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Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with
cystic fibrosis (CF). The most prevalent CFTR mutation, DF508, blocks folding in the endoplasmic reticulum. Recent work has
shown that some DF508-CFTR channel activity can be recovered by pharmaceutical modulators (‘‘potentiators’’ and
‘‘correctors’’), but DF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand
(CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based
computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell
validation of novel, effective CAL PDZ inhibitors (called ‘‘stabilizers’’) that rescue DF508-CFTR activity. To design the
‘‘stabilizers’’, we extended our structural ensemble-based computational protein redesign algorithm K� to encompass
protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-
predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design
methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for
CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR
C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway
epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide
an additional therapeutic pathway that can be used in conjunction with current methods.
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Introduction

Protein-peptide interactions (PPIs) are vital for cell signaling,

protein trafficking and localization, gene expression, and many

other biological functions. The PDZ (PSD-95, discs large, zonula

occludens-1) family of proteins forms PPIs that play crucial

physiological roles, including synapse formation [1] and epithelial

cell polarity and proliferation [2]. The common PDZ structural

core generally binds a specific sequence motif at the extreme C-

terminus of its binding partner through b-sheet interactions

(Fig. 1A). Recently, key PPIs have been discovered linking the

trafficking of the cystic fibrosis transmembrane conductance

regulator (CFTR) to PDZ domain containing proteins [3]

(Fig. 1B). Specifically, the PDZ domain of the CFTR-associated

ligand (CAL) binds CFTR, targeting it for lysosomal degradation

and reducing its half-life at the plasma membrane [4,5].

CFTR is an epithelial chloride channel that is mutated in cystic

fibrosis (CF) patients. The most common disease-associated

mutation, DF508-CFTR, is a single amino acid deletion that causes

CFTR misfolding and endoplasmic reticulum-associated (ER)

degradation. There is now evidence that the DF508-CFTR loss of

function can be pharmacologically improved through the use of

‘‘correctors’’ [6] and ‘‘potentiators’’ [7]. Correctors, such as corr-4a

[6,8], work by correcting the folding defect of CFTR and preventing

ER retention of CFTR. Potentiators combat mutant CFTR gating

defects and increase the flow of ions through CFTR channels

present at the cellular membrane. Despite these interventions, the

half-life of DF508-CFTR in the membrane is still reduced compared

to that of the wild-type protein [9]. However, the CAL-mediated

degradation of DF508-CFTR can be reduced by RNA interference

or by mutagenesis of the CAL PDZ domain, suggesting that a

competitive inhibitor of the CAL binding site could act as a CFTR

‘‘stabilizer’’ and thus ameliorate CF symptoms [3,10]. Since

stabilizers address a different underlying CF defect than correctors

and potentiators, combined application can achieve additive rescue

of DF508-CFTR activity [11].

Since PDZ domains have an inherent affinity for peptides, here

we focus on the use of protein design methods to rationally design

a competitive peptide inhibitor that could serve as a DF508-CFTR

stabilizer. Indeed, the development of successful peptide inhibitor

design tools would provide a means to target a wide variety of PPIs

for both mechanistic and therapeutic applications. Several aspects

of our new K� design algorithm (described below) are well suited

to the requirements of this class of problems.
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In general, structure-based computational protein design seeks

amino-acid sequences that are compatible with a specific protein

fold. Often, additional functional constraints are applied to the

problem in order to design a protein with a given binding or

catalytic activity. Because protein conformational space is large,

design algorithms often assume a fixed backbone conformation

and reduce side-chain configuration space by using discrete

conformations called rotamers [12–15]. Thus, most current design

methods try to solve the traditional design problem, which can be

defined as: for a given input model (protein structure, rotamer

library, and energy function), find the side chain rotamers that

yield a single, global minimum energy conformation (GMEC) for

the entire protein [16–34]. However, in reality, a protein in

solution exists as a thermodynamic ensemble and not just a single

low-energy structure [35]. Accounting for such ensembles can help

find true native protein structures [36–39]. The design algorithm

we present here, K�, takes this into account by computing

Boltzmann-weighted partition functions over structural molecular

ensembles to find provably-accurate approximations to the

binding constant for a protein complex [40,41]. The value of this

approach is reflected in previous applications of the K� algorithm

to design a switch in enzyme specificity for an enzyme in the non-

ribosomal peptide synthetase pathway [40] and to predict

resistance mutations for antibiotic targets [42].

As with the established K� algorithm, most successful protein

design studies have focused on protein/small molecule systems,

since predicting PPI binding is more challenging than small

molecule binding, due to PPIs’ much larger, flexible, and

energetically shallow binding surfaces. The methodologies that

have been developed to study protein-protein interactions and,

more specifically, PDZ domain interactions, can be divided into

sequence- [43,44] and structure-based [38,45–49] methods.

Sequence-based methods require a large amount of sequence

and binding information for the protein family and do not provide

direct structural information on the modeled interaction. Among

the previous structure-based alternatives, most focus on finding the

single GMEC conformation, although one study suggests that

designing to a set of different backbone conformations can

improve recovery of PDZ domain binding motifs [45]. In addition,

only the work of Altman et al. [46] utilizes provable techniques,

and none use both provable techniques and protein ensembles. In

comparison, the K� algorithm is more general, requiring only a

starting template structure and preserving structural information

on the modeled interaction. It also evaluates energy-weighted

ensembles, employs provable guarantees for finding the optimal

sequence, and uses the minimization aware dead-end elimination

(minDEE) pruning criteria [16,41] to permit continuous minimi-

zation of rotamers during the search. As a result, K� complements

existing approaches while addressing some of their methodological

limitations. Here we report the development of new extensions to

the K� algorithm, enabling the software to design novel PPIs.

Author Summary

Cystic fibrosis (CF) is an inherited disease that causes the
body to produce thick mucus that clogs the lungs and
obstructs the breakdown and absorption of food. The cystic
fibrosis transmembrane conductance regulator (CFTR) is
mutated in CF patients, and the most common mutation
causes three defects in CFTR: misfolding, decreased function,
and rapid degradation. Drugs are currently being studied to
correct the first two CFTR defects, but the problem of rapid
degradation remains. Recently, key protein-protein interac-
tions have been discovered that implicate the protein CAL in
CFTR degradation. Here we have developed new compu-
tational protein design algorithms and used them to
successfully predict peptide inhibitors of the CAL-CFTR
interface. Our algorithm uses a structural ensemble-based
evaluation of protein sequences and conformations to
calculate accurate predictions of protein-peptide binding
affinities. The algorithm is general and can be applied to a
wide variety of protein-protein interface designs. All of our
designed inhibitors bound CAL with high affinity. We tested
our top binding peptide and observed that the inhibitor
could successfully rescue CFTR function in CF patient-
derived epithelial cells. Our designed inhibitors provide a
novel therapeutic path which could be used in combination
with existing CF therapeutics for additive benefit.

Figure 1. (A) Structural model of the CAL PDZ domain (green and blue) bound to a CFTR C-terminus mimic (gray) used as input for
computational designs (PDB id: 2LOB). Residues shown in blue were modeled as flexible during the design search. (B) Model of the CFTR
trafficking pathway with PDZ domain containing proteins NHERF1 and CAL. CAL is associated with lysosomal degradation of CFTR, while NHERF1 is
associated with insertion of CFTR into the cell membrane.
doi:10.1371/journal.pcbi.1002477.g001

Design of a Peptide Inhibitor for CFTR Rescue
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Using this new tool we designed high-affinity CAL PDZ

inhibitors and validated them in both biochemical and cell-culture

experiments. We present peptide array data which shows that

CAL binds a specific sequence motif, but does not bind all

sequences within that motif. Therefore, it is important that the K�

algorithm is able to differentiate the affinities of peptides that share

the motif, rather than just separating motif from non-motif

sequences. Overall, K� searched 2166 peptide inhibitor sequences

within the CAL binding motif (approximately 1015 possible

conformations) and generated top-ranked peptides that had up

to a 170-fold improvement in binding to CAL compared to the

wild-type CFTR sequence. The best binder was able to rescue

DF508-CFTR function in human cells.

Materials and Methods

K� Algorithm
K� computationally searches over peptide amino acid substitutions

(mutations) for a given protein-peptide complex and assigns each

candidate sequence a score, called a K� score [40,41]. To compute the

score for a given protein-peptide complex candidate sequence, K�

evaluates the low-energy conformations for the sequence and uses

them to compute a Boltzmann-weighted partition function. Parti-

tion functions are computed for each protein binding partner

using rotamer-based ensembles defined as q
A
~
P

a[A

exp ({Ea=RT),

q
B
~
P

b[B

exp ({Eb=RT), q
AB

~
P

ab[AB

exp ({Eab=RT) where q
AB

is

the partition function for protein A bound to protein B, and q
A

and

q
B

are the partition functions for the unbound proteins, A and B. The

K� score is defined as the ratio of partition functions: K�~
q

AB

q
A
q

B

,

which is an approximation of the protein complex association

constant, KA [41]. Candidate sequences are ranked based on their

K� score, where sequences with a higher K� score are considered to

have a higher affinity for the target protein.

The K� algorithm has been described previously [16,40,41].

Briefly, to calculate a partition function for a given sequence, K�

finds low energy conformations by performing a rotamer search as

follows. First, K� uses an enhanced version of dead-end elimination

(DEE), minDEE [16,41,50], to prune side-chain rotamers that

provably cannot be part of low-energy structures. Since rigid-

rotamer DEE [34,51] often eliminates rotamers and sequences that

are involved in bona fide low-energy conformations [50], K� prunes

rotamers using minDEE, which allows local side-chain rotamer

minimization to relieve clashes that are incorrectly pruned by rigid

rotamer design methods. In order for minDEE to account for

minimization during the rotamer search, it computes energy lower

bounds for each rotamer pair. The branch-and-bound algorithm A�

[30] is used to enumerate conformations in gap-free order of their

minimum energy bounds. These conformations are minimized and

their Boltzmann-weighted energy is incorporated into the partition

function. The partition function is computed with respect to the

input model (protein structure, energy function, and rotamer

library), so the accuracy of the partition function is bounded by the

accuracy of the input model. Refer to Fig. 2 to see the general

framework for the K� algorithm.

The energy minimization scheme that is used for both the

energy lower bounds computation and the minimization of a full

conformation is similar to previous descriptions [41]. The K�

algorithm’s minimization protocol separates a protein’s degrees of

freedom (DOF) into three categories: (1) backbone dihedrals (w
and y angles) (2) side-chain dihedrals (up to four x angles per side

chain) and (3) rigid body rotation and translation (R3|SO(3)).
The minimization process holds the backbone dihedrals fixed

while allowing the side-chain dihedral and rigid body DOF to

minimize. The minimization over these DOF is performed using

gradient descent. To prevent rotamers from minimizing from one

rotamer to another, each side-chain dihedral was only allowed to

move a maximum of 90 from its modal rotameric value.

Extension of K� to Amino Acid Substitutions/Flexibility
on Two Protein Strands

K� relies on the mathematically provable guarantees of each of

its steps (Fig. 2) to compute an accurate K� score. If we were to use

heuristic steps to find the low energy conformations, it could not

be guaranteed that all the low energy conformations are found and

we would lose the ability to calculate a provably-good e-

approximation (where e is user-defined) to each partition function

for the design system. Because of the provable aspects of K�, if K�

makes an errant prediction, we can be certain that it is due to an

inaccuracy in the input model and not a problem (such as

inadequate optimization) with our search algorithm. This makes it

substantially easier to improve the model based on experimental

feedback, as we show in Section S2 of Text S1.

Before applying K� to PPI designs, we first had to ensure that

the mathematical framework of K� could be extended to cover

larger systems. For large designs such as PPIs, the provable

guarantees of K� no longer hold as they did for small design

systems. Specifically, the previous K� proofs [41] for intermutation

pruning and guaranteeing the accuracy of the K� score, relied on

properties of small molecule design systems that are not true for

PPIs. We now show that it is possible to improve the K� algorithm

to maintain these critical provable guarantees. As a result, systems

where both binding partners in the protein complex are flexible or

mutable during the search can be accurately studied using K�.
Intermutation pruning uses computed partition functions to truncate

the conformation enumeration process for candidate sequences

when they will provably fail to achieve a K� score close to the best K�

score. To show that an intermutation pruning criterion [41] exists for

PPI design we seek a halting condition for the conformation

enumeration such that we know we have an e-approximation to the

Figure 2. Overview of K� Algorithm. The K� algorithm searches
over protein sequences and conformations to find the protein
complexes with the best binding constant. K� takes an input model
composed of an initial protein structure, a rotamer library to search over
side-chain conformations, and an energy function to evaluate
conformations. Minimization-aware DEE (minDEE) prunes rotamers that
are not part of the lowest energy conformations for a given sequence.
The remaining conformations from minDEE are enumerated in order of
increasing energy lower bounds using A*. Finally, the conformations are
Boltzmann-weighted and used to compute partition functions and
ultimately a K� score for each sequence.
doi:10.1371/journal.pcbi.1002477.g002

Design of a Peptide Inhibitor for CFTR Rescue
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bound partition function for a given protein complex. First we

observe: K�i §cK�0 , where K�i is the K� score of the current

sequence, K�0 is the best score observed so far, and c is a user-selected

parameter. In the following lemma, n is the number of conforma-

tions in the search that remain to be computed, k is the number of

conformations that have been pruned from the search with DEE, E0

is the lower energy bound on all pruned conformations, R is the

universal gas constant, and T is the temperature. The full partition

function for the protein-protein complex, and unbound proteins are

q
AB

, q
A
, and q

B
respectively, while q�

AB
, q�

A
, and q�

B
denote the current

calculated value of the partition functions during the computational

search.

Lemma 1. If the lower bound Et on the minimized energy of

the (mz1)th conformation returned by A� satisfies Et§{RT
( ln (ceK�0 q�

A
q�

B
{k exp ({E0=RT)){ ln n), then the partition function

computation can be halted, with q�
AB

guaranteed to be an e-approximation to

the true partition function, q
AB

, for a candidate sequence whose score K�i
satisfies K�i §cK�0 .

This lemma shows that even when designing for protein-protein

interactions, there exists a sequence pruning criterion during the

K� search.

Now we show that we can obtain a provable guarantee on the

accuracy of the K� score for each protein conformation. Since

both partition functions are e-approximations, we no longer obtain

an e-approximation to the K� score but rather the following:

Lemma 2. When amino acid substitutions (or flexible residues) are

allowed on both strands in the computational design, the computed K� score is

a s-approximation to the actual K� score, where s~e(2{e).

Since neither of the protein complex partition functions are

calculated fully, the K� score approximation is a 2e-approximation

as opposed to the e-approximation for small molecule designs.

This implies that we must compute better partition function

approximations than before to maintain the same level of K� score

approximation. Nevertheless, the fact that the K� score can still be

provably approximated, confers all the advantages of a provable

algorithm as stated above. The proofs of Lemmas 1 and 2 are

provided in Text S1.

Computational Designs with K�

The previously-determined NMR structure of the CAL PDZ

domain bound to the C-terminus of CFTR (PDB ID: 2LOB) was

used to model the binding of CAL to CFTR. To prepare the

protein complex for the computational design, the initial complex

structure was obtained by molecular dynamics refinement of the

NMR structure as described previously [52]. Hydrogens were

added to the structure using Reduce [53]. The CFTR peptide in

the NMR structure was truncated to the six most C-terminal

amino acids. An acetyl group was modeled onto the N-terminus of

the peptide using restrained molecular dynamics and minimization

in which the N-terminus of the peptide was allowed to move, while

the remainder of the protein complex was restrained using a

harmonic potential [54]. The coordinates of this starting structure

are provided as supporting information (Text S2).

An 8 Å shell around the peptide hexamer was used as the input

structure to K�. The CFTR C-terminal residues, VQDTRL, were

mutated to the following residues during the design search: P{5 to

W, P{4 stayed fixed to Q, P{3 to all amino acids except Pro, P{2

to T/S, P{1 to all amino acids except Pro, and P0 to I/L/V. In

addition, the Probe program [55] was used to determine the side-

chains on CAL that interact with the CFTR peptide mimic. The

nine residues that interact with the peptide, as well as the two most

N-terminal residues on the peptide, were allowed to be flexible

during the design search (Fig. 1A). To explore the feasibility of our

new algorithms, unless otherwise noted, full partition functions

were not computed and a maximum of 103 conformations were

allowed to contribute to each partition function.

Rotamer values were taken from the Penultimate Rotamer

Library modal values [14]. The energy function used to evaluate

protein conformations has been previously described [40,42]. The

energy function, E~vdWzCoulzEEF1, consists of a van der

Waals term, a Coulombic electrostatics term, and an EEF1 implicit

solvation term [56]. The EEF1 solvation term implicitly models

water solvent during all of the computational designs. All design runs

used the Amber98 [57] forcefield terms except for one prospective

design run which used the Charmm19 [58] forcefield parameters.

Training of Energy Function Weights
Previously-determined experimental binding constants [59]

for 16 of CAL’s natural ligands were used to train the energy

function weight parameters (See Text S1 Section S2). K�

scores were computed for each of the natural ligands. For

this training, the CAL-CFTR structure only included the four

most C-terminal residues of the peptide inhibitor. A gradient

descent method was used to optimize the correlation between

the K� scores and the experimental K{1
i values. The final

parameters chosen for the design runs are as follows: a van der

Waals scaling of 0.9, a dielectric constant of 20, and a solvation

scaling of 0.76.

Peptide Array Comparison
K� was used to predict binding between the CAL PDZ domain

and the HumLib set of 6223 human protein C-termini. The

binding of the C-termini peptides to CAL was experimentally

assessed using a peptide SPOT array [59,60]. Due to experimental

restrictions, all cysteines in the HumLib peptide set were replaced

by serine in the peptide array. For consistency, all computational

predictions compared to the array modeled serines in the place of

cysteines. A summary of the peptide array data is presented in

Fig. 3 while the complete binding results from the array are

provided as Supporting Information (Table S1). The K�

algorithm was used to evaluate 4-mer structural models of 6223

peptide-array sequences to verify the accuracy of the algorithm’s

predictions. To compare the array data with the K� predictions,

the quantitative array data, measured in biochemical light units

(BLUs), was converted into a binary yes/no CAL binding event. In

other words, by using a fixed cutoff value, each sequence from the

array was classified as either a CAL binder or non-binder. The

cutoff value was chosen as three standard deviations away from the

average BLU value of the array. A receiver operating curve

(ROC), which uses a floating cutoff to compare array data to K�

scores, was used to evaluate the ability of K� to predict the array

binding data.

After the K� predictions were calculated, the binding of C-

termini peptides to CAL was also experimentally assessed using an

additional SPOT array. The profile library array (ProLib; Fig. S3

in Text S1) was designed based on the following motif: bbbb

B{3B{2B{1B0 (B = permutation of a defined set of amino acids,

b = mixture of 17 amino acids, without C, M and W). The defined

set of amino acids were selected based on the HumLib results

combined with substitutional analyses [60] with B{3 = A/C/D/

E/F/I/K/L/M/N/Q/R/S/T/V/W/Y, B{2 = S/T, B{1 = A/

C/D/E/F/I/K/L/M/N/Q/R/S/T/V/W/Y, B0 = I/L/V (To-

tal number of peptides = 1734+22 internal control sequences).

Incubation condition: 10mg=ml His-tagged CAL PDZ domain

detected by anti-His (Sigma; 1:2600)/anti-mouse-HRP (Calbio-

chem; 1:2000) antibody sandwich.

Design of a Peptide Inhibitor for CFTR Rescue
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Prospective Computational Predictions
K� was used to search over all peptide sequences within the

CAL PDZ domain sequence motif (excluding prolines) to find new

CAL peptide inhibitors. For computational efficiency the number

of conformations enumerated by A* for each partition function

was limited to 103 conformations. Two sets of peptides (promising

designs and poorly ranked designs) were chosen to be experimen-

tally validated.

In order to choose the most promising peptide inhibitors, a

second K� design was done where K� scores for the top 30

sequences were re-calculated with the number of enumerated

conformations per partition function increased to 105. Several top-

ranked sequences were chosen to be experimentally tested. First,

the top 7 ranked sequences from the second run were chosen. In

addition, two sequences that greatly increased in ranking from the

first to second run (rank 29 to 9, and rank 28 to 11) were chosen as

well. Finally, a K� run was conducted using Charmm forcefield

parameters instead of Amber parameters. Two sequences that

scored high on both the Amber and Charmm runs were chosen to

be experimentally tested as well (Table 1).

The poorly-ranked designs were chosen to minimize the

sequence similarity among the set of poorly-ranked peptides

(Table 2). First, the worst-ranked peptide was chosen and added to

initialize the set of negative sequences. Next, sequences were

successively chosen from the worst 200 K� ranked sequences and

added to the set in order to maximize the amino acid sequence

diversity with all the sequences already in the set. The similarity

between two sequences was determined using the PAM-30

similarity matrix [61]. In total 23 (eleven top-ranked and twelve

poorly-ranked) K*-computed peptide inhibitor sequences were

experimentally tested.

Measuring Peptide Inhibitor Constants
The inhibitor dissociation constants of top- and poorly-ranked

peptide sequences from the K� CAL-CFTR design were

experimentally determined. As a control, the best known peptide

hexamer was also retested. The corresponding N-terminally

acetylated peptides were purchased from NEO BioScience

(Cambridge, MA) and the Ki values for the peptides were detected

using fluorescence polarization (FP), using the method previously

described in [59]. Briefly, the CAL PDZ domain was incubated in

Figure 3. Summary of CAL peptide array. (A) Summary statistics
for peptide array. Higher BLU (biochemical light unit) values indicate
stronger protein binding to a peptide. (B) Distribution of the peptide
BLU values from the peptide array in units of standard deviation above
the mean (s). (C) Normalized amino acid frequencies for the top
sequences that have a BLU value greater than 3 standard deviations
from the average, which were considered as the peptides that bound
CAL for the validation of K� predictions. The frequency of each amino
acid type for each residue position was normalized by the total number
of occurrences of that amino acid in the array at the given residue
position.
doi:10.1371/journal.pcbi.1002477.g003

Table 1. Experimental validation of top-ranked K�

predictions.

Name Sequence K� Ranking Experimental

(out of 2166) Ki (mM)

kCAL01 Ac-WQVTRV 9 2:3+0:2{

kCAL02 Ac-WQFTRL 1{ 7:6+0:7{

kCAL03 Ac-WQKTRL 2 9:0+0:6{

kCAL04 Ac-WQRTRL 5 10:8+0:7{

kCAL05 Ac-WQKTRI 4 12:0+0:9{

kCAL06 Ac-WQKTRV 1 16+2

kCAL07 Ac-WQFTKL 2{ 16+1

kCAL08 Ac-WQRTRI 7 16+2

kCAL09 Ac-WQLTKL 11 17+1

kCAL10 Ac-WQKTKL 6 17:8+0:8

kCAL11 Ac-WQRTRV 3 18+1

{Ki values with a binding affinity higher than the best previously known
hexamer (14+1mM). These sequences are shown in green in Fig. 5.

{Sequence rank obtained by ordering the quantity:
RAzRC

2
, where RA is the

sequence rank from a design run using the Amber forcefield and RC is the
sequence rank from a run using the Charmm forcefield.
doi:10.1371/journal.pcbi.1002477.t001

Table 2. Experimental validation of poorly-ranked K�

predictions.

Name Sequence K� Ranking Experimental

(out of 2166) Ki (mM)

kCAL20 Ac-WQYTMI 1981 24+4

kCAL21 Ac-WQYTDL 2082 32+4

kCAL22 Ac-WQISWL 1973 37+15

kCAL24 Ac-WQHTEV 1989 87+7

kCAL23 Ac-WQMTDI 1969 90+9

kCAL25 Ac-WQCSEI 2051 107+9

kCAL26 Ac-WQESEL 2095 120+20

kCAL27 Ac-WQDTWI 2158 400+20

kCAL28 Ac-WQWSDV 2166 400+200

kCAL29 Ac-WQDSCV 2011 1000+200

kCAL30 Ac-WQGSDV 2075 2200+300

kCAL31 Ac-WQDSGI 1992 w5000

doi:10.1371/journal.pcbi.1002477.t002

Design of a Peptide Inhibitor for CFTR Rescue
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FP buffer (25 mM Tris-HCl pH 8.5, 150 mM NaCl; supplement-

ed to a final concentration of 0.1 mg/mL bovine IgG (Sigma) and

0.5 mM Thesit (Fluka)) with a labeled peptide of known binding

affinity. Each peptide inhibitor was serially diluted and the

protein-peptide mixture was added to each dilution. Finally, the

amount of competitive inhibition was tracked using residual

fluorescence polarization at temperatures between 25{280C.

Each Ki value is reported as an average of three FP experiments

conducted on separate days along with the corresponding standard

deviation.

Measuring Chloride Flux
Ussing chamber experiments were performed as described

previously [11]. Polarized monolayers of patient-derived bronchial

epithelial cells, CFBE-DF cells (a generous gift of Dr. J.P. Clancy

[62,63]), were maintained in MEM with 2 mM l-glutamine, 10%

fetal bovine serum, 50 units/mL penicillin, 50mg=mL streptomy-

cin, 2mg=mL puromycin, 5mg=mL plasmocin, and 2:5mg=mL
amphotericin B. Cells were grown at 370C in 5% CO2. Twenty

four hours before treatment the cells were moved to MEM with

only penicillin and streptomycin. Peptides were dissolved in

DMSO and diluted to 500mM in PBS. Peptide solutions were

applied to cells following incubation with BioPORTER delivery

reagent (Sigma). The final DMSO concentration did not exceed

0.03%. Following a 3.5 hour incubation with peptide, short circuit

currents (ISC) were monitored in Ussing chambers. Following

treatment with amiloride, forskolin, and genistein, DF508-CFTR

chloride flux was measured as the change in ISC when the CFTR-

specific inhibitor, CFTRinh172 [64,65], was applied to the cell

monolayer. All measurements were performed at 370C.

Results

We applied the K� algorithm to the CAL-CFTR system to find

a CAL PDZ peptide inhibitor that acts as a biologically active

stabilizer of DF508-CFTR. First, we developed the ensemble-

based computational structural design software K� to design PPIs.

To validate the design methodology, the predictions of the K�

algorithm were compared with binding data of CAL binding

human protein C-termini. The validation showed K� was able to

enrich for peptide inhibitors. We then used K� to prospectively

find new peptide inhibitors of CAL. The top-scoring predicted

sequences were experimentally validated and we determined that

they all bind CAL with mM affinity. Next, additional binding data

for peptide sequences that match the known CAL binding motif

were collected and compared to the K� predictions. Finally,

Ussing chamber experiments showed that the highest affinity

designed peptide significantly rescues DF508-CFTR in bronchial

epithelial cells.

Validation of the K� Algorithm
To validate the K� algorithm, we compared K� predictions for

CAL peptide inhibitors against peptide array binding data. First,

peptides from the 6223 peptide HumLib library were tested for

CAL binding using a SPOT array [59]. The array was able to find

over one hundred peptides that clearly bind the CAL PDZ domain

(Fig. 3). Second, K� predictions were made for all of the peptide

sequences in the HumLib library. Fig. 4A shows the resulting

receiver operating curve (ROC) when comparing the K� scores to

the binding measurements (BLU values) of the peptide array. The

ROC has an area under the curve (AUC) of 0.84 which shows that

K� greatly enriches for peptides that bind CAL. Specifically,

according to the peptide array, out of the top 30 K� predicted

sequences, 11 are expected to bind CAL. Notably, this is a 20-fold

increase over the number of binders that would be expected to be

found if the CAL binding peptides were distributed randomly

within the K� predictions.

To investigate the success of the algorithm in more detail, we

evaluated the importance of the CAL binding motif in

determining K� predictions. The amino acid frequencies from

the top binding peptides of the HumLib library (Fig. 3C) and

natural binding partners of CAL [59] reveal that the canonical

sequence motif of CAL is X-S/T-X-L/V/I. As expected, among

the full set of HumLib peptides, K� enriches for sequences that

conform to this motif. Furthermore, if we allow K� to design

peptides varying at the primary motif positions 0 and 22, it

achieves an AUC of 0.94 (Text S1 Section S3 and Fig. S2 in Text

S1), confirming its ability to identify the motif de novo. While K�

also identified a few non-motif sequences in each case, the

HumLib suggests that CAL actually can bind to such sequences,

albeit less frequently (10 of 5867 sequences).

Of course, the identification of motif residues, while a necessary

test of the algorithm, does not by itself represent a major advance

in affinity prediction. The HumLib library shows that only 70 out

of 261 sequences with the CAL binding motif bind to CAL. A

much more stringent test of the K� design algorithm is thus to

determine how well K� enriches for binders among sequences that

match the known CAL binding motif. As a first test, we

recalculated the ROC curve considering only peptides in the

HumLib library that match the CAL sequence motif, and K� was

still able to significantly enrich for CAL peptide binders

(AUC = 0.71; Fig. 4B). This search, together with the blind test

of K� rankings described below, provides a true test that the

success of K� in predicting HumLib binders is not merely due to

its identification of peptides conforming to the known sequence

motif, but also to its ability to distinguish high- and low-affinity

binders among such peptides.

Figure 4. K� enriched for peptide sequences that bind the CAL
PDZ domain. ROCs were calculated comparing K� predictions to (A)
the entire HumLib peptide array data set (AUC = 0.84) and (B) only
sequences in the HumLib array that matched the CAL binding motif
(AUC = 0.71).
doi:10.1371/journal.pcbi.1002477.g004
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Prospective Design of CAL Peptide Inhibitors
While SPOT arrays have proven to be a powerful tool for the

identification of CAL binding peptides, the highest affinity

inhibitors identified to date are composed of at least 10 amino

acids. For hexamers, the highest published affinity is for iCAL35

(WQTSII; [60]). Since K� was able to successfully enrich for CAL

binders found in the HumLib library, we then used K� to

prospectively find novel, shorter CAL peptide inhibitors, searching

over 2166 peptides containing motif-based combinations of the C-

terminal four residues. To facilitate accurate experimental

binding-constant measurements, each peptide was extended by a

shared N-terminal addition of the most frequent P{5 and P{4

residues among HumLib binders(WQ), yielding hexamer sequenc-

es that exhibit a higher baseline affinity [59]. Both top- and

bottom-ranked sequences were chosen for experimental valida-

tion. The Ki value for each peptide hexamer was determined using

fluorescence polarization [59] (Table 1). We used the same FP

protocol to confirm the affinity of the acetylated iCAL35 reference

peptide for CAL (Ki~14+1mM).

All of our top-ranked inhibitors are novel CAL ligands, for which

neither predicted nor experimental affinities were previously

available. Remarkably, all of the top predicted peptides bind CAL

with high affinity (Fig. 5A, Table 1). The tightest binding predicted

peptide (kCAL01, WQVTRV) had a Ki of 2:3+0:2mM. While this

affinity is comparable to that of several other PDZ inhibitors [66,67],

solution-state measurements show that the CAL PDZ domain

exhibits systematically weak interactions with target C-termini: note

that the Ki for the wild-type CFTR sequence (TEEEVQDTRL)

is 390mM and the best known affinity natural ligand

(ANGLMQTSKL) for CAL is 21mM [60]. Thus, our design

algorithm successfully identifies high affinity peptide inhibitors of the

CAL PDZ domain, with 170-fold higher affinity than the interaction

we were trying to inhibit and 9-fold higher affinity than any

comparable natural ligand. This peptide affinity advantage may be

important in physiological applications, since the native CAL:CFTR

target interaction may involve additional sources of affinity outside

the PDZ binding pocket [4,59], not available to a peptide inhibitor.

We also performed further analysis of the HumLib SPOT array

used for K� validation. Selecting the most common amino acid at

positions P0 to P{5 among HumLib binders yields the sequence

WQSTRL (HumLib01, Fig. 3C), which is ranked in the top 50 K�

predictions (out of 2166). This sequence is also the strongest binder

identified among the ProLib sequences (see below, and Fig. S3 in

Text S1). However, when we measured the CAL binding for

HumLib01 using fluorescence polarization (FP) it exhibited a Ki

value of 13:5+0:5mM, only a marginal improvement in affinity

compared to iCAL35 (14+1mM). In comparison, five of the

eleven top K� predicted sequences we measured with FP show an

improvement in binding compared to both iCAL35 and

HumLib01, and kCAL01 shows a six-fold improvement over

both iCAL35 and the HumLib01 sequence.

The best inhibitor found through previous FP and array screens

involves a fluorescein group modification to a peptide decamer (F*-

iCAL36, F*-ANSRWPTSII, Kd~1:3mM). kCAL01 rivals this

binding affinity despite the computational search library restriction

to only allow amino acids and hexamer sequences. Critically, at

830 Da, kCAL01 has approximately twice the binding efficiency

(ratio of inhibitor potency, DG, to molecular mass) of F*-iCAL36

and is much closer in size to typical drugs. This makes kCAL01 a

very promising inhibitor compared to F*-iCAL36 and other

discovered inhibitors.

Furthermore, as suggested by our retrospective tests, the tight

binding of our top-ranked sequences was not merely a conse-

quence of the underlying CAL-binding motif used to select

candidate sequences for evaluation. To establish this, we selected a

set of poorly-ranked peptides to minimize sequence similarity and

evaluated their CAL-binding affinity experimentally. Almost all of

the poorly-ranked sequences bound CAL, consistent with their

motifs (Fig. 5A). Reflecting the enrichment of CAL binders in the

pool, the two poorly-ranked peptides with the best affinities

(Ki~24mM and 32mM, respectively) were indeed close to the

affinity of the weakest top-ranked sequence (Ki~18mM). Howev-

er, all of the poorly ranked peptides bound CAL more weakly than

any of the top-ranked sequences (Table 1), and none of them had

Figure 5. (A) DG values for top- and poorly-ranked K� predictions that were experimentally tested using fluorescence polarization.
Predictions plotted in green denote that the binding affinity was higher than the best previously known hexamer (14 mM). Horizontal line represents
average DG for plotted sequences. Sequence information and binding data can be found in Tables 1 and 2. (B) Ensemble of top 100 conformations
for the peptide (kCAL01: WQVTRV, orange sticks) with tightest binding to CAL (gray ribbon).
doi:10.1371/journal.pcbi.1002477.g005
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improved affinity relative to prior biochemical efforts. This

suggests that K� can efficiently distinguish among motif-bearing

peptides, allowing it to predict sequences with CAL affinities

unprecedented among hexamers.

Detailed analysis of the K� predictions suggests that the use of

both ensemble-weighting and minDEE approaches was important

in the success of the algorithm. The ensembles generated by K� do

not have a dominant conformation, i.e., a conformation with

significantly lower energy than the others, which would thus

dominate in the partition function. For example, in the case of

iCAL35 (WQTSII), K� found 75 conformations that were within

0.5 kcal/mol and 454 conformations that were within 1 kcal/mol

of the iCAL35 GMEC. In general, the ensemble conformations

are consistent with canonical PDZ:peptide interactions and with

the conformation of the CAL-bound CFTR peptide determined

by NMR [52]. To determine the importance of the ensemble-

based K� rankings we compared the predictions to two single-

structure GMEC-based methods, minDEE [41], and rigid-

rotamer DEE (rigidDEE) [68]. Both minDEE and rigidDEE were

run with the same energy parameters as the K� designs. However,

since the single-structure designs only compute the energy of the

bound state, reference energies [16] were included as in [69] to

account for the energy of the unbound state. The inclusion of

reference energies for single-structure designs have been deemed

necessary by most protein designers to account for the unfolded/

unbound state [24,69,70]. K� does not need reference energies

since it calculates a partition function for both the bound and

unbound states of the complex [16,40]. Therefore, reference

energies are included to make the comparison between K� and the

single-structure designs more fair. We compared the top 30

sequences from minDEE and rigidDEE and found they had no

sequences in common. This supports previous work where we

have shown that in over 69 protein design systems minDEE finds

low energy sequences that rigidDEE discards by not allowing

minimization [41,50]. In addition, when we compare the top 30

rigidDEE and minDEE results to the top K� designs we find that

they have only three and four sequences in common, respectively.

If we had used only GMEC-based approaches instead of K�, we

would not have predicted most of the experimentally successful

sequences that K� found, including the best inhibitor kCAL01. In

addition, the overall sequence rankings show a very poor

correlation between the minDEE and K� predictions; the same

is true of the rigidDEE and K� predictions (R2 = 0.1 and 0.09

respectively).

Blind Test of K� Predictions within the CAL Binding Motif
The prospective peptide predictions demonstrate that K� can

successfully find CAL peptide inhibitors. Our solution-state

binding tests provide robust information for the best and worst

K*-predicted peptides, but give little information about the CAL

binding of the remaining peptides that match the CAL motif. To

investigate this experimentally, we designed a peptide library

SPOT array (ProLib) based on the HumLib motif combined with

substitutional analyses [60]. The resulting sequences closely match

our prospective prediction set and the binding of these sequences

to CAL was assessed as described in the Materials and Methods

section. Using a similar analysis to that performed on the HumLib

peptide array we compared the K� predictions to the CAL binding

observed with the ProLib array. We found an AUC = 0.88 (Fig. 6).

Note that this AUC is much higher than the 0.71 found when only

looking at CAL motif sequences within the HumLib array. One

explanation for this improvement is that the experimental setup is

closer to the design model used by K�. Specifically, the ProLib

array uses a mixture of amino acids at P{4 to P{7 of the peptides,

while the HumLib array is composed of decamer peptides. Thus,

the ProLib data focuses on the identity of the last 4 C-terminal

positions, which better matches the sequence and structure search

space of the K� designs. A complete evaluation of the accuracy of

K� affinity predictions would require the synthesis and FP binding

analysis of all 2166 sequences within the CAL binding motif.

However, taken together, the FP measurements for the designed

peptides plus the ProLib blind test suggest that K� is a powerful

filter, efficiently selecting tight binders from a pool of sequences

with baseline affinity for the target.

Biological Activity of the Highest Affinity Designed
Peptide Inhibitor

All of our top-predicted inhibitors successfully bound CAL,

which suggests that they should disrupt the degradation pathway

of CFTR. The ability of kCAL01 to restore DF508-CFTR

function was assessed by measuring CFTR-mediated chloride

efflux in CF-patient derived bronchial cells expressing DF508-

CFTR (CFBE-DF) using an Ussing chamber apparatus [11]. As a

control peptide, we used kCAL31 (WQDSGI), which was ranked

as the weakest interactor by K� and for which no binding was

detected experimentally (Table 2). Fig. 7 shows DF508-CFTR

chloride secretion across polarized monolayers treated with either

kCAL31, the iCAL35 reference peptide, or kCAL01. Previous

studies with fluorescently labeled peptides have demonstrated

delivery into CFBE-DF cells using the BioPORTER reagent [11].

Significance of rescue was evaluated by comparing percentage

improvement in chloride efflux to rescue from a well-established

‘‘corrector’’ under identical conditions, and by Student’s t-test (p-

value). Compared to the non-binding control, the previously best

hexamer, iCAL35, yields only a slight (non-significant) improve-

ment in chloride secretion (4%, p~0:16). In contrast, chloride

secretion following treatment with the designed inhibitor kCAL01

is significantly enhanced with respect to the control peptide (12%,

p~0:0049) and with respect to the reference (8%, p~0:037)

peptide. Indeed, the biological activity of kCAL01 is very similar to

that observed under similar conditions following treatment with

either the best previously available CAL inhibitor (F*-iCAL36) or

the first-generation corrector corr-4a [6,11].

Figure 6. K� was used to predict binding between the CAL PDZ
domain and the peptide array, ProLib (Figure S3), which
contained peptide sequences that match the CAL binding
motif. The ROC curve shown compares the K� predictions to the
observed peptide array binding data. AUC = 0.88.
doi:10.1371/journal.pcbi.1002477.g006
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Discussion

The new K� algorithm has enabled the design of the first high-

affinity hexapeptide CAL PDZ inhibitor with demonstrated ability

to rescue DF508-CFTR. By interfering with CAL-mediated

degradation, our best designed peptide, kCAL01, can act as a

CFTR ‘‘stabilizer,’’ allowing DF508-CFTR to recycle back into

the membrane. Currently the only well-studied ways to rescue

mutant CFTR function with drug-like molecules are through

‘‘potentiators’’ and ‘‘correctors’’ which do not address the problem

that DF508-CFTR is rapidly endocytosed and degraded at

physiological temperatures [9]. Like other CAL inhibitors,

kCAL01 should work in conjunction with potentiators and

correctors to create an additive effect [11].

kCAL01 was observed to increase DF508-CFTR activity by

12%. While this effect is clearly statistically significant (p~0:0049),

we also wished to assess its magnitude relative to the effect of

known rescue compounds. The performance of kCAL01 was

benchmarked using polarized human airway epithelial cells

derived from a CF patient (stably expressing DF508-CFTR;

CFBE-DF cells). In these cells, CFTR rescue is more challenging

than in heterologous cells, but the levels of rescue observed are

more likely to reflect the physiological situation. Since CFTR

modulation is extremely sensitive to experimental conditions, and

particularly to the type of cells used [8,71], we chose to compare

the performance of kCAL01 against the corrector corr-4a. There

are two reasons for this choice for comparison: (a) corr-4a is a well

established benchmark for CFTR correctors [72]; and (b) directly

comparable data are available based on our previous studies [1].

Under identical experimental conditions, corr-4a produces a 15%

increase in DF508-CFTR levels in CFBE-DF cells [1]. Thus, the

12% increase seen with the kCAL01 inhibitor peptide is similar to

that produced by a first-generation corrector. Since corr-4a and

kCAL01 have orthogonal mechanisms of action, this enables

additive rescue as an attractive treatment option. Specifically, in

the long term the therapeutic impact of CAL inhibitors is likely to

be enhanced by their ability to provide additive rescue with

correctors, offering the prospect of combination treatment [11].

To design kCAL01 we developed a novel, provable, ensemble-

based protein design algorithm for protein-peptide and protein-

protein interactions. The validation of K� by comparing its

predicted binding scores to CAL peptide-array data demonstrates

K�’s strong ability to enrich for human protein sequences that

bind CAL. While the HumLib array showed that CAL binds a

specific motif, it also shows (along with the ProLib array) that CAL

does not bind all sequences that match the motif. In HumLib, 191

of 261 sequences that match the motif did not bind CAL.

Moreover, all of the peptides synthesized for this work (kCAL01-

kCAL31) match the CAL motif, but have a wide range of binding

affinities. Therefore, K� needs to perform the difficult task of

differentiating the affinities of peptides that share the CAL motif,

rather than merely separating motif from non-motif sequences.

The HumLib analysis, FP analysis of top and poorly-ranked K�

predictions, and the ProLib analysis all show that K� is able to

enrich for sequences within the CAL PDZ sequence motif that

have high-affinity interactions with CAL.

The experimental validation of top-ranked K� sequences

confirms that K� prospectively predicted novel high-affinity CAL

peptide inhibitors. Compared to the inhibitory constant of the

natural CFTR C-terminus, the designed sequences are much

stronger binders. Indeed, our approach found peptide sequences

that bound more tightly than iCAL35, the best previously known

hexamer sequence. Interestingly, even though iCAL35 binds to

the CAL PDZ domain, it is unable to mediate significant or

substantial rescue of DF508-CFTR in CFBE-DF cells (Fig. 7). The

designed inhibitor’s improvement in binding directly translates to

increased DF508-CFTR activity in CF-patient derived airway

epithelial cells, demonstrating the value of using our computa-

tional approach to design protein:peptide interactions.

Current therapeutics known to rescue CFTR function are small

molecules generally discovered through high throughput library

screens [72]. To find CFTR stabilizers we needed to discover

inhibitors that could block the CAL-CFTR PPI. Unfortunately,

small molecules that inhibit PPIs are rare and the development of

such inhibitors has been very difficult due to the shallow,

distributed nature of the interfaces [73]. Therefore, we have

focused on tools to design peptide inhibitors, developing and

validating a new K� algorithm that has identified low molecular

weight, high-affinity sequences. While our previous work em-

ployed high-throughput peptide arrays to screen for inhibitors

[60], the computational design approach can easily and accurately

be expanded beyond the limits of peptide array synthesis,

providing a novel avenue for identifying CF therapeutic leads

with improved affinity, specificity, and proteolytic stability.

In this paper we have focused on improving peptide inhibitor

affinities, but our success suggests that K� can also be used to

improve peptide specificity and proteolytic stability. For optimal

biological efficacy, CAL inhibitors should avoid off-target effects,

including interactions with other CFTR trafficking proteins (Fig 1B),

such as the NHERF family [3]. To achieve peptide specificity, K�

could be run to find peptides that did not bind well to these off-target

interactors, a process known as negative design [16,42]. The

experimentally-tested poorly-ranked K� predictions all had a worse

affinity for CAL than the top-predicted peptides (Tables 1 and 2).

This suggests that K� has the capability to conduct negative design

for the CAL system. Also, we have shown the successful application

of K� negative design to other biological systems [42]. Finally, since

the efficacy of natural peptides is often limited by proteolytic stability,

it could be beneficial to extend the K� software to incorporate non-

natural amino acids, such as d-amino acids, into the design search

space. This will allow the design of compounds that inhibit CAL, but

cannot be degraded as readily as linear L-peptides.

Figure 7. Top binding peptide is biologically active. The DF508-
CFTR specific chloride flux is shown for a control peptide (kCAL31;
WQDSGI; no CAL binding detected), the reference peptide (iCAL35;
WQTSII), and the tightest binding design peptide (kCAL01; WQVTRV).
kCAL01 shows a 12% increase in chloride efflux over the control
peptide. p values shown are for pairwise comparisons (n~12). Values
shown are mean + standard error of the mean (SEM). N.S.: not
significant, p~0:16.
doi:10.1371/journal.pcbi.1002477.g007
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The K� scoring function uses energy terms for electrostatics, van

der Waals energy, and implicit solvation. K� also utilizes an

approximation of conformational entropy factors through its

ensemble-based scoring [16,41]. Analysis of these components can

potentially identify important interactions in the top peptide inhibitor

designs. Comparing the average energy contribution for the top 30

predictions to the median for all designs we find that all components

contribute favorably to the peptide binding, with van der Waals

giving the largest benefit (211.2 kcal/mol), followed by electrostatics

(210.9 kcal/mol), and finally solvation (28.2 kcal/mol). However,

even within the top 30 predictions the dominant energetic component

varies greatly (electrostatics is dominant for 12 sequences, van der

Waals for 6 sequences, and solvation for 12 sequences).

Tidor and co-workers [69] have suggested that design

predictions are best when re-ranking structures using a purely

electrostatic energy function. We addressed this possibility by

comparing the AUC obtained from a purely electrostatic function

vs. that obtained from our complete energy function. If we use

only the electrostatic term, the AUC was 0.61 (bound energy only)

or 0.66 (bound minus unbound). Both values are significantly

lower than the 0.84 AUC value obtained with the full function.

Thus, while electrostatic terms are important to the success of the

algorithm, inclusion of a more complete energetic model improves

the prediction. In fact, no individual energy term outperforms the

K� score when classifying the peptide array data. Thus, K�

predicts its successful designs by accurately incorporating all three

energy terms through ensemble-based scoring.

Many of the binding sequences identified by K� contain a

positively charged residue (R/K) at P{1. Similarly, in the HumLib

array, about 26% of the sequences that we consider to be binders

contain a positively charged residue at P{1, and in the ProLib

array 53% of the binders contain an R/K at P{1. Based on our

previous NMR analysis [52], the P{1 Arg can form a salt-bridge

with Glu309 on the periphery of the CAL binding site (Fig. 1A), an

electrostatic contribution that could theoretically dominate the

ROC curve analysis. However, because 74% of the top binding

sequences in the HumLib array do not contain the P{1 R/K, the

strong K� AUC values suggest that it must also correctly predict

these sequences. To test this assertion more forcefully, we removed

all of the sequences with a positively charged residue at position

21 and then recalculated the ROC curve. This results in an AUC

of 0.82, almost identical to the value of 0.84 obtained with all

sequences. Thus, consistent with the significant contributions of

each term in the energy function, the ROC behavior of the

algorithm is not dependent on the presence or absence of a

positively charged residue at P{1.

A small number of Ki values were used to train the new K�

algorithm to properly scale energy terms for protein-peptide

interactions, which can now be used for additional protein-peptide

interaction designs. Besides the training, the only system specific

data used was the input starting structure and CAL sequence

motif. The sequence motif was used as an optional filter to

expedite the search, but should not affect the ability of K� to find

high-affinity inhibitors. As seen from the HumLib peptide array

comparison, K� yields a higher ROC AUC when considering the

entire array, which implies that K� is better at distinguishing CAL

peptide inhibitors from the entire sequence space than from within

only the known sequence motif. This suggests K� will be able to

find new high-affinity inhibitors if the search space is expanded.

Beyond its utility in the design of enhanced CAL inhibitors, the

K� algorithm represents a general framework for analyzing PDZ

domains and other protein-protein interfaces. PDZ domains are

among the most common interaction domains in the human

genome [74]. Using traditional biochemical approaches, the

characterization of the binding affinity of candidate partners, as

well as the identification of high-affinity reporters and inhibitors,

often requires the individual synthesis of dozens of peptides, many

of which fail to interact robustly. As shown for CAL, K� offers a

facile mechanism to predict affinities and to design novel ligand

sequences using only an initial input structure. Furthermore, the

proofs and algorithm presented here provide a general approach

for modeling peptide-mediated PPIs that regulate a wide variety of

critical physiological processes.

Availability
The source code of our program is freely available, and is

distributed open-source under the GNU Lesser General Public

License (Gnu, 2002). The source code can be freely downloaded at

http://www.cs.duke.edu/donaldlab/osprey.php.
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