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Introduction

Breast cancer is the most commonly diagnosed cancer worldwide and remains the second

leading cause of cancer death in the United States (1, 2). One distinct characteristic of breast

cancer is that breast cancer tumorigenesis is strongly influenced by one or more sex steroid

hormones, defined as hormone-sensitive/dependent cancers. It has been well described that

two major female sex steroids, estrogen (E) and progesterone (PRG), are highly associated

with the growth of some types of breast cancers, which usually contain two major sex steroid

receptors, estrogen receptors (ERs) and progesterone receptors (PRs). Breast cancer cells

derived from these hormone-sensitive breast cancers can become activated and proliferate

when they are stimulated with hormones. Based on this phenomenon, certain human

reproductive cancers have been labeled hormone-related cancers, including breast,

endometrium, ovarian, prostatic, and testicular cancers, which may share a unique

mechanism of carcinogenesis associated with sex steroids (3).

Approximately 70% of advanced breast cancers are considered to be ‘hormone

responsive’ due to their expression of ERs, PRs, or both (4, 5). However, triple-negative

breast cancer (TNBC), one of the most aggressive forms of breast cancer, defined by the lack

of expression of the estrogen receptor (ER), classic PRG receptors (nPRs), and epidermal

growth factor receptor 2 (HER2) (6), can be considered as hormone non-responsive breast

cancer. TNBC is a notoriously heterogeneous disease and yet the most poorly understood (7),

exhibiting different histological and molecular subtypes with varying clinical outcomes.

TNBC accounts for roughly 15% of all breast cancers and exhibits the most aggressive

metastatic behavior (8) with limited targeted therapies (9). Ironically, recent data

demonstrated that there is still quite a significant biological and/or clinical relevance of sex

steroids in TNBCs and the action of these hormones is exerted through similar molecular

mechanisms (10–14). This suggests a possible existence of previously undefined sex steroid

receptor-mediated signaling pathways that retain the sensitivity and vulnerability of TNBCs
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to endocrine hormones (15), reemphasizing that perturbed

expression of sex hormone receptors and abnormally long-

exposure to sex steroids should be equally evaluated for more

effective preventative strategies for breast cancers (16, 17). Efforts on

this aspect have thus far identified several candidate steroid

receptors, including androgen receptors (ARs), novel classic ERs

(ER-bs), and G-protein-coupled ERs (GPERs), in the

pathobiological actions of sex hormones in TNBCs. Endocrine

therapies continue to be the anchored treatment for breast

cancers, though the development of endocrine resistance has

become a large obstacle for this therapeutic strategy, suggesting

again that there are undefined mediators and signaling pathways

associated with endocrine resistance in breast cancers (18, 19). It is

important to mention that steroid hormones bind either nuclear

receptors or membrane receptors. However, the most studied class

of steroid hormone receptors are the nuclear receptors due to their

early discoveries (20). Similarly, although the term “sex hormone”

in hormone-dependent/-responsive/-sensitive breast cancers can be

referred to either E or PRG (14), it usually refers only to E (21, 22).

ERs can be classified into nuclear receptors (ERa and ERb) (10) and
membrane receptors (mERs) (23, 24). mERs include G protein-

coupled ER1 (GPER)/G protein-coupled receptor 30 (GPR30) (11),

ERx (a type of less known mERs) (25), and Gq-coupled membrane

ER (Gq-mER) (26). Current hormonal therapies for breast cancer,

also known as antiestrogen therapies, usually target various types of

ERs and selective ER modulators (SERMs) (27, 28) by default, for

the treatment and prevention of breast cancers (29, 30),

demonstrating the limitation of current endocrine therapy. The

effects of PRG and its corresponding receptors on breast cancers are

less emphasized (31).
CmPn/CmP signaling networks

PRG-mediated signaling through non-
classic membrane PRG receptors (mPRs)

As a sex steroid, PRG is essential for normal breast

development through its positive role in promoting proliferation

of human mammary epithelial cells. Therefore, PRG and its

derivatives have been long suspected to be culprits for the

development of breast cancers (17, 31–35). However, the

underlying mechanism of how PRG plays a role in breast cancers

through either enhancing EMT (epithelial-mesenchymal transition)

(25, 36–40), inhibiting EMT (41), or having no effect on EMT (39),

remains to be determined. Like ERs, PRG receptors can be classified

into classic nuclear receptors (nPRs) and non-classic mPRs (42–46).

It was reported that PRG excerpts its cellular actions through

signaling cascades that involve either nPRs, mPRs, or combined

responses (47). PRG binds to nPRs as a transcription factor to evoke

classic actions (48). Alternatively, PRG can also bind to and activate

mPRs, which subsequently leads to activation of nPRs, leading to a

hypothesized model where PRG-dependent mPRs contribute to
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later nPR-mediated PRG actions (49). Two groups of non-classic

mPRs have been recently identified, known as membrane PRG

receptor/Class II progestin and adipoQ receptors (mPRs/PAQRs)

and the cytochrome-related sigma-2/PRG receptor membrane

components (S2R/PRGMCs) (42, 43). mPRs are highly expressed

in reproductive tissues and were reported to execute rapid, non-

genomic actions through interactions with G-protein coupled

receptors (42, 43, 50).
Simultaneous PRG actions can be
mediated through nPRs and mPRs
in parallel

Despite its significance, the relationship between nPRs and

mPRs have been minimally explored. Our group recently provided

strong evidence that the CCM signaling complex (CSC) plays an

essential role to bridge the crosstalk between nPRs, mPRs, and their

shared ligands (progestins/anti-progestins), such as PRG, to

establish and modulate this cascade among nPR positive (+)

breast cancer cells. There has been supporting evidence that PRG

promotes cellular proliferation (51) and inhibits apoptosis in

human nPR(+) breast cancer T47D cells, suggesting PRG might

not be the benign hormone for nPR(+) breast cancers and may

rather be pro-oncogenic (52). It has been speculated that PRG, its

cellular metabolites, and its derivatives (progestins) promote cellular

proliferation through induced activation of MAPK signaling

pathways in both nPR(+/-) breast cancer cells, which is

independent of PRs and ERs (53). These results also suggest

existence of both independent and coordinated relationships

between nPR-/mPR-mediated PRG signaling involved in

proliferative signaling from multiple experiments with varying

approaches (32, 34, 45, 51, 54–57).
mPR-specific PRG actions

Since both types of PRG receptors and their modulators can

be predominant targets for breast cancer therapy (58), as an

antiprogestin (36, 59–63) [one of the well-known common

contraceptives (60–65)], mifepristone (MIF, RU486,

antiprogestin) has certainly earned its candidacy in the

treatment of reproductive cancers (58, 66–68) such as breast,

prostate, ovarian, and endometrial cancers, and has been

previously studied in many clinical trials (59, 62, 63, 69). It

was demonstrated that elevated levels of MIF can enhance the

growth inhibition and induction of apoptosis triggered by high

doses of PRG in nPR(+/-) cancer cells (70, 71). A clinically

relevant dose of MIF significantly improved the treatment

efficacy of chemotherapy regimens for human ovarian

carcinoma cells (72). However, there have been many

contradictory results reported regarding whether MIF has

growth inhibition or stimulation for hormone-responsive
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breast cancer cells, as an anti-progestin (73). MIF can act as a

potent antagonist of steroid hormone receptors such as nuclear

PRG receptors (nPRs), glucocorticoid receptors (GRs), and

androgen receptors (ARs) through directly binding as the

ligand (74–78). The degree of nPRs, GRs, and ARs inhibition

by MIF are variable, depending on dosages of MIF and specific

cell types (79). Recent data demonstrated that only nPRs play

protective roles on the stability of the CSC under the negative

effects of mPR-specific PRG actions, while both GRs and ARs

play no role in this CmPn signaling network (57). Among three

types of antiprogestins, MIF is defined as a type-II antiprogestin,

which can also act as an agonist in nPR(+) tissues in a cell-

specific manner, based on selective modulation of PRs (SPRM)

criteria (80). MIF has been well known to exert its antagonist

action, in-trans, with three dimeric forms of nPR isoforms (AA,

AB, and BB) to inhibit nPR activation at concentration that are

substoichiometric with PRG (81, 82), however, it is also reported

that MIF can affect the ratio of nPG-A/nPG-B isoforms at both

the transcriptional and translational levels, depending on

dosages of MIF and specific cell types (83). Since MIF can act

as an agonist, and the patient survival outcome depends on the

ratio of nPR antagonists versus agonists effects of MIF, the

mechanism of how MIF is either nPR antagonists or agonists

needs to be define. In an in-vitro experiment with nPR knockout

T47D cells (T47D-Y), cellular expression transactivation was

observed only in the T47D-Y cells ectopically expressed nPR-B

isoform (T47D-YB) (84), suggesting that nPR-B isoform has a

unique activation domain that may confer agonist-like

properties in the presence of MIF (85). Recent findings

demonstrated that the regulated expression of nPRA and

nPRB is critical to the breast cells’ response to synthetic

progestins, this altered PRG receptor expression may be an

important factor in the malignant transformation of breast

cells (86). Regardless of tissue of origin and hormone

responsiveness, the anti-proliferative activity of MIF in cancer

cells has been found to be independent of nPRs (87). Similarly,

the cellular effects of MIF on proliferation were also reported

(54, 88). It seems that the pro- or anti-proliferative activities of

MIF are cell-specific (69) and might be determined by the

applied dosage of MIF, as well as ratio of nPR isoforms (36).

These results indicate the importance to uncover key mediators

of MIF and underlying mechanisms of its dual roles (pro- or

anti-tumor activity) in breast malignancies (87). The possible

convergence of classic and non-classic PRG actions (nPRs/

mPRs) and CSC signaling on their common cellular targets in

nPR(+) cells is an attractive model by which PRG and MIF can

fine tune this intricate balance among these signaling pathways.

Our recent findings suggest that combined PRG and MIF

treatments can enhance the inhibitory effects on protein

expression of CSC, which is independent of nPR(+/-) status.

This indicates that PRG and MIF can work synergistically to

inhibit the protein stability of the CSC, only through mPRs,

termed as mPR-specific PRG action (57, 89–92).
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CSC-mPRs-PRG-nPRs (CmPn) signaling
network in nPR(+) breast cancer cells

Altered expression patterns of nPRs, mPRs and CCM genes

across clinical breast tumors and their associated prognostic effects

were observed (93), suggesting combined involvement of all three

signaling pathways in influencing the size and extent of the primary

breast tumor (57, 90, 91). Our recent findings that upon treatment

of PRG and MIF, which only excerpt their PRG actions through

mPR-specific PRG actions, the expression patterns of three CCM

proteins which form the CSC are altered in the nPR(+) breast

cancer cells, T47D, strongly suggesting the involvement of the CSC

in breast tumorigenesis (57, 90, 91). Reciprocally, mPRs and nPRs

signaling cascades are coupled through CSCmodulation (57). These

results solidify a novel network among the CSC, classic, and non-

classic PRG receptors, termed the CSC-mPRs-PRG-nPRs (CmPn)

signaling network, which is dynamically modulated and fine-tuned

with a series of feedback regulations under PRG actions.
CSC-mPRs-PRG (CmP) signaling network
in nPR(-) breast cancer cells

Strong evidence for the existence of PRG-mPRs signaling

cascade in both nPR(+/-) breast cancer cells have been

previously proposed (41, 94–97), suggesting that PRG

signaling in nPR(-) cell lines can be mediated solely through

mPR-mediated signaling (termed as mPR-specific PRG actions)

(41). In our recent reports, we further defined the novel CSC-

mPRs-PRG (CmP) signaling network in nPR(-) breast cancer

cells which overlaps with our previously defined CmPn (CSC-

mPRs-PRG-nPRs) network in nPR(+) breast cancer cells (57). In

the CmP signaling network, the CSC is able to stabilize mPRs

under steroid actions in a forward fashion (CSC➔mPRs),

indicating an essential role of the CSC in maintaining the

stability of mPRs in nPR(-) breast cancer cells under the mPR-

specific PRG actions. Overall, the CSC can stabilize the

expression of mPR proteins in TNBC cells in concordance

with our observations in nPR(+) breast cancer cells, indicating

the consistent function of the CSC on the stability of mPRs

under PRG actions (57). Since nPR-mediated signaling pathways

usually have protective roles over the CSC, the intricate balance

of the CmPn signaling network is more stable under mPR-

specific PRG actions compared to the CmP network. Therefore,

in contrast to our previously observed nPR(+) breast cancer and

nPR(-) endothelial cell data (57, 89, 92), mPR-specific PRG

actions have variable effects on both RNA and protein

expression levels on the CSC in TNBCs, which can be utilized

for subtype classifications (90, 91). In general, the relationships

among the CSC, mPRs, PRG, nPRs, and their mediated signaling

pathways within either the CmPn or the CmP signaling

networks can be summarized (Figure 1). Extensive omics has

been performed confirming alterations in key tumorigenesis
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signaling pathways, suggesting their association with the CmPn/

CmP signaling network in nPR(+/-) breast cancers (57, 90, 91,

93, 98).

Discussion

The interplays between classic and non-classic PRG-mediated

signaling have been long suspected (43, 44, 49, 99) and newly

discovered evidence demonstrated that the CSC plays an essential

role to bridge crosstalk among nPRs, mPRs, and their ligands to

form the CmPn/CmP signaling networks in response to mPR-

specific PRG actions among nPR(+/-) breast cancer cells (57, 90,

91, 93). The convergence of classic and non-classic PRG actions by

the CSC on their common ligands and downstream cellular

targets in breast cancer cells is an attractive model by which

mPR-specific PRG actions play a central role for the stability of

this system by fine-tuning the intricate balance within CmPn/

CmP signaling network. Therefore, any activities that disrupt this

intricate balance within the network, including patients under

hormone replacement therapy (HRT), females taking hormonal

contraceptives, or extended exposures (dietary and/or daily

supplementation) to hormones during their reproductive ages,

could result in perturbation of the CmPn/CmP signaling

networks, with potential serious consequences of increased risks

in breast cancers and compromised tumor therapy.
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