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Abstract: Human adenoviruses are large (150 MDa) doubled-stranded DNA viruses that cause
respiratory infections. These viruses are particularly pathogenic in healthy and immune-compromised
individuals, and currently, no adenovirus vaccine is available for the general public. The purpose
of this review is to describe (i) the epidemiology and pathogenicity of human adenoviruses, (ii) the
biological role of adenovirus vectors in gene therapy applications, and (iii) the potential role of
exosomes in adenoviral infections.
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1. Introduction

Human adenoviruses (HAdVs), which are members of the family Adenoviridae and genus
Mastadenovirus, are non-enveloped, icosahedral, double-stranded DNA viruses (Figure 1) [1–3] that
were first isolated from human adenoid tissue cultures in 1953 by Wallace Rowe and colleagues while
studying the growth of polioviruses in adenoidal tissues [4–6]. HAdV species are classified into seven
groups (HAdV-A to HAdV-F; Table 1) [6,7], and to date, 67 HAdV serotypes have been reported [6,7].
Of these, only some cause severe infections, leading to meningitis, conjunctivitis, gastroenteritis, and/or
acute hemorrhagic cystitis [6,8–11]. Most of these infections occur in children [12,13], the elderly [14,15],
and people with a severely compromised immune system [7,16,17]. The association of HAdV serotypes
with a specific disease, however, has not been fully elucidated, as the clinical manifestations are
sometimes linked to the site of viral inoculation [8,18]. Furthermore, due to the infectious nature of
these viruses and the use of exosomes as a cellular mechanism of entry, HAdV is suited to provide
efficacious gene therapy and facilitate drug delivery for diseases, including cancer. The purpose of
this review is to describe (i) the epidemiology and pathogenicity of HAdVs, (ii) the biological role
of adenovirus (Ad) vectors in gene therapy applications, and (iii) the potential role of exosomes in
adenoviral infections.
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Figure 1. A digital cryo-electron micrograph of the Adenovirus serotype 5 (Ad-5)/HVR5-33RGD 
vector. Adenoviruses are non-enveloped, double-stranded DNA viruses that cause cold-like 
infections of the upper respiratory tract. These viruses have an icosahedral-shaped capsid that ranges 
from 90–100 nm in diameter and a ~36-kb genome. This image was collected on a Tecnai-12 
microscope using a Gatan UltraScan 1000 (2k × 2k) CCD camera. The scale bar represents 1,000 Å. 
Image provided courtesy of Dr. Phoebe Stewart, Case Western Reserve University, Cleveland, OH, 
USA. 

2. Epidemiology 

HAdV infections are readily spread in human populations [10]. Outbreaks often occur in 
crowded populations, such as nosocomial facilities (e.g., hospitals and nursing homes) [15,19,20], 
military bases [21,22], and schools [23,24]. HAdVs may cause outbreaks of diarrheal and 
gastroenteritis illness [25], pharyngoconjunctival fever [26], febrile respiratory illness [27], and/or 
keratoconjunctivitis [28]. A person infected with HAdV is extremely contagious during the 
incubation period, which typically ranges from 4–8 days, but can last up to 24 days, depending on 
the HAdV serotype [7]. 

HAdVs are grouped into seven groups (A–G) and 67 serotypes (1-67) in the genus Mastadenovirus 
(Table 1) based on their physical, chemical, and biological properties [6,7]. HAdV serotypes 3, 4, 7, 8, 
14, and 55, which are commonly linked to outbreaks, are more virulent and likely to spread [6,29–34]. 
Different HAdV serotypes exhibit different tissue tropisms and clinical manifestations of infection 
[29,35]. Additionally, the predominant serotypes detected in association with disease differ among 
different countries or regions and change over time [29]. HAdV strains can actually cross continents, 
replacing old strains with new strains and changing the dominance of a serotype in a geographical 
region. Given the abundance of outbreaks that have occurred globally, we will focus on a description 
of the outbreaks that have occurred in the U.S. 

HAdV outbreaks do not occur frequently in the U.S.; however, when outbreaks do occur, they 
spread rapidly among the human population. According to the Center for Disease Control and 
Prevention (CDC) National Adenovirus Type Reporting System, ~2400 cases of HAdV were reported 
in the United States (U.S.) between 2006 and 2016, the most recent period for which data are available. 
However, since 2016, a number of HAdV-associated outbreaks have recently occurred in the U.S. 
between September and November 2018. In September 2018, HAdV-7 outbreak occurred at the 
Wanaque Center for Nursing and Rehabilitation in Wanaque, New Jersey [36–38], infecting ~35 
people, including 23 children. Of these 23 children, 11 reportedly died due to the illness [36,37]. 
Another HAdV-associated (HAdV-3) outbreak occurred in New Jersey at the Voorhees pediatric 
facility (Camden County) in November 2018. Twelve cases were reported, but no deaths occurred as 
a result of the outbreak.  

Figure 1. A digital cryo-electron micrograph of the Adenovirus serotype 5 (Ad-5)/HVR5-33RGD vector.
Adenoviruses are non-enveloped, double-stranded DNA viruses that cause cold-like infections of the
upper respiratory tract. These viruses have an icosahedral-shaped capsid that ranges from 90–100 nm
in diameter and a ~36-kb genome. This image was collected on a Tecnai-12 microscope using a Gatan
UltraScan 1000 (2k × 2k) CCD camera. The scale bar represents 1,000 Å. Image provided courtesy of
Dr. Phoebe Stewart, Case Western Reserve University, Cleveland, OH, USA.

2. Epidemiology

HAdV infections are readily spread in human populations [10]. Outbreaks often occur in crowded
populations, such as nosocomial facilities (e.g., hospitals and nursing homes) [15,19,20], military
bases [21,22], and schools [23,24]. HAdVs may cause outbreaks of diarrheal and gastroenteritis illness [25],
pharyngoconjunctival fever [26], febrile respiratory illness [27], and/or keratoconjunctivitis [28]. A person
infected with HAdV is extremely contagious during the incubation period, which typically ranges from
4–8 days, but can last up to 24 days, depending on the HAdV serotype [7].

HAdVs are grouped into seven groups (A–G) and 67 serotypes (1-67) in the genus Mastadenovirus
(Table 1) based on their physical, chemical, and biological properties [6,7]. HAdV serotypes 3, 4, 7, 8,
14, and 55, which are commonly linked to outbreaks, are more virulent and likely to spread [6,29–34].
Different HAdV serotypes exhibit different tissue tropisms and clinical manifestations of infection [29,35].
Additionally, the predominant serotypes detected in association with disease differ among different
countries or regions and change over time [29]. HAdV strains can actually cross continents, replacing
old strains with new strains and changing the dominance of a serotype in a geographical region. Given
the abundance of outbreaks that have occurred globally, we will focus on a description of the outbreaks
that have occurred in the U.S.

HAdV outbreaks do not occur frequently in the U.S.; however, when outbreaks do occur, they
spread rapidly among the human population. According to the Center for Disease Control and
Prevention (CDC) National Adenovirus Type Reporting System, ~2400 cases of HAdV were reported
in the United States (U.S.) between 2006 and 2016, the most recent period for which data are available.
However, since 2016, a number of HAdV-associated outbreaks have recently occurred in the U.S.
between September and November 2018. In September 2018, HAdV-7 outbreak occurred at the Wanaque
Center for Nursing and Rehabilitation in Wanaque, New Jersey [36–38], infecting ~35 people, including
23 children. Of these 23 children, 11 reportedly died due to the illness [36,37]. Another HAdV-associated
(HAdV-3) outbreak occurred in New Jersey at the Voorhees pediatric facility (Camden County) in
November 2018. Twelve cases were reported, but no deaths occurred as a result of the outbreak.

Similar to the outbreak at the Wanaque Center, HAdV-7 was reported on November 2018 at the
University of Maryland (College Park, MD, USA) [39,40]. By mid-December, 35 cases were reported [39,40].
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According to sources from The Washington Post, one student who was taking medication for Crohn’s
disease died from the illness [39,40]. Currently, the CDC provides technical assistance for testing and
typing specimens and consultation on infection control for HAdV outbreaks in the U.S. [37].

Table 1. Human adenoviruses (HAdV)-associated diseases or infections. HAdVs are members of the
family Adenoviridae and genera Mastadenovirus and are associated with an array of diseases. HAdV is
classified into seven groups (A–F). There are more than 100 serotypes, and approximately 67 serotypes
(1–67) are known to be pathogenic in humans.

Group Serotype Associated Disease or Infections References

A 12, 18, 31, 61
gastrointestinal, respiratory, urinary,

cryptic enteric infection, linked to
obesity, meningoencephalitis

[7,41–44]

B 3, 7, 11, 14, 16, 21, 34, 35, 50, 55, 66
conjunctivitis, gastrointestinal,

respiratory, urinary, pneumonia,
meningoencephalitis, cystitis

[7,41,42,44–47]

C 1, 2, 5, 6, 57 respiratory, gastrointestinal, obesity,
pneumonia, hepatitis [7,41,42,45]

D 8–10, 13, 15, 17, 19, 20, 22–30, 32, 33,
36–39, 42–49, 51, 53, 54, 56, 58-60, 63-67

conjunctivitis, gastrointestinal, linked
to obesity, meningoencephalitis [7,42,43,45,48]

E 4 conjunctivitis, respiratory, pneumonia [7,41,47]

F 40, 41 gastrointestinal, infantile diarrhea [7,42,49]

G 52 gastrointestinal [7,42]

3. Pathogenesis

HAdVs are very stable in the environment. Some HAdVs spread via local outbreaks in common
areas, such as summer camps [50], playgrounds, dormitories [40], and schools [23]. Transmission occurs
from an infected person to other individuals via respiratory routes, fecal-oral contamination, and/or
direct contact [51]. Respiratory transmission via a cough or a sneeze is the most common mode of
transmission. Fecal-oral transmission occurs through contaminated food or water, and transmission via
water can occur in public swimming pools due to ineffective chlorine treatment [51]. HAdV infection can
also occur through an individual’s lack of proper hygiene, such as improper handwashing. HAdVs can
infect and replicate in epithelial cells of the gastrointestinal (GI) tract, respiratory tract, eyes, and urinary
bladder [1]. HAdVs cause lytic infection in epithelial cells and/or latent infection in lymphoid cells [6,52].
Different serotypes have different tropisms related to their route of infection and receptor usage.

The HAdV genome is divided into the early (E), intermediate (I), and late (L) regions [7,53]. The E
region of the genome consists of the transcription units E1 to E4, which are required for viral replication
and modulation of host immune response. The I region of the genome contains the transcription units
IX, which influences hexon protein interactions, and IVa2, which is involved in viral DNA packaging
and virus assembly and is a transcriptional activator [53,54]. The L region of the genome comprises the
L1-L5 transcription units, which are involved in the production of mature virions [7]. Additionally, the
HAdV genome displays inverted terminal repeat regions at the 3′ and 5′ ends, encompassing conserved
sequence motifs and serving as origins of viral replication [7]. Depending on the HAdV serotype,
the genomes may display noncoding virus-associated RNA genes that are involved in translational
regulation and potentially act as miRNAs [7,55,56].

HAdV-2 and 5 attach to the surface of cells with their fiber proteins via the coxsackievirus and
adenovirus receptor (CAR), which is a 46-kDa transmembrane protein [57–59]. CAR is involved in the
formation of tight junctions and adheres junctions between epithelial cells [60,61] and interacts with
the fiber knobs from all HAdV, except those from group B [62]. However, this high-affinity receptor
interaction is unable to promote virus entry into cells. Instead, a secondary interaction between the
virus penton base protein and αvβ3 or αvβ5 integrins facilitate virus entry [63]. HAdV particles enter



Biomedicines 2019, 7, 61 4 of 18

cells via ~120-nM clathrin-coated pits and vesicles [64], although internalization also requires the
participation of cell signaling molecules, including phosphatidylinositol 3-OH kinase, a lipid kinase
that regulates a number of important host cell functions [65]. A crucial HAdV entry step involves
post-internalization disruption of the early endosome, allowing the escape of the virion from the
cytoplasm prior to destruction by lysosomal proteases [66]. Once inside the cell, the virus is transported
to the nucleus and docks at the nuclear pore, where capsid uncoating reveals the viral DNA.

For most other HAdV types, the attachment receptor is either CAR or CD46, which is a membrane
cofactor protein [67]. The precise mechanism for HAdV binding to blood and epithelial cells was
unknown [68], but HAdV-3, -7, -11, -16, -21, -26, -35, -37, -49, and -50 were recently reported to bind to
membrane cofactor CD46 [69]. CD46 is expressed on all nucleated cells in humans and functions to
shield autologous cells from complement attack [70]. Binding of CD46 to HAdV is mediated by fiber
knobs, which recognize CD46 with different affinities. Furthermore, other identified HAdV attachment
receptors include sialic acid-containing oligosaccharides, GD1a glycan, and desmoglein-2 [57,71,72].
Low-affinity, high-avidity binding allows viruses to use multiple receptors, depending on the receptor
availability and expands virus tropism.

HAdVs cause either lytic infection in epithelial cells or latent infection in lymphoid cells [6,52].
The lytic infection is referred to as the viral reproduction cycle. The lytic infection occurs when
the Ad enters and replicates inside of the host (human epithelial cells). The virus can inhibit the
macromolecular synthesis and transport mRNA to the cytoplasm of the cell, facilitating cellular death
and cell lysis. After the virus actively replicates inside of the host cell, it causes cellular death and cell
lysis. In addition, virions are produced, resulting in a host inflammatory response [6,73].

Following the lytic infection, HAdVs can persist in susceptible cells in a latent state for years [7].
During latent infection, HAdVs generally remain in lymphoid organs, such as adenoids, tonsils, or Peyer’s
patches [52,74]. These latent virus particles can eventually re-activate, re-infect, and replicate in epithelial
cells, causing disease symptoms again. Figure 2 illustrates the spread of HAdVs within the body.Biomedicines 2019, 7, x FOR PEER REVIEW 5 of 19 
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Figure 2. Mechanisms of HAdV spread within the body. HAdV may be transmitted directly or indirectly.
These viruses can adversely impact body systems and cause organ dysfunction. HAdV can evade the
immune response and produce persistent or latent infections. The organs are represented in purple, while
the body systems are represented in blue. The biological status of the infected host is indicated in green.
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4. Diagnosis, Treatment, and Prevention of Adenoviral Infections

The most common method used to diagnose a HAdV infection starts with a clinical evaluation of
an individual’s symptoms. Occasionally, doctors will use chest X-rays, nasal swabs, and/or blood or
stool cultures to confirm an HAdV diagnosis. Laboratory diagnosis is mainly performed to detect
and prevent large outbreaks. Some of the laboratory diagnostic techniques include antigen detection,
molecular detection, viral isolation, and serology tests [75–79]. Like other viruses, HAdV contains
many proteins, including hexon protein, fiber protein, and penton protein, on its surface. These proteins
can serve as antigens for the host immune response, thereby inducing a defense mechanism to help the
host fight off HAdV infection. Antigen detection methods, such as the enzyme-linked immunosorbent
assay (ELISA) and latex agglutination test (LAT), are used to identify HAdV-associated proteins in
patient samples. ELISA is a rapid, quantitative, sensitive, and specific diagnostic technique that is
used to detect antigens from cells, bacteria, and viruses [79–81]. HAdVs can be detected in biological
samples using commercially available ELISA kits, including the Adenovirus ELISA kit (Abnova),
Adenovirus ELISA kit (antibodies-online.com), Adenovirus IgM ELISA kit (GenWay), Anti-Adenovirus
3 Antibody (IgG) ELISA kit (Lifespan Biosciences, Seattle, WA, USA), and the Adenovirus Antigen
ELISA kit (Eagle Biosciences, Amherst, NH, USA). The Adenovirus Antigen ELISA Assay Kit is a
microplate-based kit that is used to qualitatively detect HAdV antigen in feces. This assay is often
used to diagnose active HAdV infection in acute or chronic gastroenteritis. For example, in 2016,
Mayindou et al. utilized ELISA kits to investigate the prevalence of severe diarrhea in Congolese
children that were hospitalized with severe acute gastroenteritis as a result of Ad serotypes 40 and
41 and Rotavirus a [79]. Additionally, LAT is used to detect HAdV infections in saliva, urine, blood,
or cerebrospinal fluid samples [82–84] and detects HAdV via binding with latex beads coated with
a specific antigen or antibody [85]. The first reported use of LAT to detect HAdV was performed
in 1987 by Grandien et al. to detect HAdV serotypes 40 and 41 in diarrheal disease in children [82].
Moreover, in 1993, Lengyel et al. demonstrated through the LAT that latex-coated particles with
different monoclonal antibodies of genus-specific reactivity can be used to rapidly diagnose HAdV
infections [83].

In addition to these techniques, molecular detection of HAdV infection is often performed using
the polymerase chain reaction (PCR) assay [7,86–88], which amplifies small segments of viral DNA,
enabling laboratory technicians and doctors to detect the presence of HAdV in blood, stool, and/ or
mucous samples [89,90]. In 2017, Bennett and Gunson developed a single multiplex assay to detect
viral gastroenteritis from patients’ stool samples [87].

Viral isolation from cell culture is another standard method used to detect HAdVs in respiratory
and conjunctival specimens [91]. HAdVs may be isolated from most bodily fluids and secretions,
including eye swabs, throat swabs, urine, and feces; however, the most reliable source for isolation
is feces. Although this method is sensitive, the time interval between inoculation and manifestation
of cytopathic effect (CPE) is often variable, based on the concentration of an infectious virus or the
serotype of HAdV in the clinical specimen. In specimens with small quantities of virus, CPE may be
delayed for as many as 28 days. Furthermore, in some cases, viral isolates are not able to be cultured,
suggesting that this method is not always conclusive.

Serology tests are performed to assess the levels of antibodies (i.e., IgG enzyme-linked
immunosorbent assay (EIA) and IgA EIA) generated against active infection with HAdV. Serum
and plasma from possible infected individuals are collected and tested for HAdV infection, using
commercial kits, such as the Ad R-Gene kit (Biomerieux Diagnostic), ELITe MGB kit (ELITe Tech Group,
MD, USA), and Film Array RP kit (BioFire Diagnostics) [7]. In addition to HAdVs, most of these kits are
used to detect other viruses (e.g., influenza A and B viruses) [92,93]. Advantages of these kits include
sensitivity and specificity, ease of use, simple interpretation, the requirement for minimal sample for
testing, and rapid turnaround time; yet, these serological tests can be less sensitive than culture.

In general, HAdVs are resistant to low to intermediate levels of disinfectants, such as ethanol
and chlorine, as well as to heat inactivation (≤60 ◦C) [94,95]. Therefore, HAdVs can remain on objects



Biomedicines 2019, 7, 61 6 of 18

and surfaces (e.g., doorknobs, towels, and medical instruments) for ~3-8 weeks, posing long-term
infection risk [94–96]. Therefore, appropriate control measures should be taken into consideration
to minimize the transmission of HAdV infections and prevent outbreaks. These individual control
measures include frequent handwashing, sanitizing surfaces, staying at home when ill, avoiding close
contact with people who are sick, and covering nose and mouth when sneezing or coughing.

No specific treatment for HAdV infection has been developed [96]. As most HAdV infections are
mild and do not require medical care, clinical care of HAdV infections focuses on alleviating patient
symptoms. Commonly recommended treatments often include bronchodilator medication to open
the airways, oral rehydration or increased fluid intake, and rest. In addition, antiviral drugs, such
as ribavirin and cidofovir, have been used to treat severe HAdV infections in immunocompromised
people [29,94].

According to the U.S. CDC, a vaccine for HAdV is not currently available to the general public
in the U.S. A vaccine is only available for U.S. military personnel, ages 17–50, who may be at higher
risk for acute respiratory disease related to infection with HAdV serotypes 4 and 7 [34,97]. From 1971
to 1999, a vaccine against these two serotypes was available to U.S. military recruits [98], but in 1999,
the manufacturer stopped producing this vaccine [94,98,99]. In March 2011, the U.S. Food and Drug
Administration approved a new live, oral vaccine against HAdV serotypes 4 and 7 [94,97,99], and
this vaccine is recommended by the USA. Department of Defense for military recruits entering basic
training in order to prevent acute respiratory disease [94]. For military recruits, the vaccine is highly
recommended because of the close military living quarters and easy transmission.

5. Ad Vectors in Gene Therapy

Various Ad vector systems have been studied for use as gene therapy in clinical trials. Ad vectors
have been studied widely and are well characterized as a model system for eukaryotic gene regulation,
providing a solid foundation for human gene therapy vector development. Accordingly, applications
of Ad vectors in gene delivery have greatly increased since their initial development during the late
1980s [100]. More than 2000 gene therapy clinical trials have been approved worldwide [100–103].
There are many advantages of utilizing Ad vectors as viral gene delivery systems: (i) these viruses are
easy to manipulate and generate, (ii) they can be grown into stable high-titer stocks for repeated use,
(iii) they infect non-dividing and dividing cells of different types, and (iv) they infect a broad host range
with high infectivity. Due to the life cycle of Ad, the virus does not require integration into the host
cell genome, and the foreign genes delivered by Ad vectors are expressed as an episome, imparting
low genotoxicity in vivo. The first successful in vivo gene therapy using Ad vectors in humans
was reported by Jaffe et al. in 1992 [104,105]. In these studies, Ad vector was used to deliver and
express alpha-1 antitrypsin cDNA in the liver cells of a patient with low levels of this factor [104,105],
confirming that Ad vectors could potentially be used for gene therapy for liver disorders in vivo.
This proof-of-principle by Jaffe et al. led to the development of additional Ad vectors for use in gene
therapy applications against diseases, such as cancer. Examples of Ad vectors used in gene delivery
clinical trials are listed in Table 2.

HAdV vectors are used for virotherapy and gene therapy for cancer [101,106–108]. The application
of HAdVs for cancer therapy dates back to the 1950s when wild-type Ad was used to treat cervical
cancer. Due to high infectivity, cytotoxicity, and immunogenicity, Ad vectors were pursued
as anti-cancer therapeutics [101,109,110]. Replication-defective Ads have been used to deliver
immune-related genes/epitopes directly to tumor cells to attract and induce a local anti-tumoral
immune response [100,111–118], while replication-competent Ads have been used to replicate within
cancer cells, achieving oncolysis via exploitation of the natural lytic life cycle of the virus within these
cells [100,101,119–121]. Thus, either replication-defective or -competent Ads can be used to deliver
and/or overexpress tumor-suppressor genes, antisense oncogenes, or cytotoxic/suicide genes in cancer
cells to directly induce an intrinsic cytotoxic cascade, cause cell cycle arrest, or trigger apoptosis
as an anti-tumor agent [100,101,122], and such delivery has been shown to be effective in inducing



Biomedicines 2019, 7, 61 7 of 18

tumoricidal effects and anti-cancer immunity in different animal models [109,123–125]. For example
in 2003, Gendicine, which is a recombinant Ad that expresses wild-type p53 from a Rous Sarcoma
virus promoter, became the first licensed gene therapy product in China to treat cancer [100,101,122].
Based on the fact that p53 is one of the most widely studied tumor suppressors, this gene provided an
ideal target for gene replacement therapy [109,126]. Following cellular stress conditions, p53 induces
senescence, cell cycle arrest, DNA repair, autophagy, and/or apoptosis [127]. Thus, Gendicine has
been approved to treat patients with head and neck cancers [127–129]. Similar to Gendicine, Advexin
is another commonly used Ad-based anti-cancer drug [100,130,131]. Advexin is an E1-E3-deleted
HAdV-5 vector that expresses p53 from a cytomegalovirus promoter in the E1 region [100]. Advexin
has been used in numerous cancer treatments, including head and neck cancer, prostate cancer, colon
cancer, and breast cancer [100,132–134].

In general, HAdV-5 vectors are the most commonly used vectors for cancer gene therapy [109].
In 2014, Azab et al. reported that Ad-5/3 cancer terminator virus suppressed tumor growth in a nude
mouse xenograft model and in a spontaneously induced prostate cancer in Hi-myc transgenic mice [135].
Another HAdV-5 vector was reported in 2016 by Gu and colleagues. This group developed an Ad5H3
chimera using the antigen capsid-incorporation strategy, and this alternative vaccination approach
induced an antigen-specific humoral immune response to escape HAdV-5 neutralization [136].

Although these viral vectors offer many advantages, several major limitations must be addressed
in order to effectively utilize Ad vectors for successful gene therapy in human patients. These challenges
include high levels of pre-existing immunity in patients, transient transgene expression, high
immunogenicity, and induction of potent inflammatory responses [104,137,138]. In addition, some
HAdVs have limited infectivity in some cancer cells. As a result, extensive efforts have been made
to address these limitations. Researchers have developed alternative methods, such as altering the
tropism of HAdVs, vector chimeras, cytotoxic/suicide gene therapy, and combination immunotherapy
approaches, to induce a better anti-cancer effect [107,139–142].

Table 2. Ad vectors currently used in gene therapy clinical trials in the U.S. [143,144].

Adenoviral
Vector Phase Transgene Condition Administration

Route
Clinical Trial

Identifier

Ad-CCL21-DC I
Serotype 5/C-C motif
chemokine ligand 21

(CCL21) cDNA

Dendritic cells
Advanced non-small

cell lung cancer
Intratumoral US-1720

NCT03546361

ETBX-071 I PSA/MUC1/brachyury Prostatic neoplasms
Prostate cancer Subcutaneous US-1738

NCT03481816

AAV8-VRC07
(VRC-HIV

AAV070-00-GT)
I Anti-HIV-1 monoclonal

antibody (VRC07) HIV infection Intramuscular US-1495
NCT03374202

Ad5-CB-CFTR I
Cystic fibrosis

transmembrane
conductance regulator gene

Cystic fibrosis Intranasal NCT00004779

LOAd703 I/II
Vector-directed cell lysis
TMZ-CD40L and 4-1BBl

cDNAs

Pancreatic cancer
Ovarian cancer

Biliary carcinoma
Colorectal cancer

Intratumoral US-1483
NCT03225989

Ad5-DNX-2401 II Vector-directed cell lysis Glioblastoma,
Gliosarcoma Intratumoral US-1487

NCT03896568

Ad-p53 II Tumor suppressor
Squamous cell

carcinoma of the
head and neck

Intratumoral US-1767
NCT03544723
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6. Role of Extracellular Vesicles (EVs) in Ad Infection

Viruses often enter host cells through interactions of viral ligands with cellular receptors [145,146].
Receptor-mediated virus entry has been studied in-depth for quite some time; however, mechanisms
regarding receptor-independent viral entry into cells have not been fully explained. According to
the Trojan hypothesis, retroviruses exploit pre-existing pathways for intracellular trafficking for host
cell entry [147,148]. These pathways involve the non-viral exosome biogenesis pathway for the
formation of infectious particles and the pre-existing, non-viral pathway for exosome uptake as a
receptor-independent, envelope-independent mode of infection [148–151]. Moreover, it has been
proposed that the release of small, membrane-derived EVs, termed exosomes, may offer a mechanism
by which viruses, including HIV and HAdVs, enter cells via receptor-independent entry [146,148,152].

Exosomes are nano-sized, membrane-bound vesicles that range from 40–150 nm in diameter.
Exosomes are released into the extracellular microenvironment by all types of eukaryotic cells, including
epithelial cells, glial cells, and neurons, as well as a few prokaryotic cells, including bacteria [152–154].
These discharged vesicles have been observed in blood, urine, semen, saliva, cerebrospinal fluid,
and breast milk and play a central role in intracellular communication via their involvement in key
biological processes [152]. The composition of these small vesicles reflects the composition of the
subcellular origin and the physiology of the parent cells [154,155]. Exosomes have been found to be
involved in several pathophysiological processes, such as neurodegenerative disorders, infectious
disease, cardiovascular disease, and cancers [154,156–158]. Recent studies have explored potential roles
for exosomes in the pathogenesis of portal hypertension, fibrosis, and liver inflammation [159–161].

Biogenesis of exosomes has not yet been fully elucidated; however, current literature suggests
that exosomes are formed when early endosomes mature into late endosomes [152,162]. The late
endosomes then form into multivesicular bodies, which fuse with the plasma membrane and release
their contents into the extracellular environment [152,162]. Exosomes are secreted via the constitutive
or inducible release pathway [163]. In the constitutive release pathway, proteins (e.g., Rab guanosine
triphosphatases) are sorted into vesicles in the Golgi, transported to the cell surface, and fused with
the plasma membrane through exocytosis [163]. In the inducible release pathway, stimuli, such as
hypoxia, DNA damage, and heat shock, are regulated [163]. Exosomes act as carriers to transport DNA,
various types of RNAs, lipids, and proteins [164–168]. These vesicles are enriched with tetraspanins
(e.g., CD9, CD63, and CD81) and endosome-associated proteins (e.g., annexin and Rabs) [161,169,170].
A more detailed description of the molecular constituents found within exosomes is reviewed in
Crenshaw et al. [163].

Recent findings suggest that exosomes can carry viral genomes and act as cargo for viruses.
This is important for viral survival, spread, and infection in the host organism [146,152,156,157,171,172].
Enveloped and non-enveloped viruses have evolved to enter host cells and hijack host cellular
activities [146,152,173–175]. This unique way of entry may be mediated by exosomes, which provide a
mechanism for the virus to evade the host immune system [174–176]. Although, the Trojan hypothesis
and viral protein trafficking within exosomes have been widely accepted for RNA viruses and exosomes,
much less is known with respect to DNA viruses and exosomes. We have shown that HAdV-5 exploits
exosomes for receptor-independent cellular entry [146]. Specifically, the T-cell immunoglobulin
mucin (TIM) protein-rich exosomes aid in exosome-mediated viral genome entry. This mechanism
occurs with DNA viruses, such as HAdV [146,157]. Previous studies demonstrated that exosomes
significantly enhanced HAdV-5 entry in CAR-deficient cells, in which HAdV-5 had only very limited
entry. These exosomes were found to contain TIM-4, which binds phosphatidylserine. Treatment with
TIM-4 antibody significantly blocked exosome-mediated HAdV-5 entry [146]. In addition, we further
speculate that exosomes are released in the serum of HAdV-infected cells and that these HAdV-derived
exosomes release DNA, miRNA, RNA, and viral proteins that aid in intracellular communication
between neighboring cells. A proposed schematic of HAdV utilization of exosomes to enter the host
cell is shown in Figure 3.
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Figure 3. Exosomes mediate HAdV attachment and entry. The coxsackie and adenovirus receptor
(CAR) mediates the entry of HAdv into human cells. Exosomes act as carriers for viruses, and this
inclusion is important for viral survival, spread, and infection in the host organism. The HAdV binds to
exosomes, enters cells via phosphatidylserine/TIM-4 interactions or other binding proteins. In addition,
the virus injects their DNA into the host cell, which produces copies of its genes and proteins, resulting
in transmission. Multivesicular bodies (MVBs).

7. Role of EVs and Ad in Therapeutic Applications

In contrast to their role in viral pathogenesis, exosomes can contribute to the diagnosis of
infectious disease and cancer and mediate drug delivery [177–179]. Previously, it was demonstrated
that HAdV-5 binds to neural stem cell-derived exosomes and is delivered to the brains of mice [152].
This study presented important information for the use of HAdV-5 as a potential gene therapy
tool, demonstrating that exosomes derived from neuronal cells can mediate Ad transduction in vivo.
The demonstration of exosome-mediated viral delivery is important for transduction of cells that are
Ad-resistant and/or in certain in vivo situations. Zhu et al. sought to inhibit porcine reproductive and
respiratory syndrome (PRRS) infection by blocking PRRS receptor binding [180]. These investigators
demonstrated a significant additive anti-PRRS effect of two recombinant Ad vectors that were incubated
and co-administered with artificial miRNA-containing exosomes and further proved that exosomes
were efficient delivery systems for small RNA in pigs [180].

Other groups have also reported potential therapeutic uses for EVs and Ad-based vectors.
In 2016, Ran et al. demonstrated that tumor cell-derived microparticles, a specific class of EVs, could
serve as a carrier for oncolytic Ads, leading to highly efficient cytolysis of tumor cells for in vivo
treatment efficacy. In these studies, the benefits of harnessing the anti-tumor effects of oncolytic
Ads and tumor microparticles included the avoidance of pre-existing antibody immunity of the host,
receptor-independent virus entry into tumor cells, promotion of nuclear entry of oncolytic Ads to
stem-like tumor-repopulating cells [181]. Similarly, Garalo et al. demonstrated that human lung cancer
cell-derived EVs could be used for systemic delivery of oncolytic virus (OV) and the chemotherapeutic
agent paclitaxel, resulting in enhanced anti-tumor effects in a nude mouse model [182]. More recently,
in a separate study, Garofalo and colleagues used in vivo and ex vivo imaging to validate the cancer
tropism attained when OVs are encapsulated inside EVs following intravenous administration but not
intraperitoneal administration. This study further showed that the encapsulation of the virus did not
disrupt virus function [183].

The use of EVs and Ads or OVs for therapeutic applications for cancer treatments has several
advantages, including avoidance of the host immune response and expanded tropism of virus delivery.
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Although EVs have been shown to be safe in humans and have been approved for clinical trials, one of
the biggest drawn backs to EV use is the lack of universal protocols for EV production for use as a
drug delivery tool. Thus, a standardized protocol is urgently needed to expand the use of this system
for therapeutic applications [184]. Additionally, the low production yield of EVs together with a short
half-life following intravenous administration is a tremendous challenge that needs to be overcome
before clinical applications can move forward [184–187]. Finally, additional studies to investigate
possible immunogenic properties or toxic effects of EVs are warranted [188].

8. Conclusions

HAdVs are complex and evolving organisms. While much is already known about the
epidemiology, structure/function, and pathogenicity of these viruses, a better understanding is
needed to prevent the infectivity and spread of HAdVs. The superior plasticity and infectious nature of
Ad vectors have positioned them as the most used viral vector for gene therapy and clinical biomedical
research. The relationship between HAdV infection and EVs may provide a pivotal feature for the
development of innovative cell-based therapies for diseases, including cancer. Furthermore, new
information about the relationship between HAdVs and exosomes may also help to define new viral
entry pathways that will lead to modalities to reduce infection.
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