconstruction and deterministic whole-
brain streamline fiber tractography were performed using the Diffusion
Toolkit (Wang et al., 2007) with Fiber Assignment by Continuous
Tracking (FACT) and an angle threshold of 35° (Fig. 1).

Our aim was to construct for each subject the large-scale brain
network (connectome) of white matter fiber connections between gray
matter structures of the brain and to analyze it as an abstract re-
presentation: a graph (set of nodes and edges). Segmentation of the
cerebrum into 90 regions of interest (ROIs) was performed in the DTI
space using the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) and intermediate registration to T1-weighted
images in MNI space. The AAL-based ROIs were dilated by one voxel
and served as network nodes. Connections between AAL ROIs were

calculated by using as weights the average fractional anisotropy (FA)
sampled along the connecting streamlines. The FA-weighted connec-
tions were recorded as a 90 × 90 connectivity matrix, in which each
row/column corresponds to a distinct node (brain ROI) (Fig. 2). The
choice of the connectome construction pipeline was based on the pre-
viously demonstrated high test-retest reliability of FA-weighted net-
works in adolescents (Yuan et al., 2018). Local network properties
(node strengths) and two most commonly used global network prop-
erties (average clustering coefficient and characteristic path length)
were assessed using the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). Network visualization was performed using Gephi, an
open-source network visualization software package (Bastian et al.,
2009).

2.3. Machine learning/statistical analyses

To perform a supervised machine learning classification analysis, a
set of 21 attributes was selected, including the baseline depressive
score, age, gender, two FA-weighted global network properties (average
clustering coefficient and characteristic path length), and FA-weighted
node strengths of 16 nodes corresponding to eight brain regions (right
and left) previously implicated in depression (see introduction): OFC,
ACC, middle frontal gyrus (MFG), insula, amygdala, hippocampus,
thalamus, and caudate. We aimed to correctly classify patients as be-
longing to one of the two classes: class 1 – those patients whose de-
pressive symptoms improved after CBT (negative value of (CDRS-Rpost-

CBT - CDRS-Rpre-CBT)) and class 0 – patients whose depressive symptoms
stayed the same or worsened (non-negative value of (CDRS-Rpost-CBT -
CDRS-Rpre-CBT)). Thus, any positive change in depressive symptoms was
interpreted as an improvement, and such a change does not necessarily
imply a clinically significant change.

Machine learning analysis was performed using WEKA software
(version 3.8.1) developed at the University of Waikato in New Zealand
(Frank et al., 2016). The J48 pruned tree classifier (JAVA im-
plementation of the C4.5 algorithm (Quinlan, 1993) in WEKA), which is
based on the concept of information entropy, was applied with a 10-
fold cross-validation. The experiment was repeated 10,000 times with a
new random number generator seed for the split of the dataset into a
training and test set chosen independently at each run, using the Weka
Experiment Environment. To assess the performance of the J48 classi-
fier, the result was compared with 10,000 runs of the ZeroR algorithm,
by using a paired t-test comparison of the obtained accuracies. ZeroR is
the simplest classification method, which ignores all attributes and al-
ways predicts the majority class (makes the “best guess” based on the

Fig. 1. DTI-based tractogram in an adolescent with major depressive disorder
(MDD). The image shows streamlines going through the right thalamus (de-
picted in green). Other structures shown: anterior cingulate cortex (ACC) in
pink, orbital frontal cortex (OFC) in purple, caudate in red, and hippocampus in
orange.

Fig. 2. A brain network (connectome) example in an adolescent study partici-
pant represented as a graph (set of nodes and edges). The right thalamus node
highlighted in red. Size of the nodes is proportional to the node degree.
Network visualization was performed using Gephi (Bastian et al., 2009).
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class frequency) (Frank et al., 2016). The ZeroR classifier thus provides
the baseline accuracy as a benchmark for other classification methods.

Bivariate correlations were calculated using Pearson's correlation
coefficient in IBM SPSS Statistics software (version 25).

3. Results

Demographic and clinical characteristics of the study participants
are summarized in Table 1. Nineteen adolescent patients with MDD
showed an improvement of the depressive symptoms (negative value of
(CDRS-Rpost-CBT - CDRS-Rpre-CBT)), whereas 11 did not show improve-
ment. No between-group differences in the average amount of head
motion during the DTI scan were observed between improvers and non-
improvers (with independent samples t-tests resulting in p = .12 for
rotation and p = .51 for translation). The J48 classification resulted in
an 83% average accuracy of predicting improvement of depressive
symptoms (standard deviation 23%). The average false positive rate
was 15% (standard deviation 27%), the average false negative rate was
20% (standard deviation 39%), the average true positive rate was 80%
(standard deviation 39%), and the average true negative rate was 85%
(standard deviation 27%). The sensitivity for improvement was 82%,
the specificity for improvement was 84%. This result was statistically
significantly better than the result of the ZeroR algorithm (p < .0001,
assessed using a paired t-test, with 10,000 10-fold cross-validated runs
for each of the two algorithms performed in the Weka Experiment
Environment).

The resulting tree of size seven with only three attributes (four
leaves) (Fig. 3) highlights the role of the right thalamus in predicting
depressive symptom reduction after CBT in teens diagnosed with MDD.
The other two attributes were the baseline depression score and the
node strength of the left MFG.

Additional analysis showed a significant negative correlation be-
tween the percent change in the depressive symptoms and the node

strength of the right thalamus (Pearson's r of −0.47 (p = .01); Fig. 4).
Thus, depressed adolescents with higher node strength of the right
thalamus demonstrated better improvement (a more negative percent
change in depressive symptoms after CBT treatment, calculated as
∆CDRS-R = (CDRS-Rpost-CBT - CDRS-Rpre-CBT)/CDRS-Rpre-CBT*100%).

When six adolescent patients who were receiving medication in
addition to CBT were removed, the J48 algorithm resulted in an iden-
tical classification tree, albeit with a lower classification accuracy
(54%). The correlation between the percent change in the depressive
symptoms and the node strength of the right thalamus remained sig-
nificant: a Pearson's r of −0.47 (p = .02). Out of the six patients taking
medication, five were improvers and one was a non-improver.

4. Discussion

Our results demonstrate that a machine learning algorithm that
exclusively uses structural connectome data (white matter connectivity)
and the baseline depressive score can predict with a high accuracy
depressive symptom reduction in MDD adolescents after CBT. This ac-
curacy was achieved by applying the J48 pruned tree classifier
(Quinlan, 1993; Frank et al., 2016). It is considered the “work-horse” of
machine learning tree algorithms, practical and robust under a wide
variety of circumstances (Frank et al., 2016). Compared to the con-
ventional logistic regression modeling, the nonparametric nature of
tree-based methods automatically takes nonlinearity and interactions
among attributes into consideration.

While interpretability is often a problem in machine learning re-
search (O'Donnell and Schultz, 2015), the resulting classification tree
and subsequent correlational analysis in our study offer a possibility to
gain insight into the underlying biological mechanisms. Specifically,
our results suggest that the microstructural properties of white matter
fibers connecting the right thalamus to other brain regions may be
compromised in adolescents who do not show any improvement with
CBT. As discussed in the introduction, one of the main goals of CBT (the
behavioral component) is to increase engagement in behaviors that
result in positive reinforcement. However, anhedonic symptoms that
are a core clinical characteristic of MDD may be blocking such en-
gagement. Anhedonia, the lack of interest or pleasure in response to
hedonic stimuli or experiences, and especially anticipatory anhedonia
as opposed to consummatory anhedonia, is a cardinal symptom of de-
pression (Sherdell et al., 2012). Behavior activation (BA) is therefore
used to more directly target anhedonic symptoms in part by increasing
exposure to and reinforcement of pleasant, rewarding events. However,
BA is only used on average 1.5 times during the course of CBT treat-
ment of adolescent depression (Kennard et al., 2009), and the initial
ability to generate goal-directed behavior may be pivotal in the effec-
tiveness of CBT. Published research supports that the thalamus is di-
rectly involved in anticipatory anhedonia (Li et al., 2015; Knutson
et al., 2000; Komura et al., 2001) and in the generation of goal-directed
behavior (Haber and Calzavara, 2009), the lack of which can make
subsequent CBT treatment ineffective (Alvares et al., 2014).

In our study, the node strength of the left thalamus was not selected
by the machine learning algorithm as a predictive attribute. The la-
terality of our results, specifically, the engagement of the right tha-
lamus, may be explained by the right-hemisphere hypothesis, which

Table 1
Demographic and clinical characteristics of the study participants.

Number of patients 30

Age, yrs. (standard deviation; range) 16.0 (1.3; 13.2–17.8)
Sex (Male/Female) 15/15
Baseline Children's Depression Rating Scale-Revised (CDRS-R) t-score (standard deviation; range) 71.3 (8.5; 55–85)
Percent change in depressive symptoms after CBT treatment, calculated as ∆CDRS-R = (CDRS-Rpost-CBT - CDRS-Rpre-CBT)/CDRS-Rpre-CBT*100% (standard

deviation; range)
−6.0 (13.4; −28-18)

CDRS-R t-score improvement after CBT (Yes/No) 19/11

Fig. 3. Resulting classification tree with only three attributes (internal nodes)
and four terminal nodes called “leaves” (result of the J48 pruned tree classifier
implemented in WEKA). The size of the tree is seven, which is calculated by
adding together the number of internal nodes and leaves, helping to reveal the
complexity of the tree. Achieved accuracy of predicting clinical symptom im-
provement is 83%. MFG – middle frontal gyrus, n.s. – node strength, R. – right,
L. – left, CDRS-R - the Children's Depression Rating Scale-Revised. Class labels:
class 1 – patients whose depressive symptoms improved, class 0 – patients
whose depressive symptoms stayed the same or worsened.
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posits that the right hemisphere regions are recruited more than their
left counterparts in affective processing, regardless of affective valence
(Borod et al., 1998).

We only focused on interpreting and further analyzing the first at-
tribute of the J48 classification tree, also known as the “root node” (in
our case, the node strength of the right thalamus), due to the limited
number of classified instances and reduced interpretability of the other
two attributes.

Though one of the first studies to explore the utility of machine
learning using a structural connectome to predict response to CBT in
adolescents, this study's findings need to be interpreted in the light of its
limitations. First, the sample size in our study was limited to 30 ado-
lescents diagnosed with MDD. Future prospective validation studies
with a larger number of patients would provide an important test to the
cutting-edge methodology used in this study. Second, heterogeneity in
CBT treatment protocols (delivery by different providers, with different
schedules, etc.) may limit our results. This, however, should also be
seen as a potentionally clinically more meaningful and effective treat-
ment approach, as a highly scripted, manualized and standardized CBT
delivery format that impedes patient-oriented adaptations by the
therapist to the specific needs of individual patients may limit the
clinical effectiveness of CBT treatment (March et al., 2004). Never-
theless, a relatively small reduction in depressive symptoms was ob-
served in our study (on average, 6%) (Table 1). Third, we used a binary
classification into two classes as the main goal of the study, which in-
evitably raises the question of how to define the classes: improvers vs.
non-improvers. On one hand, small incremental improvement in de-
pressive symptoms might not always be of significant clinical im-
portance. On the other hand, clinical thresholds such as a decrease of at
least 50% on the CDRS-R scale as used in clinical trials of teen MDD
(Brent et al., 2008) or no longer fulfilling the diagnostic criteria for
MDD, might not be neurobiologically meaningful, as they are not based
on neuroscience-derived criteria. Future studies might consider transi-
tioning from classification to regression analysis in order to avoid the

binarization problem and to provide clinicians with richer information
about the percentage change of clinical depression symptoms following
CBT. Such information would be useful for the clinician because she or
he must often take into account several factors (e.g., severity of de-
pression, patient preferences, accessibility to treatment, etc.) in de-
ciding what is the best clinical treatment for an individual patient. For
example, a clinician may be more inclined to select CBT for a mildly
depressed teen even if the patient will only improve 30% as compared
to a severely depressed teen for whom the clinician will most likely
want to see a > 50% improvement in depression symptoms after CBT
due to the severity of the depression. Our additional analysis of the
correlation between the percent change in the depressive symptoms and
the node strength of the right thalamus provides this type of useful
information (Fig. 4). Finally, since our study design did not include a
no-treatment control group, we could not differentiate between treat-
ment-specific and spontaneous symptom reduction. Moreover, without
an active comparison treatment group we could not conclude whether
the identified imaging biomarkers predict improvements specifically for
CBT or across all potential treatments (i.e., a nonspecific predictor).
Nevertheless, our results may bring us one step closer to precision
psychiatry. While the ultimate goal of precision medicine is to find the
optimal treatment for a specific patient, an important milestone in the
precision medicine endeavor is to find the optimal patient for a specific
treatment (National Institute of Mental Health (NIMH) Priority 3.2.B.6;
NIMH, 2018).

In conclusion, our results show that a machine learning algorithm
that uses structural connectome data and the baseline depression scores
can predict, with a high accuracy, depressive symptom reduction in
adolescents with MDD, who are receiving CBT treatment. This knowl-
edge can improve treatment planning for adolescent depression.
Equally important, the results shed light on the candidate neurobiolo-
gical mechanisms underlying the responsiveness to CBT and can help
optimize and develop new preventive and therapeutic interventions for
adolescent MDD.
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