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Abstract
Offshore platforms are known to act as artificial reefs, though there is on-going debate on

whether this effect is beneficial or harmful for the life in the surrounding marine environment.

Knowing what species exist on and around the offshore platforms and what environmental

variables influence this species assemblage is crucial for a better understanding of the

impact of offshore platforms on marine life. Information on this is limited for offshore plat-

forms in the southern North Sea. This study aims to fill this gap in our knowledge and to

determine how the composition and the abundance of species assemblages changes with

depth and along a distance-from-shore gradient. The species assemblages on five offshore

gas platforms in the southern North Sea have been inventoried using Remotely Operated

Vehicles inspection footage. A total of 30 taxa were identified. A Generalised Additive

Model of the species richness showed a significant non-linear relation with water depth (p =

0.001): from a low richness in shallow waters it increases with depth until 15–20 m, after

which richness decreases again. Using PERMANOVA, water depth (p�0.001), community

age (p�0.001) and the interaction between distance from shore and community age

(p�0.001) showed a significant effect on the species assemblages. Future research should

focus on the effect additional environmental variables have on the species assemblages.

Introduction
Offshore constructions have been known to act as artificial reefs [1–7]. Foundations of wind
farms [8–10], oil & gas production platforms [11] and other energy structures [12] add hard
substrata to the marine environment, supporting a great diversity of marine life by offering
habitat for algae [3,13,14], fish [15–18] and invertebrates [3,17,19–21]. There is on-going
debate on whether this effect is beneficial for the life in the surrounding marine environment,
and whether or not oil & gas platform foundations should be removed after decommissioning
or left in place as artificial reefs, also known as ‘Rigs-to-Reefs’ [22–25]. Knowledge of the effects
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of these artificial reefs on marine life is of significant importance for understanding the effect
of the presence of several thousand offshore energy structures such as wind turbines [8,26] and
their subsequent removal at the end of production life [27,28].

Fouling assemblages on offshore platforms have been inventoried in different areas such as
the Beibu Gulf in China [6], the Gulf of Mexico [7,29,30], off the Californian coast [15,31–35],
the southern Arabian Gulf [36], the Mediterranean [5] and the Celtic Sea [37]. Research has
also been conducted on marine fouling on offshore platforms in several areas of the northern
and central North Sea [1,3,11,38]. Previous research on the effects of offshore oil & gas struc-
tures in the North Sea focussed on marine mammals [39], fish [16,40–43], algae [44,45], corals
[11,21,38] and invertebrate assemblages [1–3,40,44,46].

Several abiotic factors have been proposed to explain the species composition of the marine
fouling on offshore platforms, such as water temperature [7], platform age [29], depth
[3,6,7,47] and distance from shore [48]. The effect of depth on marine fouling has been
reported from wind farms [8,49,50] and offshore platforms [4] in the southern North Sea.
However, all the available data on invertebrate assemblages on installations in temperate waters
were generated in the northern North Sea or from near shore installations that were con-
structed<10 years before investigation. The southern North Sea has a strong near- to offshore
gradient in environmental variables, such as food availability [51], which is absent in the north-
ern parts. Furthermore, large differences in water depth, temperature and salinity exist between
the northern and southern parts of the North Sea [52]. Whomersley (2010; [3]) showed that
even after 11 years, fouling assemblages still changed in composition. With offshore platforms
in the southern North Sea now reaching ages of>40 years, an opportunity presents itself to
compare installations of old and young ages and at different locations with different environ-
mental circumstances. This will give insight in the long term effects of proposed developments,
such as the short term installation of thousands of offshore wind turbines [26] and is much
needed information to aid in evaluating the impact of future Rigs-to-Reefs programmes: to reef
or not to reef [27,53–56]?

This study aims to determine how the composition of species assemblages (including epi-
fauna, fish and mobile benthic fauna on and in the visible vicinity of the installation) changes
with depth and along a distance-from-shore gradient. The species assemblage on five offshore
gas platforms in the southern North Sea was inventoried using inspection footage from
Remotely Operated Video robots (ROVs).

Material and Methods

Study sites
We selected five offshore gas platforms (coded P1 to P5) in the southern North Sea along a gra-
dient of increasing distance from shore, with P1 situated 48 km offshore, and P5 at 177 km off-
shore (Table 1; Fig 1). The platforms are situated in water depths between 27 and 43 meters,
surface water temperatures varying between 4 and 18°C throughout the year [57], on a seafloor
composed primarily of sand. The year of structure installation of the structures varies between
1972 and 2009. They are all operated by ENGIE E&P Nederland B.V. and have a steel jacket
foundation constructed of 4 to 10 legs with cathodic protection by anodes. Each leg within a
jacket provides between ~500 and ~800 m2 of surface area available for marine growth,
depending on water depth.

Sampling and analysis
Offshore operators regularly perform technical underwater inspections of the structures, result-
ing in a large amount of digital video footage, made available to us for analysis. The footage
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provided consisted of close visual inspection (CVI), showing details of specific parts, e.g. con-
ductors or caissons, and general visual inspection (GVI), giving a complete and systematic
overview of each leg of the underwater structure from two approximately perpendicular angles.

For an overview of all species present at each platform, both CVI and GVI footage was used.
For the systematic analysis of distance from shore and depth effects, only GVI footage was
used. Footage was viewed using VLC mediaplayer version 2.0.5 [58]. To train the observer, all
GVI footage was viewed and scored twice during the systematic analysis of species abundance,
retaining only data from the second viewing for statistical analysis. Species abundance was esti-
mated from footage while playing, as video stills were often blurry given the low video resolu-
tion and fast movements of the camera.

To create replicate samples from identical depths within each platform, all legs from every
platform were divided into 5 m depth bands, resulting in a total of 215 unique plat-
form�leg�depth combinations (henceforth named samples). The precise amount of inspected
surface area was unknown and we estimate that the area viewed per sample was between 8 and
10 m2, assuming that ~50% of the leg was showing in the video and that all legs were the same
diameter. Depth and time of recording were visible on the video. To correct for tidal differ-
ences, depths were converted to Amsterdam Ordnance Datum using data fromWaterbase
[57].

Due to the different growth forms, high densities of organisms and limited video resolution,
it was not always possible to count individuals for every taxon. Therefore species abundance
per sample was assigned a value using an adapted version of the Braun-Blanquet scale, follow-
ing Leewis et al (2000 [59]; Table 2) and Coolen et al (2015 [60]). This 1–9 scale allows for a
quantitative registration of colonial species and individuals while scaling down bias caused by
counting problems from a combination of high densities of individuals with blurry video
images. All observed organisms were identified at the lowest taxonomic rank possible. The
World Register of Marine Species [61] was used as standard for taxonomical nomenclature.

Given the low image resolution, blurry video caused by fast camera movement and move-
ment of the organisms, smaller specimens are likely to remain undetected in a sample. There-
fore the probability to observe an individual was quantified by defining a detectability score for
each taxon. Taxa were scored based on their mobility (1: very mobile, e.g. benthopelagic fish–
5: sessile, e.g. anemones) and individual adult or colonial size (1: small, 3–5 cm– 5: large,>30
cm). By multiplying these scores, taxa were separated in groups of low detectability (scoring
1–6) and high detectability (scoring 7–25). The assumption was made that taxa with high
detectability were truly absent when not observed. In high quality footage the size of the

Table 1. Platform locations, distance from shore, maximum observed depths on the footage, year of installation of the platform, community age
(years since last cleaning activities) at the time the video was recorded, for depths < 10m >.

Platform name
(codes)

Coordinates
(WGS84)

Distance from
shore (km)

Maximum depth of
video footage (m)

Year of
installation

Community age > 10
m (years)

Community age <10
m (years)

L10-AD (P1) 53°24'12''N, 04°
12'03''E

48 27.4 1972 39 5

K9ab-B (P2) 53°33'04''N, 03°
46'47''E

80 34.5 1999 12 7

K2b-A (P3) 53°56'55''N, 03°
39'44''E

114 42.8 2005 7 7

E17a-A (P4) 54°05'53''N, 03°
21'36''E

140 42.5 2009 3 3

D15-A (P5) 54°19'29”N, 02°
56'05''E

177 40.0 1999 13 13

doi:10.1371/journal.pone.0146324.t001
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smallest organisms or colonies registered was approximately 3 cm, whereas in low quality foot-
age this was approximately 5 cm.

Data on explanatory variables were collected on year of installation of each platform, age of
the community at each depth band (the structures are cleaned between 0 and approximately
10 m depth on a regular basis depending on hard marine growth presence), available video
length, quality of the footage and distance from the nearest coast. The quality of the footage was
scored in consultation between two authors, on a scale of 1 (low quality)– 10 (excellent quality).

Datasets created in this study are publicly accessible through Dryad [62]. For the statistical
analyses, R: A language and Environment for Statistical Computing, version 3.0.2. [63] and
RStudio version 0.98.994 [64] were used. Taxa with low detectability or with a single observa-
tion were removed from the dataset. Species richness (number of species; S) per sample was

Fig 1. Locations of investigated platforms. Studied locations of five gas platforms in the southern North Sea (�) with bathymetry.

doi:10.1371/journal.pone.0146324.g001
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used to construct a univariate model explaining its relation with the explanatory variables. The
collected data were explored following the protocol described by Zuur et al. (2010; [65]). To
identify outliers, collinearity, relationships and interactions, species richness and all indepen-
dent variables were plotted using Cleveland dotplots [66], boxplots, pairplots and multi-panel
scatterplots (xyplot function in lattice package; [67]). Since non-linear patterns in the relation
between species richness and depth were observed, a Generalised Additive Model (GAM; gam
function in the mgcv package; [68]) was constructed. Backward selection using Akaike Infor-
mation Criteria [69] was performed to exclude variables and optimise the GAM. This opti-
mised model was validated by plotting residuals versus fitted values and versus all variables
included and excluded during the model selection. PERMANOVA (adonis function in package
vegan; [70]) was used to test the significance of the effect depth, community age and distance
from shore had on the species assemblages. Also, PERMANOVA was used to examine whether
quality of the videos, video length, platform age and community age had a significant effect on
the observed species assembly.

Results

Species inventory
Approximately 550 minutes of footage were analysed for the five platforms and a total of 30
taxa were identified (Table 3). Nine taxa were observed on all platforms, while four taxa were
found on one platform only. After removal of taxa with a single observation or low detectabil-
ity, 11 out of 30 taxa remained for the statistical analysis.

Species abundance estimation
Platforms P3, P4 and P5 were fully covered with marine fouling at all depths, but the composi-
tion and abundance of the marine fouling varied over depth and along the distance-from-shore
gradient. Several legs on P1 and P2 up to a depth of 10 m were not fully covered. Tables 4–8
show averaged abundance estimations for the 11 high detectable species in each depth band on
platforms P1 –P5, based on the Braun-Blanquet values.Metridium senile was the dominant
species in depth range 25–45 m on all platforms, except on P4. In the depth range 0–20 m,
Mytilus edulis was often present, especially on P1 and P2. However, it was almost completely
absent from P3 and P5, platforms located further offshore. On P4M. edulis was present up to a
depth of 15 m. Rhodophyta were found on all platforms, between 0–5 m, while on P5 they
were present up to 10 m. Alcyonium digitatum was not observed on P1 and P2, but increased
along the distance-from-shore gradient at P3, P4 and P5. Porifera species were not observed on

Table 2. Different classes with corresponding analysis value.

Class Analysis value

1 individual 1

2–5 individuals 2

6–50 individuals 3

>50 individuals, <5% cover 4

5–15% cover 5

16–25% cover 6

26–50% cover 7

51–75% cover 8

76–100% cover 9

doi:10.1371/journal.pone.0146324.t002
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P1 and P2, but were observed on the other platforms, although in low abundance. Abundance
of Cancer pagurus, Asterias rubens, Ophiothrix fragilis, Necora puber and Psammechinus mili-
aris decreased along the distance-from-shore gradient, and these species were very rare on P5.

The observed species richness (S) categorised in depth bands and platforms is shown in Fig
2. Model selection for the GAM resulted in the inclusion of depth, the interaction between dis-
tance from shore and the community age and video length as explanatory variables, which
explained 42% of the deviance. S increased significantly with increasing community age and

Table 3. All observed taxa (●) per platform with detectability scores (�6 = low, >6 high).

Platform

Taxon P1 P2 P3 P4 P5 Score

Rhodophyta* ● ● ● ● ● 20

Porifera ● ● ● ● ● 15

Hydrozoa** ● ● ● 5

Ectopleura larynx ● ● ● ● ● 5

Tubularia indivisa* ● ● ● ● -

Anthozoa

Diadumene cincta* ● ● -

Metridium senile ● ● ● ● ● 20

Sagartia elegans* ● -

Hexacorallia ● ● ● ● ● 15

Alcyonium digitatum ● ● ● 20

Annelida

Serpulidae ● ● ● ● ● 5

Arthropoda

Cancer pagurus ● ● ● ● ● 20

Necora puber ● ● ● ● ● 12

Paguridae* ● ● ● -

Amphipoda ● ● ● ● ● 5

Mollusca

Mytilus edulis ● ● ● ● ● 15

Echinodermata

Asterias rubens ● ● ● ● ● 12

Ophiothrix fragilis ● ● ● ● 8

Psammechinus miliaris ● ● ● ● ● 8

Pisces** ● ● ● ● 3

Agonus cataphractus* ● ● -

Ctenolabrus rupestris* ● ● ● -

Cottidae ● -

Gadidae ● ● ● ● 4

Gadus morhua ● 5

Labridae ● 4

Mugilidae* ● ● -

Trisopterus luscus ● ● ● 4

Perciformes* ● ● ● -

Pleuronectidae* ● ● ● -

* Taxa not observed on GVI footage.

** Observation of unidentified Hydrozoa and Pisces.

doi:10.1371/journal.pone.0146324.t003
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video length (p<0.001). With increasing distance from shore, S decreased significantly
although this effect interacted with the age of the community (p<0.001). Depth showed a non-
linear significant relationship with species richness (p = 0.001). Species richness initially
increased with depth, but then decreased again after 15–20 m (Fig 3).

PERMANOVA showed that depth, community age, quality of the footage and the interac-
tion effect between distance and community age have a significant effect (p�0.001) on the spe-
cies assemblages found on offshore platforms (Table 9). Total video length varied per platform,
but PERMANOVA showed this had no significant effect.

Table 4. Averaged categorised abundance of the 11 high detectable taxa, with 95% confidence interval around the mean, per depth band on plat-
form P1.

Platform P1

Taxa Depth band

0–5 5–10 10–15 15–20 20–25 25–30

Rhodophyta 3 ± 1.70 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Porifera 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Metridium senile 0 ± 0.00 0 ± 0.00 6 ± 0.56 8 ± 0.40 9 ± 0.28 8 ± 0.58

Hexacorallia 4 ± 2.29 6 ± 1.11 6 ± 0.82 3 ± 1.75 2 ± 1.73 3 ± 1.81

Alcyonium digitatum 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Cancer pagurus 0 ± 0.00 0 ± 0.58 1 ± 0.96 2 ± 0.51 2 ± 0.79 2 ± 0.79

Necora puber 0 ± 0.00 0 ± 0.00 0 ± 0.00 1 ± 0.84 1 ± 0.90 2 ± 0.51

Mytilus edulis 4 ± 2.91 6 ± 1.95 8 ± 0.51 7 ± 0.40 4 ± 1.98 0 ± 0.00

Asterias rubens 1 ± 1.08 3 ± 1.20 3 ± 1.43 2 ± 0.94 0 ± 0.49 1 ± 0.96

Ophiothrix fragilis 0 ± 0.00 2 ± 1.73 3 ± 1.54 4 ± 1.26 1 ± 1.64 0 ± 0.00

Psammechinus miliaris 0 ± 0.84 0 ± 0.00 1 ± 1.28 0 ± 0.00 0 ± 0.00 0 ± 0.00

The rounded abundance values are based on Table 2.

doi:10.1371/journal.pone.0146324.t004

Table 5. Averaged categorised abundance of the 11 high detectable taxa, with 95% confidence interval around the mean, per depth band on plat-
form P2.

Platform P2

Taxa Depth band

0–5 5–10 10–15 15–20 20–25 25–30 30–35

Rhodophyta 3 ± 3.14 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Porifera 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Metridium senile 2 ± 1.96 3 ± 2.17 5 ± 0.49 7 ± 0.94 8 ± 0.57 9 ± 0.00 9 ± 0.00

Hexacorallia 5 ± 0.00 7 ± 0.49 7 ± 0.49 6 ± 4.00 6 ± 1.13 4 ± 2.65 0 ± 0.00

Alcyonium digitatum 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Cancer pagurus 0 ± 0.00 0 ± 0.49 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.49 0 ± 0.00

Necora puber 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.49 0 ± 0.49 0 ± 0.57

Mytilus edulis 7 ± 0.49 7 ± 1.27 7 ± 0.98 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Asterias rubens 5 ± 0.00 5 ± 0.49 4 ± 0.80 3 ± 0.94 2 ± 1.79 0 ± 0.49 0 ± 0.00

Ophiothrix fragilis 0 ± 0.00 0 ± 0.00 0 ± 0.00 1 ± 2.45 0 ± 0.00 0 ± 0.00 0 ± 0.00

Psammechinus miliaris 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

The rounded abundance values are based on Table 2.

doi:10.1371/journal.pone.0146324.t005
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Discussion
The present study provides insight in the composition of the species assemblages found on five
offshore gas platforms in the southern North Sea. Our results show that a variety of marine
species are found on these offshore gas platforms. Many thousands of artificial reef structures
are present in the North Sea in the form of shipwrecks, wind farms and oil & gas platforms
[71,72]. Furthermore, thousands of wind turbine foundations will be installed in the North Sea
in the near future [26]. Before the onset of industrial fisheries, large areas of the southern
North Sea bottom were covered with natural reefs, many of which are now lost [60,73].

Table 6. Averaged categorised abundance of the 11 high detectable taxa, with 95% confidence interval around the mean, per depth band on plat-
form P3.

Platform P3

Taxa Depth band

0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45

Rhodophyta 2 ± 2.32 5 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 3.54

Porifera 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 1.39 0 ± 0.00 0 ± 0.00 0 ± 0.00

Metridium senile 7 ± 2.02 2 ± 0.94 4 ± 1.23 5 ± 0.49 5 ± 0.57 6 ± 0.00 6 ± 0.00 6 ± 0.00 6 ± 0.00

Hexacorallia 0 ± 0.49 3 ± 1.23 4 ± 0.94 6 ± 2.93 5 ± 0.57 6 ± 1.96 3 ± 1.47 3 ± 1.96 2 ± 0.00

Alcyonium digitatum 4 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 2.02 1 ± 2.26 1 ± 1.86 1 ± 0.00 2 ± 2.17

Cancer pagurus 2 ± 0.00 0 ± 0.00 0 ± 0.49 0 ± 0.49 0 ± 0.57 0 ± 0.49 0 ± 0.57 1 ± 0.49 0 ± 0.49

Necora puber 1 ± 0.49 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.49 0 ± 0.00 0 ± 0.94 1 ± 0.49 0 ± 1.39

Mytilus edulis 0 ± 0.00 4 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Asterias rubens 0 ± 1.39 1 ± 0.00 3 ± 0.00 3 ± 0.94 2 ± 0.94 2 ± 0.00 1 ± 0.49 1 ± 0.00 0 ± 0.00

Ophiothrix fragilis 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Psammechinus miliaris 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

The rounded abundance values are based on Table 2.

doi:10.1371/journal.pone.0146324.t006

Table 7. Averaged categorised abundance of the 11 high detectable taxa, with 95% confidence interval around the mean, per depth band on plat-
form P4.

Platform P4

Taxa Depth band

0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45

Rhodophyta 0 ± 1.42 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 1 ± 0.00 2 ± 0.00 1 ± 0.00 0 ± 0.00

Porifera 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 1 ± 0.00 1 ± 0.00 1 ± 0.98 1 ± 3.15 0 ± 0.00

Metridium senile 5 ± 1.11 5 ± 0.94 6 ± 1.21 7 ± 1.04 6 ± 0.82 4 ± 1.34 2 ± 1.28 5 ± 0.63 5 ± 1.44

Hexacorallia 5 ± 0.00 5 ± 1.55 2 ± 1.04 1 ± 1.89 1 ± 2.10 3 ± 2.03 5 ± 1.83 6 ± 0.98 4 ± 0.00

Alcyonium digitatum 1 ± 0.00 1 ± 0.00 1 ± 0.00 3 ± 0.00 5 ± 0.00 4 ± 1.55 2 ± 1.96 3 ± 1.65 2 ± 0.48

Cancer pagurus 0 ± 0.00 0 ± 0.00 0 ± 0.47 0 ± 0.22 1 ± 0.58 0 ± 0.48 0 ± 0.66 0 ± 0.67 0 ± 0.39

Necora puber 0 ± 0.24 0 ± 0.24 0 ± 0.24 0 ± 0.24 0 ± 0.00 0 ± 0.24 0 ± 0.32 0 ± 0.00 0 ± 0.00

Mytilus edulis 0 ± 0.36 0 ± 2.16 0 ± 1.71 0 ± 0.00 0 ± 0.00 2 ± 0.00 2 ± 0.00 2 ± 0.00 1 ± 0.00

Asterias rubens 2 ± 0.52 2 ± 0.86 2 ± 0.24 1 ± 0.73 1 ± 0.36 1 ± 0.90 0 ± 0.91 1 ± 0.73 1 ± 0.39

Ophiothrix fragilis 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Psammechinus miliaris 0 ± 0.84 0 ± 0.00 0 ± 1.28 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

The rounded abundance values are based on Table 2.

doi:10.1371/journal.pone.0146324.t007
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Artificial reefs in this area might compensate for the loss of this habitat. In previous studies,
90% of the species present on artificial hard substrata in the southern North Sea were shown to
be absent in the soft bottomed surroundings [74]. The presence of an artificial object will there-
fore have a very strong effect on the local biodiversity, almost doubling it [75]. However, it
remains unclear to what extent the species assemblages present on artificial reefs resemble
those of natural reefs. Published species observations as presented in the current study and
many others, are needed to evaluate the ecological value of current and future artificial reefs.

Trends in community composition
Although similarities in species assemblages are found between offshore platforms, there are
also striking differences. Especially the abundance ofMytilus edulis on P4 differs from the
other far offshore platforms, P3 and P5. With 3 years community age at all depths, P4 is young
compared to the minimum age of 7 and 13 years for P3 and P5, respectively. This suggests that
M. edulis is an early colonizer of offshore platforms, which is confirmed by wind farm colonisa-
tion studies in the southern North Sea whereM. edulis was dominant in the first years after
construction [8,49].M. edulis growth rate is dependent on food availability [76], explaining the
high abundance in the depth range 0–20 m on platforms closer to shore, where food concentra-
tions are higher [77].

Alcyonium digitatum was not observed on P1 and P2, but was observed on the other plat-
forms. Abundance of A. digitatum correlated positively with distance from shore, in line with
the pattern found on ship wrecks in the Belgian part of the North Sea, where A. digitatum was
only found on wrecks far offshore and never close to shore [78]. This may be explained by a
water temperature or food availability gradient, since both decrease with distance from shore
in the southern North Sea [77].

Species with a low detectability score were omitted from the data. Using these adjusted data
in the GAM, the species richness was highest on P1 and decreased with increasing distance
from shore. However, this effect interacted with the community ages, which varied between 3
and 39 years. A similar significant interaction was found in the PERMANOVA results.

Table 8. Averaged categorised abundance of the 11 high detectable taxa, with 95% confidence interval around the mean, per depth band on plat-
form P5.

Platform P5

Taxa Depth band

0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40

Rhodophyta 4 ± 1.90 1 ± 1.44 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Porifera 0 ± 0.00 1 ± 1.57 2 ± 1.92 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Metridium senile 0 ± 0.78 5 ± 0.78 6 ± 0.78 8 ± 0.48 9 ± 0.00 9 ± 0.00 9 ± 0.00 9 ± 0.39

Hexacorallia 9 ± 0.00 8 ± 0.48 8 ± 0.39 7 ± 0.62 4 ± 1.96 2 ± 1.92 0 ± 0.00 4 ± 1.82

Alcyonium digitatum 0 ± 0.00 5 ± 0.00 5 ± 0.39 3 ± 2.74 3 ± 2.40 1 ± 1.57 3 ± 2.11 5 ± 0.00

Cancer pagurus 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.39 0 ± 0.00

Necora puber 0 ±±0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Mytilus edulis 0 ± 0.78 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Asterias rubens 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Ophiothrix fragilis 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

Psammechinus miliaris 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00

The rounded abundance values are based on Table 2.

doi:10.1371/journal.pone.0146324.t008
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Platforms are cleaned regularly between the water surface and approximately 10 m water
depth, depending on the abundance of hard marine growth (e.g. mussels and barnacles). Plat-
forms closer to shore were cleaned more recently than those further offshore. Cleaning effec-
tively resets community succession every few years, keeping it in a continuous young stage,
affecting the species composition. This may explain the significant effect of the age:distance
interaction, obscuring the distance from shore effect communicated by other authors [6,7].
The operator of the platforms informed us that platforms close to shore indeed are cleaned
more often than locations far offshore.

The lower richness in shallow parts, as shown by the GAM, can also be explained by the
impact of higher wave action near the surface, which is known to decrease species richness
[79]. In the deeper parts of the platform the richness was also significantly lower than at inter-
mediate depths, caused by the dominance of a limited amount of taxa. Anemones such as
Metridium senile are known to deter other organisms [80], explaining the lower species rich-
ness around these species. A similar effect was observed on rocky reefs in the Netherlands [60].
Both the wave disturbance and deterring effect ofM. senile are in line with the intermediate

Fig 2. Species richness per platform & depth band. Boxplot showing the number of species per sample (n = 215), per platform with all depths combined
(left image) and per depth-band with all platforms (n = 5) combined.

doi:10.1371/journal.pone.0146324.g002
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disturbance hypothesis, which states that biodiversity is highest at intermediate disturbance
rates and smaller at high and low rates [81]. It is suggested that at low rates of disturbance,
strong competitors exclude competitively inferior species, whereas at high rates of disturbance,
recruitment cannot balance the high rates of mortality, and slow recruiting species disappear
from the community. This effect was most prominent on P5, where the deeper parts of the plat-
form were dominated byMetridium senile and Alcyonium digitatum.

Fig 3. Modelled relation of species richness (S) with depth. Plot of the fitted Generalised Additive Model smoother showing the significant non-linear
effect of depth (p = 0.001) on the species richness (S) on all platforms.

doi:10.1371/journal.pone.0146324.g003

Table 9. PERMANOVA on variables that influence species assemblages significantly.

Source d.f. SS MS F R2 P

Depth 1 11.031 11.0311 113.085 0.28374 0.001

Age 1 2.518 2.5179 25.812 0.06477 0.001

Quality 1 1.080 1.0801 11.073 0.02778 0.001

Age:Distance 1 3.763 3.7629 38.576 0.09679 0.001

Residuals 210 20.485 0.0975 0.52692

Total 214 38.877 1.00000

D.f. = degrees of freedom. SS = sum of squares. MS = mean of squares. Age:Distance tests the effect of the interaction between these two variables. Age

refers to the age of the community.

doi:10.1371/journal.pone.0146324.t009
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Our results are in line with research on offshore platforms in other waters, where depth was
also found to have a significant influence on species composition of the marine fouling [6,7].
However, depth, community age, quality of the footage and the age:distance from shore inter-
action only explained 47% of the variance in the PERMANOVA and 42% of the deviance in
the GAM. The amount of unexplained variation indicates that other environmental variables,
such as salinity, water temperature, water currents, food supply, light penetration, silt content
and the position on the leg (interior/exterior) in relation to the direction of the current may
also play a role [2,82].

Evaluation of ROV footage used for species identification
Data used in this study were collected from images collected for technical inspection. The use
of such images is a time and cost effective method to gain insight in the organisms present on
offshore platforms. It allows for the inventory of large species present on vast amounts of sur-
face area, in all depths, which can be challenging using other methods such as diving surveys
[60]. Many locations can be investigated and if needed, several years are available for time
series analysis [3]. Furthermore, identifications are easily confirmed by peers, increasing the
quality of the data.

However, ROV inspection footage is created to obtain an overview of the technical integrity
of the installation, not for biological study. As such, the quality was often insufficient to identify
taxa to species level. Furthermore, video footage will only show the organisms on top of the
fouling layer, missing species in the deeper layers. Therefore, the number of taxa identified in
this study is an underestimation of the true number of species present. For a thorough overview
of the species present, a combination of methods such as destructive sampling for small organ-
isms and in situ observations for rare, fast moving or inconspicuous organisms should be
applied, as shown on rocky reefs in the southern North Sea [60].

Conclusion
Using ROV footage, a total of 30 taxa were identified in the species assemblages on five offshore
gas platforms in the southern North Sea. Species richness initially increased with depth, but
decreased after 15–20 m. Species richness decreased significantly with increasing distance from
shore; although, this effect may be obscured by the younger community age in<10 m depths
on platforms closer to shore resulting from the regular cleaning of these platforms. Not all vari-
ability was explained by depth and the distance from shore effect, indicating that other envi-
ronmental variables also play a role. Further research with higher quality images, in situ
observations and sampling of the marine fouling is needed to understand what other environ-
mental variables influence the species assemblages on offshore platforms.
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