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Abstract 

Introduction: To date, there have been no panoramic studies of the serum metabolome in feline mammary carcinoma. As 

the first such study, metabolomics techniques were used to analyse the serum of cats with these tumours. Three important metabolic 

pathways of screened differential metabolites closely related to feline mammary carcinomas were analysed to lay a theoretical basis 

for further study of the pathogenesis of these carcinomas. Material and Methods: Blood in a 5–8 mL volume was sampled from 

twelve cats of the same breed and similar age (close to nine years on average). Six were feline mammary carcinoma patients and 

six were healthy. L glutamate, L alanine, succinate, adenine, hypoxanthine, and inosine were screened as were alanine, aspartate, 

and glutamate metabolism, the tricarboxylid acid (TCA) cycle, and purine metabolism. Data were acquired with LC-MS non-target 

metabolomics, multiple reaction monitoring target metabolomics, and multivariate statistical and bioinformatic analysis. Results: 

Expression of five of the metabolites was upregulated and only inosine expression was downregulated. Up- and downregulation of 

metabolites related to glycometabolism, potentiation of the TCA cycle, greater content of lipid mobilisation metabolites, and 

abnormality of amino acid metabolism were closely related to the occurrence of the carcinomas. Conclusion: These findings 

provide a new direction for further study of the mechanisms associated with cat mammary neoplasms. 
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Introduction 

Feline mammary carcinoma is the third most 

common cancer that affects female cats (13). Its 

incidence is closely related to age, breed, hormone 

levels, and sterilisation (22). The disease is associated 

with a high metastasis rate and poor prognosis (3). 

Common metastatic areas include the lymph nodes, 

lungs, liver, and pleura. Since feline mammary 

carcinoma exhibits the same histological, molecular, and 

clinical characteristics as human breast cancer, it is 

considered to be an appropriate animal model for the 

study of it (17). 

Currently, most research on feline mammary 

carcinoma has focused on the role that one substance 

plays in carcinoma development (2, 4, 6, 7, 12). In 

addition, there are few studies on the metabolic changes 

associated with the carcinomas. To date, there have been 

no panoramic studies of the serum metabolome in this 

neoplasm. Metabolites are the downstream products 

regulated by the living system, which can directly and 

comprehensively reflect the metabolic state of the 

organism. Serum samples can be readily obtained in 

veterinary clinics and are convenient for use as test 

samples. This study used LC-MS non-target 

metabolomics and multiple reaction monitoring (MRM) 

target metabolomics to detect metabolites in the serum 

of cats with mammary carcinomas. The metabolic 

pathways of the screened differential metabolites were 

analysed with the aim of providing a theoretical basis for 

further study of the pathogenesis of feline mammary 

carcinomas. 

Material and Methods 

Selection and grouping of experimental animals. 

The test samples were derived from feline mammary 
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carcinoma cases treated at the animal hospital of 

Heilongjiang Bayi Agricultural University. Six Chinese 

pastoral cats aged 8.83 years on average with cases of 

mammary carcinomas confirmed by histopathology 

comprised the experimental group (group T). None of 

the cats had been treated with chemotherapy or 

radiotherapy. Another six healthy cats aged 8.67 years 

on average of the same breed and age served as the 

control group (group C). Specific information about the 

experimental and control cats is shown in Table 1. 

Sample collection. Before tumour resection,  

5-8 mL of blood was collected from the jugular vein of 

the experimental group cats and placed in a centrifugal 

tube without anticoagulant. An equal volume of blood 

was sampled from the same site of the control group 

cats. A set of six samples from each of the two groups 

was placed in a refrigerator at 4°C for 2 h and 

centrifuged at 4C and 3,000 g for 10 min, and  

100 μL/tube of the serum was stored at −80°C. 

Metabolite extraction for LC-MS detection. The 

samples were thawed at 4°C on ice. Then, 100 μL of 

each sample was obtained and placed in an EP tube, 

extracted with 400 μL of extraction solvent (1:1  

V methanol:V acetonitrile), vortexed for 30 s, ultrasound 

treated for 10 min (while being cooled in ice water), and 

next chilled for 1 h at −20°C to precipitate the proteins. 

The samples were then centrifuged at 12,000 g for  

15 min at 4°C. The supernatant (425 μL) was transferred 

into fresh EP tubes, the extracts were dried in a vacuum 

concentrator without heating, and 100 μL of extraction 

solvent was added to reconstitute the samples. The 

samples were vortexed for 30 s, sonicated for 10 min  

(in a 4°C water bath), and centrifuged again at 12,000 g 

for 15 min at 4°C. A 60 μL volume of supernatant was 

transferred into fresh 2 mL LC/MS glass vials, then  

10 μL was taken from each sample and pooled as QC 

samples. Finally, 60 μL of the supernatant was obtained 

for the UHPLC-QTOF-MS analysis. 

LC-MS/MS detection and data processing. LC-

MS/MS analyses were performed using a 1290 Infinity 

II UHPLC system (Agilent Technologies, Germany) 

with an Acquity UPLC BEH Amide column (1.7 μm, 

2.1×100 mm; Waters, USA) coupled to a Q-TOF 

TripleTOF 6600 time-of-flight mass analyser (AB Sciex, 

Singapore). The mobile phase consisted of 25 mM  

of NH4Ac and 25 mM of NH4OH in water (pH 9.75) as 

A and acetonitrile as B and it was carried out with  

an elution gradient as follows: 0 min – 95% B, 0.5 min 

– 95% B, 7 min – 65% B, 8 min – 40% B, 9 min – 40% B, 

9.1 min – 95% B, and 12 min – 95% B. The delivery rate 

was 0.5 mL/min and the injection volume was 1 μL. In 

each cycle, 12 precursor ions with intensity greater than 

100 were selected for fragmentation at a collision energy 

of 30 V (15 MS/MS events with a product ion 

accumulation time of 50 ms each). The electrospray 

ionisation source conditions were set as follows: ion 

source gas 1 60 PSI pressure, ion source gas 2 60 PSI, 

curtain gas 35 PSI, source temperature 650°C, and ion 

spray voltage floating (ISVF) of 5,000 V in positive or 

−4,000 V in negative mode. 

The MS raw data (wiff) files were converted to the 

mzXML format using ProteoWizard (1) and processed 

with R package XCMS (version 3.2) (15). The 

preprocessing results formed a data matrix that consisted 

of the retention time (RT), mass-to-charge ratio (m/z) 

values, and peak intensity. The R package CAMERA 

was used for peak annotation after XCMS data 

processing. An in-house MS2 database was the source 

of metabolite identification. 

The ionisation source of the LC-QTOFMS platform 

is electrospray ionisation, and there are two ionisation 

modes: positive and negative. In this experiment, both 

ionisation modes were used together for metabolomic 

detection. 

MRM target metabolomics detection. UHPLC 

separation was carried out using the Agilent 1290 

Infinity II series UHPLC System equipped with the 

Acquity UPLC BEH Amide column. The mobile phase A 

was 10 mmol/L ammonium formate/0.1% formic acid 

(the mobile phase A of L-glutamic acid was 1% formic 

acid in water) and mobile phase B was acetonitrile (the 

mobile phase B of L-glutamic acid was 1% formic acid 

in acetonitrile). The column temperature was set at 

35°C, the auto-sampler temperature at 4°C, and the 

injection volume was 1 μL. A 6460 triple quadrupole 

mass spectrometer (Agilent Technologies, USA), 

equipped with an Agilent Jet Stream electrospray 

ionisation interface was applied for assay development. 

The ion source parameters were capillary voltage of 

+4,000/−3,500 V, nozzle voltage of +500/−500 V, gas 

(N2) temperature of 300°C, gas (N2) flow of 5 L/min, 

sheath gas (N2) temperature of 250°C and flow of  

11 L/min, and nebulizer pressure of 45 psi. Agilent 

MassHunter BioConfirm workstation software version 

B.08.00 (Agilent Technologies, USA) was employed for 

MRM data acquisition and processing. 

Data analysis. A multivariate statistical analysis 

with an unsupervised principal component analysis 

(PCA) was used to reveal the internal structure and 

overall distribution of the data. Orthogonal projections 

to latent structures discriminant analysis (OPLS-DA) 

was used to filter out the metabolites that were not 

related to the classification variables. Student’s t-test 

was used for the univariate statistical analysis. In this 

study, differential metabolites were screened by 

combining the P value obtained from the Student’s t-test 

and variable importance in projection (VIP) of the first 

principal component of the OPLS-DA model, and the 

screened differential metabolites were subsequently 

analysed by hierarchical clustering analysis. 

Metabolic pathway analysis. The Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) 

database was used to search for metabolic pathways 

related to different metabolites. Metaboanalyst 4.0 

(http://www.metaboanalyst.ca/) was used to analyse 

those pathways. 
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Table 1. Experimental and control group animal basic information 
 

No. Variety 
Age 

(years) 
Gender Spaying status Tumour type Disease stage 

T-1 Chinese pastoral cat 10 Female Unspayed Mammary gland carcinoma Without metastasis 

T-2 Chinese pastoral cat 10 Female Unspayed Mammary gland carcinoma Without metastasis 

T-3 Chinese pastoral cat 9 Female Unspayed Mammary gland carcinoma Without metastasis 

T-4 Chinese pastoral cat 9 Female Unspayed Mammary gland carcinoma Without metastasis 

T-5 Chinese pastoral cat 8 Female Unspayed Mammary gland carcinoma Without metastasis 

T-6 Chinese pastoral cat 7 Female Unspayed Mammary gland carcinoma Without metastasis 

C-1 Chinese pastoral cat 10 Female Unspayed Healthy control / 

C-2 Chinese pastoral cat 9 Female Unspayed Healthy control / 

C-3 Chinese pastoral cat 9 Female Unspayed Healthy control / 

C-4 Chinese pastoral cat 8 Female Unspayed Healthy control / 

C-5 Chinese pastoral cat 8 Female Unspayed Healthy control / 

C-6 Chinese pastoral cat 8 Female Unspayed Healthy control / 

 

 

Results  

Multivariate statistical analysis results. PCA 

analysis was performed on two groups of samples. As 

seen in Fig. 1A and Fig. 1B, both groups of samples are 

in the 95% confidence interval with significant 

separation between groups. 

The OPLS-DA score is shown in Fig. 2A and  

Fig. 2B. The results revealed a highly significant 

difference between the two groups of samples, and all 

samples were within the 95% confidence interval. 

Screening of differential metabolites. The card 

value standards used in this test were P < 0.05 and  

VIP > 1. The screening results are presented in Fig. 3A 

and Fig. 3B. Each point in the figures represents  

a metabolite. The size of the scatter increases in 

proportion to the VIP value and its colour represents the 

final screening results. Metabolites that are significantly 

up regulated are shown in red, metabolites that are 

significantly down regulated are shown in blue, and 

metabolites that are not significantly different are shown 

in grey. 

Using qualitative analysis of the selected 

differential metabolites, 96 were identified in the NEG 

mode. Compared with group C, there were 24 down 

regulated and 72 up regulated metabolites in group T. In 

the POS mode, 103 metabolites were identified. 

Compared with group C, there were 20 down regulated 

and 83 up regulated metabolites in group T. It was found 

that the smaller the P value and the larger the VIP value, 

the more significant the difference was in the substance 

amount. Some metabolites with significant differences 

are listed, and their specific changes are shown in Table 2. 

The qualitative differential metabolites underwent 

hierarchical clustering analysis (HCA), and the results 

are presented in Fig. 4A and Fig. 4B. The results of the 

HCA analysis revealed that the metabolites were 

significantly differentiated between the two groups. 

Differential metabolite pathway analysis. The 

differential metabolites were mapped to the KEGG 

database. Based on a further comprehensive analysis of 

all metabolic pathways (including enrichment and 

topological analyses), the key pathways with the highest 

correlation with feline mammary carcinomas were 

selected. In the NEG mode, differential metabolites were 

primarily involved in biological metabolic processes, 

including metabolisms of purine, glycerolipid, alanine, 

aspartate, glutamate, nitrogen, phenylalanine, β-alanine, 

and histidine, the citrate cycle (the tricarboxylid  

acid (TCA) cycle), pantothenate and coenzyme A 

biosynthesis, vitamin B6 metabolism, and other 

biological processes. In the POS mode, the differential 

metabolites were primarily involved in biological 

metabolic processes including glycine, serine, and 

threonine metabolisms, fatty acid biosynthesis, 

metabolisms of arginine, proline, pyrimidine, purine, 

glycerophospholipid, glutathione, linoleic acid, alanine, 

aspartate and glutamate, and arachidonic acid, and other 

biological processes. 

The results of the metabolic pathway analysis are 

presented in a bubble diagram (Fig. 5A and Fig. 5B). 

Each bubble represents a metabolic pathway. The 

abscissa and size of the bubble indicate the degree of 

influence of the path in the topology analysis. It was 

observed that the larger the bubble, the greater the 

influence factor. The ordinate and colour of the bubble 

represent the P value in the enrichment analysis (the 

negative natural logarithm (i.e. −ln P value). The darker 

the colour, the smaller the P value, and the more 

significant the degree of enrichment. 

The metabolic pathways involved in differential 

metabolites were analysed according to the degree of 

influence and enrichment of metabolic pathways and the 

role of different metabolites in the development of feline 

mammary carcinomas. Six marker differential 

metabolites closely related to the molecular mechanism 

of feline mammary carcinomas were screened. Among 

them, inosine, succinate, L-alanine, and L-glutamate 

were down regulated, while hypoxanthine and adenine 

were up regulated. The interaction network between  

the six marker differential metabolites is schematised in 

Fig. 6. 

MRM target metabolomics validation. The 

MRM target metabolomics verification results are 

presented in Table 3. The results of LC-MS 

metabolomics are consistent with those of the MRM 

target metabolomics, which indicates that the LC-MS 

metabolomic results are accurate and reliable. 
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Fig. 1. PCA score diagram in NEG mode and POS mode 

In the figure, the ellipse represents the 95% confidence interval, and the abscissa PC [1] and ordinate PC [2] represent the score of the principal 

component ranking first and second, respectively. The scatter shapes and colours represent the different experimental groups 

Fig. 2. OPLS-DA score in the NEG mode and POS mode 

In the figure, the ellipse represents the 95% confidence interval, and the abscissa t[1]P represents the predicted principal component score of the 

first principal component. The ordinate t[1]O represents the orthogonal principal component score, and the scatter shapes and colours represent 
the different experimental groups 

Fig. 3. Volcano map of NEG (A) and POS (B) modes differential metabolite screening 

The abscissa represents the fold-change of the group comparing each substance (taking the logarithm base 2). The ordinate represents the P-value 

of the Student’s t-test (taking the negative logarithm base 10) 
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Table 2. Differential metabolites in feline mammary carcinomas based on LC-MS 
 

No. Substance name VIP P 
Variation 

trend 
Detection mode 

1 L-glutamate 1.906599493 9.39957E−06 ↑ NEG 

2 L-alanine 1.870339069 9.66197E−05 ↑ NEG 

3 Glycerol 3-phosphate 1.813604415 0.001128205 ↑ NEG 

4 Succinate 1.790389164 0.000554729 ↑ NEG 

5 20-hydroxy-PGE2 1.786772601 2.17846E−05 ↑ NEG 

6 Fosfomycin 1.779219395 0.002655475 ↑ NEG 

7 3-methyluridine 1.764311315 0.000277439 ↑ NEG 

8 N-acetyl-L-alanine 1.720196947 0.000240845 ↑ NEG 

9 Choline 1.877285980 2.37754E−07 ↑ POS 

10 Trigonelline 1.822938835 0.001548866 ↑ POS 

11 Ile-asn 1.806880095 1.10469E−05 ↑ POS 

12 Arachidonic acid (peroxide free) 1.772611472 0.001126785 ↑ POS 

13 S-methyl-5′-thioadenosine 1.770146402 0.000360333 ↑ POS 

14 Creatinine 1.751825211 5.23436E−05 ↑ POS 

15 L-histidinol 1.74002669 0.000841015 ↑ POS 

16 Guanidine acetic acid 1.698257167 0.000546455 ↑ POS 

17 Cytosine 1.662976359 0.000112223 ↑ POS 

18 Inosine 1.481481111 0.002446273 ↓ NEG 

19 Adenine 1.792517828 0.001575227 ↑ NEG 

20 Hypoxanthine 1.730804616 0.00067303 ↑ POS 

 

Table 3. MRM target metabolomic validation 
 

Substance name LC-MS non-target metabolomics results MRM target metabolomics results 

 Fold change  VIP P 
Variation 

trend  

(T C) 

T group final 
concentration 

(average) 

C group final 
concentration 

(average) 

S-methyl-5′-thioadesine 2.879152807 1.770146402 0.000360333 ↑ 0.011 0.003 

Creatinine 1.632513451 1.751825211 5.23436E−05 ↑ 42.117 10.13 
Cytosine 1.981265029 1.662976359 0.000112223 ↑ 1.383 0.49 

Choline 1.836734369 1.877285980 2.37754E−07 ↑ 4.381 0.71 

Betaine nicotinate 
(Trigonelline) 

3.178675095 1.822938835 0.001548866 ↑ 1.915 0.32 

L-alanine 1.891848591 1.870339069 9.66197E−05 ↑ 190.229 94.83 

L-glutamic acid 5.129593730 1.533880516 0.019410600 ↑ 30.959 3.65 
 

Fold change > 1 indicates that the substance is up regulated in group T compared with group C. Fold change < 1 means that the substance 

is down regulated in group T compared with group C 

 
 

 

Fig. 4. HCA analysis results in NEG (A) and POS (B) modes 
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Fig. 5. Bubble diagram of the metabolic pathway analysis in NEG and POS mode 

 

 

Fig. 6. Interaction network diagram of six biomarker differential metabolites. 

Red indicates that the metabolites are up regulated in group T, blue indicates 
that the metabolite is down regulated in group T, yellow indicates metabolic 

pathways, and metabolites without a coloured background are the upstream 

and downstream substances that are differentially metabolised 
 

 

Discussion  

In this study, the key differential metabolic 

pathways included alanine, aspartate, and glutamate 

metabolisms, the TCA cycle, and purine metabolism.  

A large amount of research data has shown that  

a capacity for infinite proliferation is a characteristic of 

cancer cells. Therefore, when cancer occurs in the body, 

the levels of substances related to cell proliferation and 

metabolism will change dramatically. Amino acids 

provide the basis of enzymes, receptors, antibodies, 

signalling molecules, hormones, and several other basic 

protein structures in all organisms. The TCA cycle is a key 

metabolic pathway through which mammalian cells 

utilise glucose, amino acids, and fatty acids. Purine is  

a basic component of nucleotides during cell 

proliferation, and its metabolism is associated with 

biochemical reactions, including the metabolism of cell 

cycle immune functionality and signal transduction. 

Therefore, these three metabolic pathways are closely 

related to the occurrence of cancer. In this study, 

according to the P value, the VIP value, and the key 

pathways of the substance, six landmark differential 

metabolites found to be closely related to the occurrence 

of cat mammary cancer were selected. 

Abnormal amino acid metabolism. The results 

showed that the expression of L-glutamate and L-alanine 

in group T was significantly up regulated. L-glutamate 
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and L-alanine are both important sugar-producing amino 

acids which are primarily involved in the alanine, 

aspartate, and glutamate metabolism pathways. When 

cancer cells proliferate indefinitely, large amounts of 

energy-associated substances are required, leading to  

an increase in sugar production. This may be the main 

reason for the observed increase in the L-glutamate and 

L-alanine content in group T. Alanine is converted from 

pyruvate, which is the intermediate substance produced 

by glucose fermentation. Pyruvate can be converted into 

acetyl coenzyme A, and transformation among the three 

major sugar, fat, and protein substances in the body can 

be achieved through the TCA cycle (16). In addition, 

during the metabolism of breast cancer, ammonia 

produced by the body will be recycled into the 

metabolism of amino acids. The expression of glutamate 

dehydrogenase (GDH) and glutamine synthetase (GS) 

will also increase in breast cancer, leading to increased 

glutamate content in the body (18). In tumour 

development, the organism’s DNA, protein, and lipid 

synthesis processes are significantly increased.  

L-glutamate and L-alanine are the basic units of protein 

synthesis, which are required for the abnormal gene 

translation and expression in the tumour. This may also 

be one of the reasons for the increased glutamate and 

alanine expression in the T group. There are also studies 

that have shown that the number and type of amino acids 

may affect the muscle metabolism of cachexia patients, 

and that the maintenance of the amino acid content at  

a certain level can delay the decline of muscle 

metabolism in these patients (14). Therefore, the 

upregulation of the amino acid content in breast cancer 

may also be a manifestation of a mechanism to counter 

muscle reduction and maintain muscle function. 

Abnormal glycometabolism. The results showed 

that the level of succinate expression was up regulated 

in group T and involved in the TCA cycle metabolic 

pathway. The TCA cycle regulates energy generation in 

mitochondrial respiration and plays a key role in 

carbohydrate metabolism. Moreover, the TCA cycle is 

the most effective way for organisms to obtain energy. 

Although the TCA cycle can provide 90% of the energy 

required for normal cells, it can only produce 50% of the 

required energy in cancer cells (20). Succinyl coenzyme A 

produces succinate when catalysed by a TCA cycle 

enzyme, and succinate plays an important role in 

mitochondrial energy metabolism. However, abnormal 

mitochondrial metabolism may lead to the accumulation 

of extracellular and/or cytoplasmic succinate (19). This 

may be the reason for the observed increase in the 

succinate content in group T. In addition, some studies 

have shown that succinate is a novel type of cancer-

promoting factor secreted by cancer cells (21). 

Moreover, succinate can trigger macrophages to polarise 

into tumour-associated macrophages, as well as promote 

tumour metastasis and invasion. This may also be  

a reason for the increased succinate content in group T. 

Also, some studies have shown that the urine content of 

succinate from patients with ovarian cancer is higher 

than that of normal people, and succinate is defined as  

a potential marker of ovarian cancer (9, 23). In 

metabolomics tests of gastric cancer and colon cancer 

patients, succinate was also increased (8). 

Abnormal purine metabolism. The results 

showed that inosine expression was down regulated. In 

addition, adenine and hypoxanthine were up regulated in 

the T group and were involved in the purine metabolism 

pathway. Inosine is a component of coenzyme A, 

adenosine triphosphate, deoxyribonucleic acid, and 

ribonucleic acid in the body, and also participates in the 

metabolism of various substances and energy. In the 

process of breast cancer cell proliferation, an abundance 

of energy is consumed and with it so is inosine for the 

production of multiple nucleotides. In the T group, the 

inosine content was found to be down regulated, which 

may be due to increased energy metabolism and the 

rapid increase of nucleotide production, resulting in 

excessive inosine consumption and down regulation. In 

a study of the serum and plasma metabolomics in lung 

cancer, inosine was down regulated and was proposed as 

a serum biomarker of lung cancer (10). Adenine 

participates in a variety of cellular processes. When 

cancer occurs, cell proliferation accelerates, and DNA 

synthesis will increase. At this time, a large amount  

of adenine will be produced in the body. Therefore, the 

up regulation of the adenine content observed in this 

study may be the result of accelerated cell proliferation. 

Adenine has been explored for pharmacological use. 

Some studies have shown that adenine can inhibit the 

growth of colon cancer cells and attributed anticancer 

effects to this natural compound (11). Hypoxanthine can 

be formed by different deamination mechanisms during 

conditions of chronic inflammation, and it can be 

produced when adenine deamination causes DNA 

damage. In this study, the occurrence of feline mammary 

carcinomas was accompanied by chronic inflammatory 

processes and increased adenine content, which may be 

the cause of the increased hypoxanthine content. 

Hypoxanthine is also a potential cause of colon, liver, 

pancreatic, bladder, and gastric diseases (5). 

Six metabolites that were closely related to feline 

mammary carcinomas were screened: L-glutamate,  

L-alanine, succinate, adenine, hypoxanthine, and 

inosine. The expression of all but the last metabolite was 

upregulated and expression of inosine alone was down 

regulated. At the same time, alanine, aspartate, and 

glutamate metabolism, the TCA cycle, and purine 

metabolism, representing three important metabolic 

pathways, were also interpreted. These differential 

metabolites are involved in multiple amino acid 

metabolism, the TCA cycle, and purine metabolism 

processes. This result suggests that the body will 

mobilize a large number of substances to participate in 

processes such as energy metabolism and cell 

biosynthesis during the occurrence of FMC. These 

findings provide a new direction for further study of the 

mechanisms associated with cat mammary neoplasms in 

the future.  
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