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Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs) in magnetic
resonance imaging (MRI) and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear
inversion (NLINV) algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported
to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the
channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization
constraint, allowing the algorithm to work onmultiple frames in parallel. Finally, an autotuningmethod is presented that is capable
of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results.
The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-
time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel
decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods
to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

1. Introduction

Accelerators such as graphical processing units (GPUs)
or other multicore vector coprocessors are well-suited for
achieving fast algorithm run times when applied to recon-
struction problems in medical imaging [1] including com-
puted tomography [2], positron emission tomography [3],
and ultrasound [4]. This is because respective algorithms
usually apply a massive number of the same independent
operations on pixels, voxels, bins, or sampling points.The sit-
uation maps well to many-core vector coprocessors and their
large number of wide floating-point units that are capable
of executing operations on wide vectors in parallel. The
memory bandwidth of accelerators is roughly one order of
magnitude greater than that of central processing units; they
are optimized for parallel throughput instead of latency of a
single instruction stream.

Recent advances in magnetic resonance imaging (MRI)
pose new challenges to the implementations of associated
algorithms in order to keep data acquisition and reconstruc-
tion times on par. While acquisition times decrease dramat-
ically as in real-time MRI, at the same time the data grows
in size when using up to 64 or even 128 independent receiver
channels on modern MRI systems. In addition, new modal-
ities such as model-based reconstructions for (dynamic)
parametric mapping increase the computational complexity
of reconstruction algorithms because they in general involve
iterative solutions to nonlinear inverse problems. As a conse-
quence, accelerators are increasingly used to overcome these
challenges [5–13].

Accelerators outperform main processors (CPUs) in all
important operations during MRI reconstruction including
interpolation [14], filtering [15], and basic linear algebra [16].
The central operation ofmostMRI reconstruction algorithms
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Table 1: Memory, memory bandwidth, and single-precision performance of high performance computing (HPC) and consumer accelerators
(source: Wikipedia).

Vendor Model HPC Memory Bandwidth Performance
NVIDIA K40 yes 12GB 288GB/s 4.29 TFLOPS
NVIDIA Titan Black no 6GB 336GB/s 5.12 TFLOPS
AMD FirePro W9100 yes 16GB 320GB/s 5.24 TFLOPS
AMD Radeon R9 290X no 6GB 320GB/s 5.63 TFLOPS
Intel Xeon Phi 7120 yes 16GB 352GB/s 2.40 TFLOPS
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Figure 1: Run time (i.e., minimal wall-clock time in ms) measure-
ment of a single-precision 2D squared complex-to-complex out-of-
place Fourier transform of FFTW, clFFT, and cuFFT libraries. clFFT
and cuFFT benchmarks were obtained for NVIDIA GeForce Titan
Black; the FFTW benchmark was obtained for Intel Xeon E5-2650
utilizing 8 threads. FFTW is initialized with FFTW MEASURE.The
clFFT library has only limited support for mixed radix FFTs and
achieves good performance for power of 2 FFTs only.

is the Fourier transform. Figure 1 shows the performance
of the three FFT libraries cuFFT, clFFT, and FFTW [17].
The accelerator libraries cuFFT and clFFT outperform the
CPU library FFTW. Consequently, accelerators outperform
CPUs for MRI reconstruction, if the algorithm is based
on the Fourier transform and if the ratio of computation
to data transfer favours computation. Accelerator and CPU
typically form distributed memory systems. Figure 2 shows
the memory transfer speed for two different PCIe 3.0 systems
in dependence of the data transfer size. The amount of com-
putation assigned to an accelerator and the transfer size have
a huge impact on the overall performance of the algorithm,
which needs to be taken into account when implementing
accelerated algorithms for image reconstruction. Another
limiting factor for the use of accelerators in MRI is the
restricted amount of memory available. Nevertheless, the on-
board memory of accelerators increased in recent years
and the newest generation of accelerators is equipped with
acceptable amounts of memory (compare Table 1).
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Figure 2:Throughput of Supermicro (S1) and Tyan (S2) 8x PCIe 3.0
systems: device-to-host and host-to-device transfer of nonpageable
(pinned) memory with junk sizes between 8 bytes and 1GB.

In this paper, we summarize our experience in developing
a low-latency online reconstruction system for real-time
MRI over the last eight years. While some of the described
techniques have already been reported previously, this arti-
cle for the first time explains all technical aspects of the
complete multi-GPU implementation of the advanced iter-
ative reconstruction algorithm and adds further background
information and analysis. Although we focus on the specific
application of real-time MRI, many of the techniques devel-
oped for this project can be applied to similar tomographic
reconstruction problems. In particular, we describe strate-
gies for optimal choice of the grid size for a convolution-
based nonuniform FFT, novel parallelization schemes using
temporal and spatial decomposition, and automatic tuning of
parameters.

2. Theory

2.1. Real-Time MRI. Diagnostic imaging in real time repre-
sents amost demanding acquisition and reconstruction prob-
lem for MRI. In principle, the data acquisition refers to the
recording of a large number of different radiofrequency sig-
nals in the time domain which are spatially encoded with the
use of magnetic field gradients. The resulting dataset rep-
resents the k-space (or Fourier space) of the image. MRI
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Figure 3: Schematic acquisition scheme for real-timeMRIwith𝑈 =5 different sets of spokes, 𝐾 = 3, 𝜎 = 2𝜋/𝐾, and 𝜏 = 2𝜋/(𝐾𝑈).

acquisition times are determined by the number of different
encodings needed for high-quality image reconstruction
multiplied by the time required for recording a single MRI
signal, that is, the so-called repetition time TR. While
TR values could efficiently be reduced from seconds to
milliseconds by the invention of low-flip angle gradient-
echo MRI sequences, for example, see [18] for an early
dynamic application, a further speed-up by reducing the
number of encodings was limited by the properties of the
Fourier transform which for insufficient coverage of k-space
causes image blurring and/or aliasing artifacts. Reliable and
robust improvements in acquisition speed by typically a fac-
tor of two were first achieved when parallel MRI techniques
[19, 20] were introduced. These methods compensate for
the loss of spatial information due to data undersampling
by simultaneously acquiring multiple datasets with different
receiver coils. In fact, when such multicoil arrangements are
positioned around the desired field-of-view, for example, a
head or thorax, each coil provides a dataset with a unique spa-
tial sensitivity profile and thus complementary information.
This redundancy may be exploited to recover the image from
moderately undersampled k-space data and thus accelerate
the scan.

Parallel MRI indeed was the first concept which changed
the MRI reconstruction from a two-dimensional FFT to the
solution of an inverse problem. To keep mathematics sim-
ple and computations fast, however, commercially available
implementations turned the true nonlinear inverse problem,
which emerges because the signalmodel contains the product
of the desired complex image and all coil sensitivity profiles
(i.e., complex images in themselves), into a linear inverse
problem. This is accomplished by first determining the coil
sensitivities with the use of a prescan or by performing a low-
resolution Fourier transform reconstruction of acquisitions
with full sampling in the center of k-space and undersampling
only in outer regions.

Recent advances towards real-time MRI with so far
unsurpassed spatiotemporal resolution and image quality
[21] were therefore only possible by combining suitable acqui-
sition techniques with an adequate image reconstruction.
Crucial elements include the use of (i) rapid low-flip angle
gradient-echo sequences, (ii) spatial encodings with radial
rather than Cartesian trajectories, (iii) different (i.e., comple-
mentary) sets of spokes in successive frames of a dynamic
acquisition (see Figure 3) [22], (iv) extreme data undersam-
pling for each frame, (v) an image reconstruction algorithm
(NLINV) that solves the nonlinear inverse problem (see
below), and (vi) temporal regularization to the preceding

frame which constrains the ill-conditioned numerical prob-
lem with physically plausible a priori knowledge. Real-time
MRI with NLINV reconstruction achieves a temporal resolu-
tion of 10 to 40ms per frame (i.e., 25 to 100 frames per second)
depending on the actual application (e.g., anatomic imaging
at different spatial resolutions or quantitative blood flow
studies); for a recent review of cardiovascular applications,
see [23].

The spatial encoding scheme is comprised of 𝑈 different
sets (turns) of 𝐾 spokes. All 𝑈 sets of spokes taken together
cover the 𝑘-space uniformly. Figure 3 illustrates the real-time
MRI encoding scheme.

2.2. Image ReconstructionwithNLINV. If the receive coil sen-
sitivities in parallel MRI are known, the image recovery
emerges as a linear inverse problem which can efficiently be
solved using iterative methods. In practice, however, static
sensitivities are obtained through extrapolation and, even
more importantly, in a dynamic in vivo setting they change
due to coupling with the conductive tissue: this situation
applies to a human subject during any type ofmovement (e.g.,
breathing or cardiac-related processes) or when dynamically
scanning different planes and orientations (e.g., during real-
time monitoring of minimally invasive procedures).

In such situations, extrapolating static sensitivities is
not sufficient. The sensitivities have to be jointly estimated
together with the image, yielding an inverse reconstruction
problem that is nonlinear and ill-posed. For real-time MRI,
both the dynamic changes during a physiologic process and
the need for extremely undersampled datasets (e.g., by a
factor of 20) inevitably lead to a nonlinear inverse problem.

A powerful solution to this problem is the regularized
nonlinear inverse reconstruction algorithm [24]. NLINV for-
mulates the image reconstruction as a nonlinear least-squares
problem

argmin
𝑥

𝐹𝑥 − 𝑦22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
data fidelity

+ 𝛼 𝑊(𝑥 − 𝑥prev)22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
regularization

. (1)

The nonlinear forward operator 𝐹 = F ∘ 𝐶 maps the com-
bined vector 𝑥 of the unknown complex-valued image 𝜌
and all coil sensitivities 𝑐𝑗 (i.e., complex-valued images in
themselves) to the data. 𝐶 multiplies the image with the
sensitivities to obtain individual coil images 𝑐𝑗𝜌 and F
then predicts the k-space data using a nonuniform Fourier
transform for all coil elements 𝑗 = 1, . . . , 𝐽 (this nonuniform
FFT is implemented here with a uniform FFT and convo-
lution with the PSF [25], which is especially advantageous
for implementation on a GPU [9]). The data fidelity term
quantifies the difference between this predicted data and
the measured data in the least-squares sense, while the
additional regularization term addresses the ill-posedness
of the reconstruction problem. Here, 𝑊 is a weighting
matrix in the Fourier domain which characterizes the spatial
smoothness of the coil sensitivities and does not change
the image component of 𝑥. For dynamic imaging, temporal
regularization to the immediately preceding frame 𝑥prev,
which exploits the temporal continuity of a humanmovement
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Figure 4: Flowchart of the operator 𝐷𝐹𝐻𝑥
𝑛

𝐷𝐹𝑥
𝑛

. The implementation of the weighting matrix 𝑊−1 and its adjoint 𝑊−𝐻 applies a diagonal
weighting matrix𝐷−1𝑊 and a forward or inverse fast Fourier transform (FFT, iFFT) for each channel.The derivative of the multiplication of the
image 𝜌 and the coil sensitivities 𝑐𝑗 and its adjoint are composed of pointwise multiplication (∗), addition (+), and summation (∑) operations.
The combination of the nonuniform Fourier transform and its adjointF𝐻F is implemented as a convolution with the point-spread function,
consisting of a mask (msk) restricting the oversampled grid to the field of view, application of fast Fourier transform and its inverse, and a
pointwise multiplication with the convolution kernel (P). Padding (pad) and cropping (crop) operations are used to reduce computational
cost in the overall iterative algorithm.

or physiologic process, allows for a remarkably high degree of
data undersampling or image acceleration [21].

In the following, the main steps of an efficient numerical
implementation are described; for further details, see [9, 21].
First, a change of variables 𝑥 = 𝑊𝑥 and 𝐹 = 𝐹 ∘ 𝑊−1 is done
to improve the conditioning of the reconstruction problem.
Starting from an initial guess 𝑥0, the numerical problem is
then solved using the iteratively regularized Gauss-Newton
method (IRGNM), which uses the following linear update
rule:

(𝐷𝐹𝐻𝑥
𝑛

𝐷𝐹𝑥
𝑛

+ 𝛼𝑛𝐼) (𝑥𝑛+1 − 𝑥𝑛)
= 𝐷𝐹𝐻𝑥

𝑛

(𝑦 − 𝐹𝑥𝑛) − 𝛼𝑛 (𝑥𝑛 − 𝑥prev) . (2)

Here, 𝐷𝐹𝑥
𝑛

denotes the derivative of 𝐹 at 𝑥𝑛 and 𝐷𝐹𝐻 its
adjoint. In each of the 𝑀 Newton steps, this linear system of
equations is solved using the method of conjugate gradients
(CG).Themain operation in a matrix-free implementation is
the repeated application of the operator

𝐷𝐹𝐻𝑥
𝑛

𝐷𝐹𝑥
𝑛

: 𝛿𝑥 → (((
(

𝐽∑
𝑗=1

𝑐⋆𝑗 𝑡𝑗𝑊−𝐻𝑏 𝜌⋆𝑡1...𝑊−𝐻𝑏 𝜌⋆𝑡𝐽
)))
)

(3)

with

𝑡𝑗 fl F
𝐻
𝑏 F𝑏 {𝑐𝑗𝛿𝜌 + 𝜌𝑊−1𝑏 𝛿𝑐𝑗} . (4)

The star ⋆ means complex conjugation. F𝑏 and 𝑊𝑏 are the
blocks of the block-diagonal operations F and 𝑊 which
operate on a single channel. Because the nonuniform Fourier
transform is paired with its adjoint, it can be implemented
efficiently as a truncated convolution with a point-spread
function using two applications of an FFT algorithm on a
twofold oversampled grid [25]. 𝑊 is implemented using one
FFT followed by the application of a diagonal weighting
matrix. Thus, a single iteration requires 4 applications of an
FFT algorithm per channel, several pixelwise complex mul-
tiplications and additions, and one pixel-by-pixel reduction
across all channels (∑𝐽𝑗=1). A flowchart can be found in
Figure 4.

TheNLINV algorithm is an iterative algorithm consisting
of operators𝐹,𝐷𝐹, and𝐷𝐹𝐻 aswell as the conjugate-gradient
method. Depending on the imaging scenario, the number
of Newton steps is fixed to 6 to 10. 𝐹 is only computed
once per Newton step. 𝐷𝐹 and 𝐷𝐹𝐻 are applied in each
conjugate-gradient iteration. Each operator applies a 2D FFT
twice on per-channel data. 𝐹 computes a scalar product once;
the conjugate gradient method contains two scalar products
over all channel data. Furthermore each operator applies
between 4 and 6 elementwise operations and 𝐷𝐹𝐻 contains
a summation over channel data. The performance of the
Fourier transform dominates the run time of a single inner-
loop iteration of the algorithm and it has to be applied 4 times
in each inner loop.

If 10 channels are assumed, 6Newton steps are computed
(yielding roughly 50 conjugate-gradient iterations); 10 ∗ 4 ∗50 = 2000 2D Fourier transformations must be applied to
compute a single image. If data is acquired at a frame rate of30 fps, the reconstruction systemmust be able to apply 60000
2D Fourier transforms per second.
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3. Optimization Methods and Results

The following section outlines several steps undertaken to
move a prototype implementation of the NLINV algorithm
to a highly accelerated implementation for use in an online
reconstruction pipeline. The original implementation in C
utilizes the CUDA framework and is capable of reconstruct-
ing at speeds of 1 to 5 fps on a single GPU. A typical clinical
scenario in real-time MRI is cardiac imaging where a rate
of 30 per second is necessary. To incorporate real-time heart
examination in a clinical work-flow, the image reconstruction
algorithm must perform accordingly.

The optimization techniques are classified into two cate-
gories. The first category encompasses platform independent
optimization procedures that reduce the overall computa-
tional cost of the algorithm by reducing vector sizes while
maintaining image quality. In the second category, the
algorithm is modified to take advantage of the multi-GPU
computer platform by channel decomposition, temporal
decomposition, and tuning of the two techniques to yield best
performance for a given imaging scenario.

All benchmark results show the minimum wall-clock
time of a number of runs. For microbenchmarks, hundreds
of runs were performed. For full reconstruction benchmarks,
tens of runs were performed.The speed-up 𝑆 is defined as the
quotient of the old wall-clock time 𝑡old over the new time 𝑡new

𝑆 = 𝑡old𝑡new (5)

and parallel efficiency 𝐸 is defined as

𝐸 = 𝑆𝑝𝑝 (6)

with 𝑆𝑝 representing the speed-up achieved when using 𝑝
accelerators over 1. Perfect efficiency is achievedwhen 𝑆𝑝 = 𝑝
or𝐸 = 1; sublinear speed-up is measured if 𝑆𝑝 < 𝑝 and 𝐸 < 1.

If not stated otherwise, all benchmarks were obtained on
a Supermicro SuperServer 4027GR-TR system with PCIe 3.0,
2x Intel Xeon Ivy Bridge-EP E5-2650 main processors, 8x
NVIDIA Titan Black (Kepler GK110) accelerators with 6GB
graphics memory each, and 128GB main system memory.
Custom GPU power cables were fabricated for the Super-
micro system to support consumer-grade accelerators. The
CUDA run time environment version was 6.5 with GPU
driver version 346.46.The operating systemusedwasUbuntu
14.04. The combined single-precision performance of the
eight GPUs in this system approaches 41 TFLOPS and the
combined memory bandwidth is 2688Gb/s. For a compari-
son of the performances of some accelerators available at the
time of writing of the article, see Table 1.

3.1. Real-Time Pipeline. The real-timeNLINV reconstruction
algorithm is part of a larger signal processing pipeline that can
be decomposed into several stages:

(i) Datasource: reading of input data into memory
(ii) Preprocessing: interpolating data acquired with a

non-Cartesian trajectory onto a rectangular grid,
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Figure 5: The NLINV reconstruction pipeline consists of 5 stages:
datasource (src), preprocessing (pre), reconstruction (rec), postpro-
cessing (pst) and datasink (snk). New frames (f0 through f9) enter
the pipeline through the datasource and leave the pipeline through
the datasink. A filled pipeline processes 5 frames at the same time by
using 5 threads, one for each pipeline stage.

correcting for gradient delays as well as performing
the channel compression; this stage contains a cali-
bration phase that calculates the channel compression
transform matrix and estimates the gradient delay

(iii) Reconstruction: the NLINV algorithm, reconstruct-
ing each image

(iv) Postprocessing: cropping of the image to the mea-
sured field of view, calculation of phase-difference
image (in case of phase-contrast flow MRI), and
applying temporal and spatial filters

(v) Datasink: writing of resulting image to output.

Real-time MRI datasets with high temporal resolution
typically contain several hundreds of frames even when cov-
ering only a few seconds of imaging. For this reason, it is ben-
eficial to parallelize the pipeline at the level of these functional
stages: each stage can work on a different frame, or, in other
words, different frames are processed by different stages of the
pipeline in parallel. The implementation of such a pipeline
follows the actor model [26] where each pipeline stage is
one (or multiple, see temporal decomposition in Section 3.3)
actor, receiving input data from the previous stage as message
and passing results to the following stage as a different
message. The first actor and the last actor only produce
(datasource) and receive (datasink) messages, respectively.

Figure 5 shows the NLINV pipeline for reconstructing
10 frames. The pipeline has a prologue and an epilogue of 4
frames (number of pipeline stages minus one) where full par-
allel reconstruction is not possible because the pipeline is
filling up or emptying.

3.2. Computational Cost Reduction. The most compute-in-
tensive part of the NLINV algorithm is the application of
the Fourier transform. NLINV applies the Fourier transform
multiple times in each iteration. Fast execution of the Fourier
transform has thus a major impact on the overall run
time of the algorithm. The FFT library cuFFT [27] of the
hardware vendor is used. Plotting the performance of the
FFT libraries against the input vector size does not yield a
linear function, but shows significant fluctuation (compare
Figure 6). The algorithm performs better for vector sizes
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Table 2: Reconstruction times in fps for various image sizes with side length 𝑁 and fixed versus variable oversampling ratio 𝛾. For some
input sizes, 1.5 is the optimal value (𝑁 = 128, 𝑁 = 144); for other sizes, the number of grid sample locations must be increased to yield a
speed-up (𝑁 = 160,𝑁 = 170). For a third group of image sizes (𝑁 = 256), the optimal FFT size increases the size of the data to a degree that
the speed-up is reduced or even nullified by additional overhead. For each test case, 200 frames were reconstructed using 1 accelerator.

𝑁 Fixed 𝛾 = 1.5 Optimal 𝛾 ≥ 1.4 𝑆𝐺 fps 𝛾 𝐺 fps
128 384 8.1 1.5 384 8.3 1.02
144 432 2.5 1.5 432 2.5 1.00
160 480 4.4 1.51875 486 5.0 1.25
170 510 2.5 1.50588 512 5.8 2.32
256 768 2.4 1.53125 784 2.4 1.00

Table 3: Speed-up 𝑆 by cropping the 2D vector of size length 𝑁 of coil sensitivity profiles by a factor of (1/4)2.
𝑁 𝐺𝑐 = 𝐺 Reduced 𝐺𝑐 = ⌊(1/4)𝐺⌋ 𝑆𝐺𝑐 fps 𝐺𝑐 fps
128 384 18.1 96 25.8 1.43
144 432 10.1 108 13.0 1.29
160 486 11.9 121 17.9 1.50
170 512 13.4 128 20.1 1.50
256 784 6.1 196 9.7 1.59
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Figure 6: Run time in ms of a single-precision 2D complex-to-
complex out-of-place squared Fourier transform calculated using
cuFFT. The plot shows run times as a function of vector size and
highlights the run time difference between a 5102 vector (red) and5122 vector (green). The plotted data ranges from 2562 to 5122.
which are factorizable by small prime numbers, with the
smallest prime numbers yielding the best results.

The grid oversampling ratio defines the ratio of grid
sample locations 𝐺 over the side length of the output image𝑁.The ratio between𝑁 and𝐺 includes an inherent factor of 2
that exists as the convolution with the point-spread function
requires twofold oversampling. An additional factor 𝛾 can be
set to values between 1 and 2 to prevent aliasing artifacts for
situations where the operator chooses a field of view smaller
than the object size.The relationship of𝑁 to𝐺 is thus defined
as

𝐺 = 2𝛾𝑁. (7)

In the following, only 𝛾 is specified. It is found that consid-
ering the constraints of the FFT algorithm when choosing 𝛾
can yield calculation speed-ups. A lookup table is generated
thatmaps grid size to FFT performance by benchmarking the
Fourier transform algorithm for all relevant input sizes. This
lookup table is generated for different accelerator generations
as well as for new versions of the FFT library. The grid over-
sampling ratio is adjusted according to the highest measured
FFT performance with a minimum oversampling ratio of 𝛾 ≥1.4. Table 2 shows the speed-up when comparing to a fixed
oversampling ratio of 1.5. Figure 6 is a graphical represen-
tation of the lookup table that is used to select optimal grid
sizes. It highlights the run time difference between two very
similar vector sizes of 5102 (2 ∗ 3 ∗ 5 ∗ 17) and 5122 (29).

TheNLINValgorithm estimates not only the spin-density
map 𝜌, but also the coil sensitivity profiles 𝑐𝑗. The regulariza-
tion term added to the Gauss-Newton solver constrains the 𝑐𝑗
coil sensitivity profiles to a few low-frequency components. It
is thus possible to not store the entire vector 𝑐𝑗, but to reduce
its size to (1/4)2 of the original. The number of grid sample
locations 𝐺 is thus reduced to 𝐺𝑐 = ⌊(1/4)𝐺⌋ for the coil
sensitivity profiles 𝑐𝑗. Whenever the original size is required,
the vector is padded with zeroes. Figure 7 shows a typical
weighting function in 1D as applied to 𝑐𝑗 and the cut-off that
is not stored after this optimization. This saves computing
time as functions applied on 𝑐𝑗 have to compute less. For this
technique to yield a speed-up, the computation time saved
must exceed the time required to crop and pad the vectors.
Table 3 shows the speed-up achieved by this optimization for
various data sizes.

3.3. High-Level Parallelization with Autotuning. In parallel
MRI, the reconstruction problem can be partitioned across
the domain of multiple receive channels used for signal
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Table 4: Computation time 𝑡 in 𝜇𝑠 and parallel efficiency 𝐸 of the Fourier transform of 10 2D vectors of side length 𝑁 calculated using the
cuFFT batched mode.

𝑁 1 GPU 2GPUs 3GPUs 4GPUs𝑡 𝑡 𝐸 𝑡 𝐸 𝑡 𝐸
384 429 230 0.93 189 0.76 152 0.71
432 532 280 0.95 228 0.78 178 0.75
486 730 387 0.94 320 0.76 251 0.73
512 555 288 0.96 233 0.79 179 0.78
784 1699 865 0.98 697 0.81 529 0.80

Table 5: Image reconstruction speed (fps), relative speed-up 𝑆rel, and overall speed-up 𝑆ov for different numbers of GPUs and differently sized
datasets.

𝑁 1 GPU 2GPUs 3GPUs 4GPUs 𝑆ovfps fps 𝑆rel fps 𝑆rel fps 𝑆rel
128 8.3 13.1 1.6 13.5 1.0 13.8 1.0 1.7
144 2.5 3.9 1.6 4.1 1.0 4.2 1.0 1.7
160 5.0 8.3 1.6 8.7 1.1 9.1 1.0 1.8
170 6.0 9.6 1.6 10.1 1.0 10.1 1.0 1.7
256 2.4 3.8 1.6 4.5 1.2 4.7 1.1 2.0

Grid points

Cropped Cropped

0.0
0.2
0.4
0.6
0.8
1.0

5123202561920

Figure 7:The k-spaceweight function (1+880|𝑘|2)16 with−0.5 < 𝑘𝑥,𝑘𝑦 < 0.5 is plotted in 1D for a grid size of 5122 with cropping to 25%
of the original. The lowest frequency is at the center.

reception [10]. The measured data 𝑦𝑗, corresponding coil
sensitivity maps 𝑐𝑗, and associated intermediate variables can
be assigned to different accelerators 𝐴. The image 𝜌 has to be
duplicated on all accelerators. The sum ∑𝐽𝑗 𝑐⋆𝑗 𝑡𝑗 is partitioned
across accelerators according to

𝐽∑
𝑗

𝑐⋆𝑗 𝑡𝑗 = 𝐴∑
𝑎=1

∑
𝑗∈𝐽
𝑎

𝑐⋆𝑗 𝑡𝑗, (8)

where 𝐽𝑎 is the subset of channels assigned to accelerator 𝑎.
This summation amounts to an all-reduce operation, since all
accelerators require the computed updates to 𝜌. An alterna-
tive decomposition would require communication between
GPUs within the FFT operation which is not feasible for
the typical vector dimensions in this problem. The resulting
speed-up from this parallel decomposition originates from
the fact that the FFT of all channels can be computed in
parallel. With only one accelerator, all 𝐽 Fourier transforms
have to be computed by a single accelerator with a batch size
equal to 𝐽. A batched FFT computesmultiple FFTs of the same
size and type on multiple blocks of memory either in parallel
or in a sequential manner. With multiple accelerators, 𝐽 is

divided by the number of accelerators 𝐴. This is illustrated in
Table 4 depicting the computation time of Fourier transforms
of 10 2D vectors of various side lengths 𝑁 for different
numbers of GPUs.

The parallel efficiency of distributing a batched FFT
across devices decreases from two to three and four accelera-
tors, because an accelerator can compute multiple 2D FFTs at
the same time. In addition, the NLINV implementation uses
10 compressed channels which cannot be divided by 3 or 4
with no remainder.

Furthermore, the speed-up is reduced by the commu-
nication overhead of calculating ∑𝐴𝑎=1 which increases with
the number of accelerators. Table 5 shows the reconstruction
speed and speed-up for differently sized datasets and varying
number of accelerators. To reduce the communication over-
head, a peer-to-peer communication technique is employed
that allows accelerators to directly access memory of neigh-
bouring accelerators. This is only possible, if accelerators
share a PCIe domain. The Supermicro system has 2 PCIe
domains that each connect 4 accelerators. The maximum
effective number of accelerators that different channels are
assigned to is therefore 4.

Because the parallel efficiency of the channel decompo-
sition is limited, investigations focused on decomposing the
problem along the temporal domain which results in recon-
structions of multiple frames at the same time. The standard
formulation of the NLINV algorithm prohibits a problem
decomposition along the temporal domain. Frame 𝑛 must
strictly follow frame 𝑛 − 1 as 𝑥𝑛−1 serves as starting and
iterative regularization value for 𝑥𝑛. While maintaining the
necessary temporal order, a slight relaxation of the temporal
regularization constraint allows for the reconstruction of
multiple frames at the same time. The following scheme
ensures that the difference in the results of in-order and out-
of-order image reconstruction remains minimal. The first
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Figure 8: Temporal decomposition when reconstructing 14 frames.
The first 4 frames are reconstructed in strict sequential order, while
following images are reconstructed by two threads in parallel. Data
is exchanged between threads for the last iteration (i.e., Newton step,
grey segment) of each frame. This last iterative calculation takes the
longest time as the CG algorithm requires more time to solve the
system of equations. The frame rate is almost doubled by parallel
reconstruction in this example.

frame 𝑛 = 0 is defined with 𝜌 set to unity and 𝑐𝑗 set to zero.
The function ℎmaps frame 𝑛 for each 𝑛 > 0 and Newton step𝑚 to initialization and regularizations values 𝑥ℎ(𝑛,𝑚):

ℎ (𝑛,𝑚) = {{{
𝑛 − 1 : 𝑛 ≤ 𝑙 ∨ 𝑚 = 𝑀 − 1[𝑛 − 𝑜, 𝑛 − 1] : 𝑛 > 𝑙 ∧ 𝑚 < 𝑀 − 1. (9)

Due to the complementary data acquisition pattern for
sequential frames, the initial frames are of poor quality. The
first 𝑙 images of a series are thus reconstructed in a strict
in-order sequence. This allows the algorithm to reach the
best image quality in the shortest amount of time. From
frame 𝑙 + 1 on, frames may be reconstructed in parallel.
Initialization and regularization values are chosen to be the
most recent available frame within the range [𝑛 − 𝑜, 𝑛 −1]. The only exception is regularization values in the last
Newton step 𝑚 = 𝑀 − 1, where 𝑥𝑛−1 must be used for
regularization. The algorithm thus waits for frame 𝑛 − 1
to be computed before proceeding to the last Newton step
(compare Figure 8). Experimental validation shows that the
best match of in-order and out-of-order processing while
maintaining a speed-up can be achieved by setting 𝑙 to the
number of turns and 𝑜 to roughly half the number of turns in
the interleaved sampling scheme.

Channel decomposition and temporal decomposition
can be applied for different imaging situations in different
ways. Depending on the acquisition and reconstruction
parameters, the number of reconstruction threads 𝑇 (tem-
poral decomposition) and the number of accelerators per
reconstruction thread 𝐴 (channel decomposition) can be
adjusted. A prerequisite to this method is that all (𝑇, 𝐴)
settings yield the same image quality. The parameters 𝑃acqu
and 𝑃reco that have the most impact on image reconstruction
speed include

(i) the imaging mode: single-slice anatomy, multislice
anatomy, and phase-contrast flow,

(ii) the data size which depends on the field of view and
the chosen resolution,

(iii) the number of frames acquired,
(iv) the number of virtual channels used.

The number of parameters and the ever-evolving measure-
ment protocols in a research setting make it difficult to come
up with a model that maps the set of acquisition and recon-
struction parameters to the optimal set of parallelization
parameters (𝑃acqu, 𝑃reco) → (𝑇, 𝐴). Therefore, an autotuning
mechanism is employed:The algorithmmeasures its own run
time 𝑅 and stores its performance along with all acquisition,
reconstruction, and parallelization parameters in a database(𝑃acqu, 𝑃reco) → (𝑇, 𝐴) → 𝑅. For a given set of (𝑃acqu
and 𝑃reco), the autotuning mechanism can select all recorded
run times 𝑅, sort them, and select the set of parallelization
parameters (𝑇, 𝐴) that yields the best performance.

The autotuning has an optional learning mode to pop-
ulate the database with varying parallelization parameters(𝑇, 𝐴). If the learning mode is active, the algorithm searches
the database for matching performance data and chooses
parallelization arguments that do not yet exist in the database.
The search space for (𝑇, 𝐴) is limited; there are only 16 sets
of arguments for the 8-fold GPU reconstruction system used
here. The reason for this is the restriction of the channel
decomposition stage to the size of the PCIe domain due
to peer-to-peer memory access. If 𝐴 = 1 then 𝑇 =[1, 2, 3, 4, 5, 6, 7, 8], if 𝐴 = 2, then 𝑇 = [1, 2, 3, 4], and if𝐴 = [3, 4] then 𝑇 = [1, 2]. Table 6 shows an excerpt from the
autotuning database.

In a clinical setting, all relevant protocols may undergo
a learning phase populating the database and covering the
entire search space. This can be done in a setup phase to
ensure optimal run times for all clinical scans. The algorithm
is also capable of sorting acquisition and reconstruction
parameters. This allows the autotuning mechanism to find
good (𝑇, 𝐴) parameters for newmeasurement protocols it has
never seen before.

4. Discussion

This work describes the successful development of a highly
parallelized implementation of the NLINV algorithm for
real-timeMRIwhere dynamic image series are reconstructed,
displayed, and stored with little or almost no delay. The com-
putationally demanding iterative algorithm for dynamicMRI
was decomposed and mapped to massive parallel hardware.
This implementation is deployed to several research groups
and represents a cornerstone for the evaluation of the clinical
relevance of a variety of real-timeMRI applications,mainly in
the field of cardiac MRI [23, 28], quantitative phase-contrast
flow MRI [29, 30], and novel fields such as oropharyngeal
functions during swallowing [31], speaking [32], and brass
playing [33].

As examples, Supplementary Videos 1 and 2 show T1-
weighted radial FLASH MRI acquisitions at 33.32ms acqui-
sition time (TR = 1.96ms, 17 radial spokes covering k-space)
of a human heart in a short-axis view and midsagittal tongue
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Table 6: Autotuning for reconstructing single-slice, dual-slice, and phase-contrast flow MRI acquisitions. 𝑁 = 160 for all datasets results in
a grid size of 4862.

Single-slice anatomic MRI
Worst configuration Best configuration

Frames Threads GPUs/thread Fps Threads GPUs/thread Fps
5 2 4 1.9 1 2 3.7
10 2 4 3.0 1 2 5.0
25 1 1 4.7 2 2 7.7
50 1 1 4.9 3 2 11.0
200 1 1 4.9 3 2 18.1

Dual-slice anatomic MRI
Worst configuration Best configuration

Frames Threads GPUs/thread Fps Threads GPUs/thread Fps
5 2 4 3.2 2 1 5.9
10 1 1 4.6 2 2 8.0
25 1 1 5.0 4 2 12.3
50 1 1 5.1 4 2 18.4
200 1 1 5.1 4 2 28.1

Phase-contrast flow MRI
Worst configuration Best configuration

Frames Threads GPUs/thread Fps Threads GPUs/thread Fps
5 2 4 1.6 2 1 2.6
10 1 1 1.8 2 2 3.6
25 1 1 1.9 4 2 5.8
50 1 1 1.9 4 2 7.5
200 1 1 1.9 4 2 10.7

movements of an elite horn player, respectively. The cardiac
example employed a 256 × 256mm3 field of view, 1.6mm
in-plane resolution (6mm slice thickness), and 𝑁 = 160
data samples per spoke (i.e., grid size) which resulted in a
slightly delayed reconstruction speed of about 22 fps versus
30 fps acquisition speed. In contrast, the horn study yielded
real-time reconstruction speed of 30 fps because of a slightly
smaller 192 × 192mm3 field of view at 1.4mm in-plane
resolution (8mm slice thickness) and only 𝑁 = 136 samples
per spoke.

Some of the optimization methods discussed here are
specific to real-time MRI algorithms, but the majority of
techniques translate well to otherMRI applications or even to
othermedical imagingmodalities. Functional decomposition
can be employed in any signal or image processing pipeline
that is built onmultiple processing units likemulticore CPUs,
heterogeneous systems, or distributed systems comprised of
FPGAs, digital signal processors, microprocessors, ASICs,
and so on. Autotuning is another generic technique that
can be useful in many other applications: if an algorithm
implementation exposes parallelization parameters (number
of threads, number of GPUs, distribution ratios, etc.), it
can be tuned for each imaging scenario and each platform
individually. The grid size optimization technique can also
be universally employed: if an algorithm allows choosing the
data size (within certain boundaries) due to regridding or
interpolation, the grid size should be chosen such that the
following processing steps exhibit optimal performance.This

is valuable, if the following processing steps do not exhibit
linear performance such as specific FFT implementations.

5. Conclusion

Novel parallel decomposition methods are presented which
are applicable to many iterative algorithms for dynamicMRI.
Using these methods to parallelize the NLINV algorithm
on multiple GPUs, it is possible to achieve online image
reconstruction with high frame rates. For suitable parameters
choices, real-time reconstruction can be achieved.
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Supplementary 1. Video S1: T1-weighted radial FLASH
MRI acquisitions with NLINV reconstruction at 33.32ms

http://downloads.hindawi.com/journals/cmmm/2017/3527269.f1.avi
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acquisition time (TR = 1.96ms, 17 radial spokes) of a human
heart in a short-axis view (256×256mm3 field of view, 1.6mm
in-plane resolution, and 6mm slice thickness).
Supplementary 2. Video S2: T1-weighted radial FLASH MRI
acquisitions with NLINV reconstruction at 33.32ms acqui-
sition time (TR = 1.96ms, 17 radial spokes) of midsagittal
tongue movements of an elite horn player (192 × 192mm3
field of view at 1.4mm in-plane resolution, and 8mm slice
thickness).
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