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Cancers are complex dynamic systems that undergo evolution and selection.
Personalizedmedicine approaches in the clinic increasingly rely on predictions
of tumour response to one ormore therapies; these predictions are complicated
by the inevitable evolution of the tumour. Despite enormous amounts of data
on the mutational status of cancers and numerous therapies developed in
recent decades to target these mutations, many of these treatments fail after
a time due to the development of resistance in the tumour. The emergence
of these resistant phenotypes is not easily predicted from genomic data,
since the relationship between genotypes and phenotypes, termed the
genotype–phenotype (GP) mapping, is neither injective nor functional. We
present a review of models of this mapping within a generalized evolutionary
framework that takes into account the relation between genotype, phenotype,
environment and fitness. Different modelling approaches are described and
compared, and many evolutionary results are shown to be conserved across
studies despite using different underlying model systems. In addition, several
areas for future work that remain understudied are identified, including
plasticity and bet-hedging. The GP-mapping provides a pathway for under-
standing the potential routes of evolution taken by cancers, which will be
necessary knowledge for improving personalized therapies.
1. Introduction
The failure of many treatments for cancers, infections and parasites can be
attributed to the emergence of resistance. In some cases, these therapies are
initially effective but fail later as drug-resistant disease emerges, while in
others, these therapies fail from the onset. Ultimately, these patterns of failure
are driven by Darwinian evolution. The selective pressures imposed by drug
treatment result in the outgrowth of the most adapted subclones, causing the
emergence of drug-resistant disease, and ultimately driving mortality. This pro-
cess of evolution vastly outpaces our capacity to develop novel therapeutic
agents. Indeed, the prevalence of drug-resistant bacteria such as methicillin-
resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae remains high
and threatens to grow [1,2]. At the same time, our discovery of novel antimicro-
bial agents has declined significantly in recent decades [3], with some evidence
of a recent but small uptick [4]. To bring a cancer drug to market can now cost
more than $1 billion [5] but more often than not, when prescribed, these drugs
can be expected to fail owing to drug resistance [6,7].

An alternative therapeutic approach is evolutionary medicine, wherein evol-
utionary theory is exploited to design treatment strategies wherein drugs are
prescribed in combinations, sequences or metronomic/adaptive regimes in
order to abrogate drug resistance. Recently, evolutionary approaches have
been explored in the treatment of cancers [8–11], bacterial infections [12–14],
viral infections [15,16] and malaria [17], with mixed results [18]. Ultimately,
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Box 1. Non-genetic heterogeneity.

Phenotypic heterogeneity can arise through heritable and non-heritable mechanisms. Mechanisms of phenotypic heterogeneity
have been explored extensively in the study of ecology, and have recently been identified as potential drivers of drug resistance.
Following ecological nomenclature, drivers of non-heritable phenotypic heterogeneity can be classified as bet-hedging or
phenotypic plasticity. Bet-hedging describes the phenomenon wherein, for a fixed genotype and environment, multiple pheno-
types can arise within the population stochastically, allowing the population to ‘hedge its bets’ against future environmental
change or to diversify in order to maximize fitness in fluctuating environments (Seger [20] provides justification for this
naming). An important clinical example of bet-hedging is that of persister cells that arise stochastically within isogenic popu-
lations of bacteria such as E. coli [21–23]. These cells, which constitute a small fraction of the population (less than 1% [22]),
have reduced metabolism and shut down non-essential cellular functions. In this dormant state the persister cells are tolerant
to the effects of a number of antimicrobials but can later proliferate to reconstitute a disease population.

Phenotypic plasticity describes the eco-evolutionary phenomenon wherein, for a given genotype, cellular or organismal
phenotype is determined in an environment-dependent manner [24]. This determination might, for example, arise from
developmental process or as a simple reactive change in phenotype when the environment changes. Phenotypic plasticity
can be further classified as reversible or irreversible depending on whether further changes to the environment cause the
phenotype to revert or change again. Phenotypic plasticity has also been observed to play a role in driving drug resistance;
for example, cancer cells are known to upregulate the generation of efflux pumps in response to drug exposure [25].

Bet-hedging and phenotypic plasticity are separate drivers of phenotypic heterogeneity, although the two terms are some-
times used interchangeably, causing confusion. However, these phenomena do not cover the full spectrum of potential
non-genetic drivers of phenotypic heterogeneity. First, bet-hedging and plasticity may co-occur. An example might be a
population wherein phenotypes are determined stochastically (bet-hedging) in response to environmental shock (plasticity).
Second, bet-hedging and phenotypic plasticity do not account for partially heritable phenotypes. A recent study identified
persister-like phenotypes in human cells that were partially heritable, with offspring being more likely (but not certain) to
take the persister phenotype dependent on the inherited cytoplasmic concentration of mitogen and p53 [26]. The develop-
ment of theoretical and experimental models through which to explore partially heritable phenotypic heterogeneity, also
called phenotypic ‘memory’, will be important in predicting evolution both for the treatment of disease and for ecologists
more generally.
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our ability to design effective evolutionarily informed thera-
pies is predicated on predicting evolution [19], to pre-empt
the emergence of drug resistance.

Evolutionary predictions are challenging due to the complex
relationship between mutations and their phenotypic impact,
the genotype–phenotype (GP) mapping. Genetic mutations
can affect many aspects of organismal phenotype, in an environ-
ment-dependent manner, andwith a dependence on the genetic
background in which they occur. Further still, phenotypic
changes can arise without genetic change, for example, through
epigenetic modifications or through non-heritable mechanisms
that generate phenotypic heterogeneity (see box 1, non-genetic
heterogeneity). In the context of predicting the evolution of
disease, deconvoluting the different drivers of phenotypic
heterogeneity is critical, but extremely difficult, as properties
of the GP-mapping can manifest unintuitively in experimental
systems. In response, researchers have opted to study simplified
models of the GP-mapping in order to generate hypotheses
and drive experimental design. Here, we collate models of the
GP-mapping under a common evolutionary framework, outline
how results pertinent to evolutionary predictions are shared
between models, and finally present a roadmap for further
mathematical modelling of the GP-mapping as a tool for
evolutionary medicine.

Mathematical modelling of the GP-mapping represents
a large and growing field and as such a fully exhaustive
review is intractable. We focus here on structural similarities
between the most common models as a means to build intui-
tion for the role of the GP-mapping in evolution, and in
particular, in determining the success of evolutionary predic-
tions. To this end, this review is structured as follows. First,
we introduce the GP-mapping and present an algorithmic
framework through which different models can be compared.
Second, we introduce the earliest theoretical models of the GP-
mapping; the fitness landscape and geometricmodel of Fisher.
Third, we explore the use of secondary structure prediction in
RNA as a model GP-mapping to explore the impact of neutral
mutations on evolution. Fourth, we introduce models of the
GP-mapping in which phenotypic heterogeneity can arise
without corresponding genetic change. Finally, we conclude
by discussing how similarities in the results derived from
the theoretical models can serve as a guide for evolutionary
theorists working to predict evolution in the context of disease
management, as well as highlighting avenues for further
theoretical studies of the GP-mapping. For brevity two impor-
tant topics, fitness landscapes and the role of development, are
discussed only briefly. Fitness landscapes have been reviewed
comprehensively before, most notably by Orr [27] and De
Visser & Krug [28]. Development represents a vast field in
which the GP-mapping plays a critical role and has been
reviewed previously [29–31].
1.1. The genotype–phenotype mapping
To predict how a population adapts to a given environmental
change, it is necessary to understand how genetic alterations
arise, how they manifest themselves as phenotypic change,
and how viable the resulting phenotypes will be in the context
of specific environments. Johannsen [32] was the first to expli-
citly recognize a distinction between the mechanisms of
inheritance, that is the genes, and the physical characteristics,
or phenotype, of an organism. Although a causal link between
heritable ‘factors’ and organismal characteristics had been
established by Mendel [33], Johannsen observed that this
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Figure 1. Cancer and the biological hierarchy. Genetic alterations induce modified intra-cellular signalling and drive the emergence of cancerous cellular phenotypes.
The cells aggregate to form cancerous tissues (tumours) that eventually disseminate through the body. A reductionist approach suggests that this complex system
can be understood by considering the basis (genetic) units. This approach fails owing to feedback mechanisms that bridge downward in the hierarchy. Evolution is
an example of a such a mechanism as selection at the cellular, tissue or organ level determines which altered genotypes survive. Contrasting the reductionist
approach is quantitative holism (qolism). Reproduced with permission from Anderson & Quaranta [38]. (Online version in colour.)
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relationship is not a simple one-to-onemapping. The complex-
ity of this relationship, later named the GP-map [34], was
attributed to complex gene–gene interactions—epistasis [35]
and dominance [33]. The identification of the physical mech-
anisms of inheritance, coupled with the later international
effort to sequence the human genome in full, provided some
insight into how genetic factors influence phenotype
but failed to elucidate much of the process. The mechanisms
of genetic transcription and translation have since been well
categorized, as have, in part, the complex cascades of molecu-
lar interactions that form cell signalling pathways. Indeed,
understanding of these pathways has formed the basis of
the targeted therapy revolution in cancer therapy [36]. Never-
theless, a full mechanistic description of the GP-mapping
remains elusive, owing in part to its highly complex and
interconnected nature.

The GP-mapping is the subject of studies across multiple
disciplines, with much of the work falling into three (not
necessarily disjoint) categories—statistical analysis, mechan-
istic modelling and abstraction. Quantitative genetics and
associated fields attempt to identify those genes associated
with categorical phenotypes or to use statistical techniques
to associate collections of genes, or specific loci of the DNA
known as quantitative trait loci (QTLs), with measurable phe-
notypic variation (i.e. quantitative traits). These correlations
provide insight into the GP-mapping as a ‘black box’ process,
by associating the inputs (genotypes) with the outputs (phe-
notypes) and, from a clinical perspective, prove valuable in
identifying genetic drivers for a number of diseases [37].
However, statistical correlations provide little insight into
the mechanisms through which genetic alterations are
manifested as phenotypic change.

For much of the twentieth century, the biological mechan-
isms of the GP-mapping were probed through reductionist
techniques. Under this approach, biological systems are
organized into a hierarchy, with each layer comprising a
basic biological entity, of which many are taken together to
form a new entity at a higher level (figure 1 shows an example
of this hierarchy in oncology). Thus, one can in principle study
biology at any scale by first understanding the individual
atoms and exploring how they interact to first form biological
molecules such as DNA, then subcellular structures and,
moving up the hierarchy once more, the living cell. Through
this methodology, the GP-mapping is studied by direct
construction from the basic building blocks of biology, the
genes, the DNA or the constituent nucleotides. This approach
has successfully explained the structure of DNA, the nature of
inheritance and mutation and the process of transcription and
translation via RNA which forms the first step in a complex
process from which phenotypes emerge. Where reductionism
can fail is in bridging between levels of the biological hierar-
chy, and in particular, in failing to account for feedback
mechanisms that act across different scales. Implicit in the
assumption of a hierarchy is a directionality in which smaller
components combine and ‘feed-forward’ to build a whole.
With regard to the GP-mapping, we know that gene
expression is regulated through both positive and negative
feedback mechanisms [39,40] by microenvironmental factors
[41] or, in homeostatic systems, through inter-cellular signal-
ling [42,43]. It follows that gene expression, and in turn
cellular phenotype, is modulated by feedback mechanisms
that bridge downwards across levels of the hierarchy.

In response to this failing, systems biology emerged as an
alternative paradigm wherein the focus is shifted from iden-
tifying biological components towards understanding their
complex, potentially nonlinear, interactions. By combining
system-wide quantitative data with experimental and theor-
etical identification of intra-cellular interactions, systems
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biology builds mathematical and computational models that
provide holistic biological predictions [44]. This paradigm
has driven a revolution in modelling ecology and, since the
early 2000s, is gaining traction as a tool to study molecular
biology and biochemistry [45]. A notable success of this para-
digm is the continuing improvement in cardiac modelling
[46,47] and at present the systems approach is used to
model cancer-associated cellular signalling pathways to
identify potential targets for novel therapies [48–50].

Both the reductionist and systems approaches struggle to
account for the overwhelming complexity of biological systems
which cannot be overcome through the collection of ever more
data and proves an intractable problem for explicit compu-
tational simulation. Instead, we must rely on abstraction to
understand the GP-mapping, using tractable models of the
underlying system. For example, the abstraction of nucleotides
to a four-character alphabet (ATGC) reduces the DNA to a
string and permits an algorithmic treatment that forms the
basis of phylogenomics. In systems biology, intra-cellular mol-
ecular interactions are modelled as abstracted networks and
analysed through graph-theoretic techniques [51,52]. An
abstraction-driven approach to understanding GP-mapping
proceeds by studying tractable analogues to biological systems
as a means to gain insight into properties of more complex sys-
tems [53]. Biological systems are distilled to their base
functional components (as opposed to the physical com-
ponents of a reductionist perspective) and studied through
the algorithmic lens. Understanding how these components
interact serves as a conceptual tool in generating biological
hypotheses and in guiding data collection, experimental
design and further mathematical modelling. This paradigm
has a rich history dating back to the work of Sewall Wright
and Ronald Fisher who derived abstract models to explain
aspects of evolution as early as the 1920s [54,55].
2. Evolution and the genotype–phenotype-
mapping through the algorithmic lens

We begin by providing an algorithmic model of evolution
through which models of the GP-mapping can be compared.
Define a set of genotypes G as a set of strings over some
alphabet of ‘alleles’ Σ (i.e. G⊆ Σ*). Note here that the ‘alleles’
in Σ need not correspond to the biological definition of alleles
but rather some basic heritable unit from which genotypes
are built. Such a definition permits epigenetic inheritance.
This abstraction allows for study of evolving systems at
different scales. For example, DNA can be studied from the
perspective of base pairs, codons or (biological) genes. We
could model the genes from the molecular perspective by
taking Σ = {A, T, G, C} and N≈ 3 × 109 or we could take a sim-
pler Mendelian approach by setting Σ = {0, 1} to indicate the
presence or absence of mutations of interest.

In this work, we focus on asexually reproducing cells and
present models aiming to predict or prevent the evolution of
drug resistance. We endow the set of genotypes G with a
probabilistic mutation mapping

m :G� G �! [0, 1] satisfying 8g
X
h[G

m(g, h) ¼ 1 (2:1)

which specifies the probability of a genotype g∈Gmutating to
a genotype h∈G during replication. Here, μ implicitly defines
a mutation rate for each possible mutation. Where the set of
possible genotypes is explicitly known and all mutations are
equally likely, we can specify the full mutation relation by a
single value which we call the mutation rate, often also rep-
resented by the symbol μ. As we have not specified a given
length for the genotype strings, these mutations could be
point mutations, deletions, insertions or larger structural
mutations such as chromosomal duplications. Mutation
rates are often altered by environmental factors such as radi-
ation or the presence of mutagenic chemicals. For simplicity,
we assume that this specific environmental dependency
remains fixed in all modelling and hence need not be
accounted for.

The combination G ¼ (G, m) is a genotype space [56]. Stadler
[56] showed that, regardless of the choice of the mutation
mapping, this definition of genotype space corresponds to a
directed graph in which the vertices represent genotypes
and edges link genotypes to their mutational neighbours.

In contrast with the structured nature of genotype spaces,
it is difficult to give a general definition for a space of pheno-
types, as the definition of phenotype varies among biological
disciplines. We take the phenotype space, P, as the collection of
potential traits of interest and phenotypes defined as the pro-
duct of a number of characters that may be discrete
or continuous.

Biologically, phenotypes are determined not solely from a
genotype but are also modulated by environmental factors
[57]. We represent an environment e = (e1,…, ek) (k [ N) as
a list of values for environmental variables of interest from
domains E1,…, Ek that may be continuous or discrete. As
an example, in studying drug resistance, the ei could be
binary valued to indicate the presence or absence of a drug,
or in a more complicated pharmacological model, be real
values denoting the concentration of each drug. The space
of possible environments is denoted E # E1 � � � � � Ek.

Finally, we define a GP-mapping1 as a relation

RGP # (G� E)� P, (2:2)

which associates a given genotype g to a set of possible
phenotypes Pg # P modulated by an environment e. We
emphasize that the mapping is not a function, since multiple
phenotypes can arise from a given genotype. It should be
noted that this definition of the GP-mapping is a simplifica-
tion of biological reality as there is no dependence on time,
and phenotypes are modelled as being determined instan-
taneously at birth. This assumption removes the process of
biological development from our algorithmic model of evol-
ution. Of course, development is an important area of
active research with a strong dependence on the GP-mapping
[30], but well beyond the scope of this review (see Tomlin &
Axelrod [58] and Oates et al. [59] for reviews of mathematical
modelling of development, and Pigliucci [30] for a discussion
of the GP-mapping in this context).

Evolutionary models require a set of (usually stochastic)
rules governing the processes of death and replication/birth
within a population. These rules are usually determined by
fitness values that encode the survivability or fecundity of an
individual with a specific phenotype in a given environment.
The concept of fitness is an abstraction used to aid in under-
standing the process of adaptation through mutation and
selection; however, there is no singular definition of fitness:
multiple subtly different definitions exist across biological
and mathematical disciplines [27]. Here, we define fitness



Box 2. Population dynamics, population size and mutation rate.

In many models of population dynamics, and in biological reality, the fate of a new genotype (and the associated phenotypes)
within a population is not deterministic. Beneficial mutants can be lost through genetic drift or deleterious mutations can fix
in small populations [60]. Under certain conditions, simplifying assumptions can be made. Specifically, the fate of a new
mutant arising in a population, and the maintenance of genotypic heterogeneity within that population, will be dependent
on the relationship between population size, N, mutation rate, u, and the fitness benefit, s, defined as the value such that if the
resident population has fitness normalized to 1, the mutant has fitness 1 + s. For example, neutral mutations (those which do
not affect fitness) fix with probability (1/N ) [61] in fixed-size populations that evolve according to a Moran process. Beneficial
mutations fix with a higher probability than this and deleterious ones with a lower probability. Provided that cells with geno-
types of interest can be engineered, typical values for N and s can be estimated from cell culture experiments, however,
estimations of the mutation rate parameter are more difficult owing to confounding factors such as the cell death rate [62].

If one assumes that all mutations are either beneficial or deleterious (selection is strong) and that Nu≪ (1/log(Ns/2)),
known as the strong selection weak mutation (SSWM) assumptions, then the population is almost always isogenic. This is
because each new mutant will either fix, replacing the genotype shared by the whole population, or become extinct before
another arises. Deleterious mutations fix with such low probability that this may be assumed never to happen. Thus, the
population remains isogenic with a genotype that is periodically updated by a neutral or fitter mutational neighbour.
Where the SSWM assumptions do not hold, for example, due to high mutation rate, large populations or neutral mutations,
the population can be genotypically heterogeneous. This is because mutations, even when beneficial, are unable to fix or
become extinct before new mutations arise. When considering the evolution of drug resistance, both of these modes of popu-
lation dynamics have some relevance. For example, prior to treatment, the population size of disease cells is likely to be much
larger than during treatment and thus it is more likely that the population is genotypically heterogeneous. This scenario is
common in cancers where mutation rates are very high and the selective advantage of beneficial mutants has been observed
to not be sufficiently strong to induce clonal sweeps and fix in the population [63–67]. In viruses, a similar pattern of large
population sizes and high mutation rates is also observed, contributing to genotypically heterogeneous populations [68].
When drugs are administered, a strong selective pressure is imposed and a large number of cells die. This both lowers
the population size and increases the strength of selection significantly, pushing the population dynamics towards the mono-
morphic SSWM type. For this reason, simulations of monomorphic/SSWM type population dynamics have seen use in
predicting the de novo evolution of resistance during therapy [12]. A more thorough review of the relationship between
the strength of selection, the rate of mutation and the dynamics of adaptation in asexually reproducing populations is
provided by Sniegowski & Gerrish [69].
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via a function f that assigns to each pair of phenotype and
environment a real value

f :P � E �! R, (2:3)

which encapsulates the factors of an individual’s viability,
fecundity and other factors governing reproductive success
into a single value. Where a GP-mapping is specified, we
may extend this definition to genotypes as the expected fitness
of an individual

f(g, e) ¼
X

p[RGP(g,e)

P(pjRGP, g, e)f(p, e): (2:4)

For a fixed environment, this mapping defines a fitness land-
scape. The combination of a genotype space G, phenotype
space P, environment E, GP-mapping R and fitness function
f gives an evolutionary framework E ¼ (G, P, E, R, f) through
which to compare evolutionary models. Simulation within
this framework proceeds according to rules governing the
population dynamics. A number of population dynamics
models exist and which is appropriate depends on the
nature of the underlying biological question (box 2).
3. Mathematical models of evolution and the
genotype–phenotype-mapping

We now present an overview of mathematical models of the
GP-mapping viewed through the algorithmic lens. We begin
by considering theoretical models developed by two of the
earliest researchers to apply mathematics in studying
evolution and population genetics: Ronald Fisher and Sewall
Wright. These early theoretical models, Wright’s fitness land-
scape metaphor and Fisher’s geometric model, ignored the
complex relationship between genotypes and phenotypes
and instead explored evolution either from a purely genomic
perspective, assuming a direct correspondence between geno-
type and fitness, or a purely phenotypic perspective, ignoring
the genetic basis of changes to the phenotype. Despite these
restrictive assumptions, these models yielded a number of rel-
evant results that remain true in more complex models. A
more thorough review of the historical impact of these
models on evolutionary thinking was presented by Orr [70].
3.1. Fisher’s geometric model
The geometric model of Fisher [54] forgoes modelling the
genotype and focuses on evolution at the phenotypic scale.
The phenotype space is defined as a product of a number
of continuous and independent traits,

P ¼ RM for M [ N, (3:1)

where M can be considered a measure of organismal com-
plexity. Genotypes G are taken to be equal to the phenotypes
of P and the GP-mapping is taken to be the identity
RGP(p) ¼ p. This definition differs from our algorithmic defi-
nition of evolution above as genotypes are not discrete.
Mutations are modelled as universally pleiotropic phenotype
changes (a singlemutation can affect all parts of the phenotype).
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Figure 2. A graphical representation of Fisher’s geometric model. The genotype space G and phenotype space P are both RM and the GP-mapping is the identity.
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an equal distance from ΘE (dashed circle). (Online version in colour.)
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Thus, mutations correspond to vectors m [ RN which
change a phenotype p [ P (equivalently a genotype p∈G)
according to

p�!m pþm: (3:2)

For a complete evolutionary model, these mutations must
be assigned a likelihood. Fisher’s work omits any discussion of
what this likelihood should be and instead focuses on the
probability that a mutation of a given magnitude, r = |m|, con-
fers a fitness advantage. The environment in Fisher’s model is
defined as a single point in phenotype space, QE [ P, corre-
sponding to the optimally adapted phenotype. Thus, E ¼ P.
The fitness, f, of an individual with a non-optimal phenotype
p is defined in terms of a function, w, of the Euclidean distance
(z = kp−ΘEk) from the optimal phenotype f :p 7! w(z). The
function w determines how fitness decreases as phenotypes
move away from the global fitness optimum. In Fisher’s
original formulation, w is taken to be a univariate Gaussian
function. A graphical representation of Fisher’s model is
shown in figure 2.

Using this model, Fisher investigated the relationship
between the magnitude of a phenotypic change and the
likelihood of that change conferring a fitness advantage,
determining that the probability that a mutation of magnitude
r = |m| is beneficial is given by 1−Φ(x), where Φ denotes the
cumulative distribution function of a standard Gaussian
distribution and x ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N=2z)

p
is a standardized mutation

size. These results highlight several important features of
adaptation on the phenotypic scale. Firstly, the probability
that a mutation is beneficial approaches 0.5 from below as
the magnitude approaches zero (provided the phenotype is
not the optimal and that all mutations of a given magnitude
are equally likely). From this result, Fisher concluded that
the genetic basis for adaptation is the accumulation of a
large number of very small phenotypic changes. However,
as Kimura [71] demonstrated, while smaller mutations are
more likely to be beneficial, they also confer a smaller fitness
advantage when they are beneficial and thus are more likely
to be stochastically lost through genetic drift (under certain
regimes of population dynamics, box 2). Kimura derived the
distribution of sizes among mutations substituted at each
step of adaptation, concluding that it is mutations which
induce intermediate, and not infinitesimal, changes in
phenotype that are the most likely drivers of adaptation.

Orr [72,73] used Fisher’s model to determine the distri-
bution of mutation sizes that occur successively during
adaptation, as opposed to Kimura’s distributions of size at
individual stages, finding that the distribution is approxi-
mately exponential and that adaptation in Fisher’s model is
characterized by a relatively small number of large-magnitude
mutations and many more small ones. The expected size of a
mutation substituted at each step of an adaptive trajectory
diminished by a constant proportion at each step, forming
an approximately geometric sequence. Remarkably, simu-
lations suggest this result to be robust to assumptions about
the precise shape of the fitness function w [72,73].

Fisher’s model also predicts that the likelihood of a
mutation being beneficial decreases asM increases, suggesting
that adaptation proceeds at a slower rate for more complex
organisms. Orr [74] described this phenomenon as the cost of
complexity and estimated its extent, finding that the rate of
adaptation declines at least as fast as M−1 under Fisher’s
model. This cost was found to be reducedwhen the phenotype
is modular, such that mutations only affect a subset of the
characters comprising the full phenotype.

The geometric model has also been used to study other
aspects of evolution including the evolutionary advantages
of sex [75], development [76], compensatory mutations [77],
mutation–selection–drift balance [78], mutation load [79]
and hybridization [80].

3.2. Fitness landscapes
The fitness (or adaptive) landscape metaphor was first intro-
duced in the 1930s by Wright [55,81] as a model to account
for epistasis wherein the fitness consequence of a mutation is
modulated by the genetic background in which it occurs. For
a static environment, all GP-mappings induce a fitness land-
scape over the genotype space according to equation (2.4)
(box 2). However, we can consider the fitness landscape as
the GP-mapping itself. A representation of this construction,
together with the traditional schematic view of a fitness land-
scape introduced by Wright, is presented in figure 3. Under
this construction, epistatic interactions are mathematically
quantifiable and their effects on landscape topography can
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be measured. Coupled with empirically derived landscapes,
this mathematical formulation provides insight into the
evolutionary implications of the structure of the GP-mapping.

The landscape model is particularly useful in studying the
accessibility, repeatability and predictability of evolution; three
properties that are important in designing evolutionary thera-
pies. Maynard Smith [82] introduced the concept of adaptive
trajectories in discrete sequence spaces under the assumption
that point mutations are sufficiently rare that one can
assume no two occur simultaneously. These trajectories can
be encoded as a sequence of point substitutions that each
increase fitness. When the strong selection weak mutation
criterion for population dynamics is satisfied (box 2), these
trajectories are an accurate description of how evolution
proceeds. A common visualization of a fitness landscape is
to view the x–y plane as a genotype space G with a surface
above that indicates fitness on the z-axis (shown in figure 3).
Evolutionary trajectories are then viewed as ‘uphill’ walks
on this surface . This metaphor has received some criticism
[83] as in reality the genotype space is extremely highly
dimensional, a property noted by Wright himself [55].
3.2.1. Theoretical studies of fitness landscapes
Epistasis is a key determinant of adaptation following environ-
mental change and fitness landscapes offer a natural model in
which to study the effects of epistatic interactions on landscape
topography. The simplest form of epistasis is the pairwise
interaction between two genetic loci, which may take different
forms (figure 4). Of specific interest is sign epistasis, wherein the
fitness effect of a point-wise mutation, a→A, changes sign
dependent on the allele at a second locus (B or b). It has been
shown that sign epistasis can severely restrict the number of
accessible evolutionary trajectories between a low fitness gen-
otype and a higher one [84,85]. Reciprocal sign epistasis, in
which each of a pair of mutations a→A and b→ B are
individually deleterious but offer a fitness advantage together,
can induce ‘fitness valleys’ between two genotypes, ab andAB,
which cannot be crossed in many regimes of population
dynamics. Poelwijk et al. [86] showed that the existence of a
pair ofmutations exhibiting reciprocal sign epistasis is a necess-
ary condition for a landscape to have multiple optima of
fitness. However, this study also demonstrated that there is
no sufficient locally identifiable condition on gene interactions
that guarantees a landscape is multi-peaked.

Epistasis can occur at higher orders than gene pairs, and
in general the epistatic interactions among n genes (nth order
epistasis) can be considered. Characterizing higher-order
epistasis becomes increasingly difficult as for L loci there

are
L
k

� �
subsets of size k that may interact. Weinreich et al.

[87] introduced a mathematical formulation for higher-
order epistasis. By analysing empirically derived landscapes
using this technique, Weinreich identified higher-order epis-
tasis in a number of empirically derived fitness landscapes
for bacterial species. Taken together, these results indicate
that epistatic interactions serve to restrict the accessible evol-
utionary trajectories in a fitness landscape. This restriction
can render evolution (partially) predictable, potentially per-
mitting the design of evolutionarily informed drug
treatments that pre-empt, avoid, or reverse the emergence
of drug resistance [13,14].

3.2.2. Empirical fitness landscapes
During the past 20 years, novel experimental techniques have
permitted empirical measurements of the GP-mapping [28].
Landscapes are measured by engineering strains of an organ-
ism with each possible combination of alleles at some genetic
loci of interest. For example, in studying antibiotic resistance
in Gram-negative bacteria, these loci may correspond to
mutations in the genes coding for beta-lactamase. For L loci
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of interest, a total of 2L strains must be engineered and then
assayed in a drug-treated environment to determine resist-
ance as a measure of fitness. This fitness measure is
commonly determined as the minimum inhibitory concen-
tration (MIC) of drug, or as the average growth rate in
clinically relevant drug concentrations, although there is
debate regarding what fitness metrics should be used to
make effective evolutionary predictions.

De Visser & Krug [28] noted that by 2014 there had been
fewer than 20 empirical studies to derive fitness landscapes
and that of these, the maximum number of loci considered
was N= 8. Drug-induced fitness landscapes have been derived
for Escherichia coli [12,13,88–91], Saccharomyces cerevisiae [92],
Plasmodium falciparum [93–95] and type 1 human immunodefi-
ciency virus [96]. A meta-analysis shows that, on average,
these landscapes show a substantial level of ruggedness which
is suggestive of substantial epistatic, but not random, gene inter-
actions [97]. For example, of the 15 drug landscapes derived by
Mira et al. [13] all but one have multiple local optima of fitness,
indicating that reciprocal sign epistasis is present between differ-
ent loci of the TEM gene. This suggests that evolution is likely
not always repeatable, but may be partially predictable, as often
only a small number of evolutionary trajectories are accessible.
Indeed, Weinreich et al. [88] derived an empirical landscape
for E. coli exploring combinations of five mutations in the TEM
gene under the antibiotic cefotaxime by using the MIC required
to arrest growth as a proxy for fitness. Corroborating the theor-
etical result that sign epistasis restricts evolutionary trajectories,
Weinreich finds that only 18 of 120 mutational trajectories from
g= 00000 to g= 11111 are accessible.

Rather than focus on the full mapping from genotype to
fitness, some studies have instead sought to derive empirical
landscapes from a small part of the GP-mapping. For
example, Aguilar-Rodríguez et al. [98] measured the binding
affinity of a transcription factor to all possible short DNA
sequences, generating over 1000 empirical landscapes exhibit-
ing an intermediate degree of ruggedness and epistasis. It is
not clear how these landscapes correspond to the fitness
landscapes that arise at different biological scales, such as
the drug-resistance landscapes described above.

De Visser & Krug [28] (also Orr [70]) demonstrated that
accessible evolutionary trajectories in empirical landscapes
are often short. This result is in contrast to the theoretical
result showing that evolutionary trajectories in fitness land-
scapes can have length exponential in the number of loci
[99]. This finding suggests that the GP-mapping induces a
specific structure of fitness landscapes in which high fitness
is accessible through relatively few mutations. Empirical
datasets also indicate that beneficial mutations induce dimin-
ishing fitness benefit as the fitness of the genetic background
increases [89,91,100]. Taken together, these fitness landscape
findings corroborate the theoretical predictions of Fisher’s
model [72,73], where the initial mutations in an evolutionary
trajectory are, on average, expected to induce the largest
increases in fitness. This result was further corroborated by
in vitro experimental evolution of two bacteriophage viruses
under the selective pressure of inhibitory temperatures
[101]. From the perspective of early-stage cancer growth,
these results may explain the so-called big bang growth
dynamics, wherein genetically distinct subpopulations (sub-
clones) grow together from the early stages [66]. These
distinct subclones may genetically diverge later than the
appearance of the tumourigenic phenotype, and thus differ
by later-arising mutations conferring only small, or neutral,
fitness effects that are insufficient for fixation of a single gen-
etic clone. This pattern of diminishing fitness increases also
favours the emergence of drug resistance, by allowing the
rapid evolutionary escape of a pathogen from the toxic effects
of drug therapy through only a small number of mutations.

3.2.3. Limitations of fitness landscape models
Combinatorically complete empirical landscape studies
require 2L strains, and therefore only a small portion of the
genotype space can be probed. This small subspace may
miss important topographical features. For example, while
one genotype may be separated from another by a fitness
valley in the measured landscape, there may exist a trajectory
of unmeasured mutations that connect the two. To fully
understand landscape topography, we must improve data
collection and better predict the extent of epistasis. This
approach has been partially taken by Hinkley et al. [102]
who used generalized kernel ridge regression (GRR) to esti-
mate fitness landscapes from an incomplete dataset of
fitnesses for different genetic strains. This work derives an
approximation to the fitness landscapes of HIV-1 under 15
different drugs, for a genotype space totalling 200 genetic
loci, using only 70 081 isolates. This landscape was later ana-
lysed by Kouyos et al. [103] who identified a high degree of
ruggedness as well as large networks of genotypes (neutral
spaces) over which fitness varies very little. Despite the suc-
cessful empirical measurement of fitness landscapes for a
number of transmissible diseases, no drug fitness landscape
has been derived for mammalian or cancer cells.

3.3. Structure prediction models
Understanding how epistasis in fitness landscapes arises is
not possible without consideration of the mechanisms
through which phenotypes emerge from genotypes. Struc-
ture prediction models, wherein a prediction is made for
the structure formed when a single-stranded sequence of
nucleotides (or amino acids) ‘folds’ onto itself, have seen
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extensive study as directly computable mechanistic model
GP-mappings [104].
32
3.3.1. The RNA secondary structure model
The most common structure prediction model is the prediction
of folded RNA secondary structures. This model is appealing
for a number of reasons. Firstly, folded RNA constitutes an
important part of the full mapping from genotype to pheno-
type. Secondly, RNA has been suggested as the first
error-prone, self-replicating (i.e. evolving) molecule, and thus
plays an important role in theories of abiogenesis [105]. Fur-
thermore, RNA models have been used as a tractable, abstract
model of evolution [106,107]. We present the pertinent results
from abstract modelling of RNA folding as a GP-mapping. In
the context of our evolutionary framework, the genotypes for
the RNA secondary structure model are strings representing a
single linear strand of RNA. Thus, the genotypes are given by
G = {A,U,G,C}*. Themost common choice ofmutation relation
is to only permit point mutations—a change of one nucleobase
to any of the other three with equal likelihood, although in
reality some substitutions are more likely than others [108].

The bases of anRNAmoleculepair to form certainhydrogen
bonds (A–U, G–C and less commonly, G–U) and thus an RNA
strand will ‘fold’ onto itself to form a complex structure [109].
This folding can be conceptualized as having two stages. The
base pairs first bond to formaplanar shape knownas a secondary
structure and then distant parts of this structure come together to
form a three-dimensional tertiary structure. It is this three-
dimensional structure that determines the biological properties
of the folded RNA; however, secondary structures are more
easily computed and, given knowledge of the secondary struc-
ture, many of the biological properties of the full tertiary
structure canbeapproximated. It is for this reason that secondary
structures are taken as phenotypes in the RNAmodel.

An RNA secondary structure is defined as a list of pairs,
p ¼ {(i1, j1), . . . , (im, jm)}, (m [ N) of positions in the RNA
strand g, each with i < j and satisfying that for any two
(i, j ), (k, l )∈ p

1. i = k if and only if j = l (a given nucleotide can appear in at
most one base pair)

2. k , j ) i , k , l , j or k < l < i < j.
This second condition prevents the existence of pseudo-
knots, a structural feature of folded RNA that makes
prediction considerably more difficult. In an evolutionary
system, the phenotype space P is taken as the space of all
such secondary structures. An example of this folding is
shown in figure 5a.

RNA secondary structures can be represented in a
number of ways including base pair lists as above, outer-
planar graphs, tree structures, or in ‘dot-parenthesis’ notation
as strings over the alphabet {(,.,)} where the symbols ‘(’, ‘.’
and ‘)’ represent base-pair openings, unpaired bases and
base pair closings, respectively [111,112]. RNA secondary
structures are topologically defined and do not depend on
the specific underlying nucleotides of the RNA strand.
Thus, different RNA strands can fold to form the same sec-
ondary structure (figure 5b). RNA secondary structures can
be uniquely decomposed into combinations of stacks, which
are double-helical runs of base pairs, and loops, which are
sequences of unpaired nucleotides occurring between
stacks. Secondary structures can be assigned a free energy
value by considering the thermodynamic properties of the
base pairs—loops of unpaired bases increase free energy
while stacks lower it. Those secondary structures with
lower free energy are most stable and thus the most likely
to be formed when the RNA strand folds.

The simplest instance of a GP-mapping, RGP, using the
RNA folding model is to assign to each RNA strand g∈G
the minimum free energy (MFE) secondary structure p [ P.
As the formation of a stack necessarily creates a loop, the
energy trade-off between these two features induces a
rugged energy landscape for secondary structure folds. Due
to this rugged energy landscape, determining the MFE sec-
ondary structure, and thus mapping genotypes to
phenotypes, is a non-trivial task. Indeed, it is not sufficient
to simply maximize the number of base-pairings in the sec-
ondary structure (an example is provided by Wuchty et al.
[113]). The free energy of a secondary structure is determined
additively from the contributions of the loops within the
structure and hence the MFE secondary structure can be
determined through a dynamic programming algorithm
[114,115]. This algorithm provides a tractable means to map
genotypes to phenotypes within the RNA model and permits
a statistical analysis of their relationship. Note that there exist
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other methods to predict folded RNA secondary structure
that could also serve as a model GP-mapping [112]; however,
a comprehensive overview is beyond the scope of this review.

The common approach to simulating evolution within the
RNA model is to define a fitness function, f, on a secondary
structure p, as determined by its distance from a given
target structure that represents the environment (e = p*),

f(p, e) ¼ w(d(p, p�)): (3:3)

Here, d is a metric determining the similarity between two sec-
ondary structures, for example, the edit distance between the
structures represented in tree form [109] or the Hamming dis-
tance between the structures represented in dot–parenthesis
notation [111]. The function w is a monotonic transformation
of this value. As RNA structures are often highly conserved
between species, it has been suggested that slight deviations
from the optimal structure can induce large changes in fitness.
For this reason, a hyperbolic function is often chosen for w
[116–118].

A schematic of the RNA secondary structure as inter-
preted as an evolutionary model is shown in figure 5. Here,
we present some of the important results of the RNA
model and interpret them in the context of drug resistance.
A more comprehensive review of in silico studies of RNA
folding is provided by Cowperthwaite & Meyers [104].
3.3.2. Neutrality, robustness and evolvability
Perhaps the most fundamental finding of the RNA model is
that the mapping from genotypes to phenotypes is extremely
degenerate [119,120] with large neutral subspaces in the geno-
type space wherein every genotype corresponds to the same
phenotype. The conclusion to be drawn from this finding is
that a high degree of genetic heterogeneity need not necessarily
correspond to the same degree of variation in phenotypes. This
phenomenon is well understood in the study of cancer, where
many mutations are observed to be neutral passengers [62].

Where the GP-mapping is highly degenerate, a number of
questions arise regarding the likelihood and accessibility
of different phenotypes. Exhaustive analysis of the space of
short RNA sequences and their MFE secondary structures
indicates that not all secondary structures are equally likely
to be formed. Indeed, the majority of RNA strands fold into
one of a small number of frequently occurring structures.
For example, if a structure is defined as frequentwhen it corre-
sponds to more sequences than the average structure, then for
length 30 sequences comprising only G and C, 10.4% of MFE
secondary structures are frequent but over 93% of sequences
fold into them [121]. This degeneracy in the GP-mapping
has profound implications for how evolution proceeds. In par-
ticular, (mutational) robustness and evolvability, are heavily
dependent on this degeneracy. Robustness refers to the
capacity of an organismal phenotype to remain unchanged
when genetic mutation occurs and evolvability refers to the
capacity of a population to generate phenotypic variability
through genetic mutation. These two properties of the GP-
mapping are at first glance inversely related, yet both are
critical for the survival of a species. Consider an isogenic
population with population genotype g of length L corre-
sponding to a given MFE secondary structure p. There are 3L
possible single-loci mutants of g. If R of these mutants are neu-
tral (having MFE secondary structure p) and S are not, then
R + S = 3L. Wagner [122] refers to R as the genotype robustness
of g and S as the genotype evolvability. Clearly, these values
are inversely related and there is an apparent trade-off; high
robustness (large R) necessarily reduces the number of
mutations, S, that induce phenotype change.

Neutral spaces in the genotype space permit a population
of phenotypically identical individuals to overcome the
robustness–evolvability trade-off through the generation of
genetic heterogeneity. To see how this occurs we must con-
sider how evolution occurs on a neutral subspace of G. If the
strong selection weak mutation criterion is satisfied (box 2),
then the population is necessarily isogenic and evolution pro-
ceeds as a randomwalk through the neutral space. In this case,
the robustness–evolvability trade-off cannot be overcome.
If instead, the population dynamics permit genetic heterogen-
eity, then the existence of neutral spaces increases both
mutational robustness and evolvability. Consider a collection
of genotypes G0 , G, wherein each genotype corresponds to
the same MFE secondary structure, p, and any pair of geno-
types is connected by a sequence of nucleotide substitutions
that do not alter p. G0 is then a contiguous neutral subspace
of G or a neutral network. Suppose that the phenotype p is
optimal such that selection acts to preserve it (i.e. e = p = p*).
From an initially isogenic population, say with genotype g,
the accumulation of genetic mutations will cause the geno-
types within the population to diversify and to resemble a
‘cloud’ in G0 known as a quasi-species [123–125]. When non-
neutral mutations occur, the resulting individuals will be
less fit than those of phenotype p and will be removed from
the population by natural selection. Van Nimwegen et al.
[126] demonstrated through graph-theoretic techniques and
simulation that through this process the average robustness
of an individual within the population, as measured by the
expected number of neutral mutation neighbours (�R),
increases as the population evolves. This is because the
quasi-species does not spread randomly through the neutral
network but instead becomes centred where there is a high
density of neutral mutations. In short, robustness evolves.

A genotypically heterogeneous population will still contain
individuals with genotypes that have low mutational robust-
ness. These individuals lie at the boundary of the neutral
space for p and the neutral space for different phenotypes.
Theywill have higher sequence evolvability than other individ-
uals and allow the population to generate phenotypic variation
despite the majority of individuals exhibiting high robustness.
Exhaustive computational analysis suggests that the neutral
networks for frequent secondary structures can span the
whole genotype space, permitting themutation of every nucleo-
tide (in some order) while maintaining phenotype [106,109].
Mathematical analysis from the theory of percolation can pro-
vide statistical constraints for when a neutral network will
span the genotype space in this way [127]. These large neutral
networks can border neutral networks for a large number of
other phenotypes and thus, once the quasi-species spreads to
contain genotypes from the whole neutral space for p, increase
evolvability. It follows that neutral spaces for a given pheno-
type can increase both robustness and evolvability. This
resolution of the apparent trade-off between robustness and
evolvability was presented by Wagner [122].

The shape of neutral spaces also can also determine the time
until a given phenotype arises in a population. Schaper & Louis
[128] demonstrated that phenotypes with high frequency in
the genotype space can arise and fix in a population even
where rarer, higher fitness phenotypes are accessible. This
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phenomenon, which they term ‘arrival of the frequent’,
suggests that the dominant phenotypes may arise as a result
of the structure of the GP-mapping, even before the action of
natural selection. This hypothesis is supported by the work of
Dingle et al. [129] who showed that uniformly sampling from
the genotype space of length 126 RNAs yields phenotypes
with distributions of properties such as number of stems or
mutational robustness closely matching those observed in a
database of natural non-coding RNA.

Wagner [130] noted that results such as these are not solely
limited to RNA secondary structures, but could apply in any
instance where evolution occurs on genotypes drawn from a
discrete sequence space. Comparing this perspective with our
generalized evolutionary framework wherein the genotypes
of G are necessarily discrete, we see that similar methods
could be applied to any model GP-mappings. Indeed, recent
studies have presented other biologically inspiredGP-mapping
models in which redundancy, phenotype bias and a correlation
between robustness and evolvability all hold [131–133]. An
empirically measured GP-mapping derived by measuring
transcription factor binding site affinity also exhibits these
properties [134,135], suggesting they may be a common feature
of GP-mappings and that structure prediction models could
serve as a useful tool for understanding evolution in this
system. Ultimately, the reasons for choosing the RNA second-
ary structure model are purely pragmatic, to balance
biological complexity with computational tractability.

3.3.3. Evolutionary simulations with the RNA model
Consider now evolution towards some target optimal struc-
ture p* from another phenotype p. A number of in silico
studies have used the RNA secondary structure model,
coupled with the weak selection/strong mutation (box 2)
population dynamics, to explore the effects of neutral net-
works on evolutionary dynamics [109,116,117,136]. The key
finding of these studies is that the evolutionary dynamics
follow a pattern of punctuated equilibria; long periods of
phenotypic stability followed by rapid and large phenotypic
change. This pattern occurs as neutral mutations accumulate
and the quasi-species spreads to cover the neutral network.
For some time, this spreading will only encounter genotypes
corresponding to p or deleterious mutants of these geno-
types. Thus, the phenotype will remain unchanged while
genotypic heterogeneity increases. Eventually (if one
exists), a fitter phenotype p0 bordering the neutral network
for p will be found and a selective sweep will occur. The
fitter p0 will come to dominate the population and genetic
heterogeneity will decrease. The process then repeats until
a local fitness optima p is found. The pattern of punctuated
equilibria is common over evolutionary timescales [137]
and has also been invoked to explain the dynamics of
cancer evolution [138].

3.3.4. Phenotype switching in RNA models
The structure of folded RNA strands are only metastable. An
RNA strand will spontaneously unfold and refold into any of
a number of low-free-energy secondary structures (figure 6).
The time spent in a secondary structure, pi, with free energy,
Ei, satisfies,

time in secondary structure pi / e(�Ei=kBT)P
j e

(�Ej=kBT)
, (3:4)
where kB≈ 1.4 × 10−23 JK−1 is the Boltzmann constant, T is the
temperature in kelvin and the sum is over all other secondary
structures. Algorithms that calculate all secondary structures
within some temperature range of the MFE structure have
been derived [139]. Thus, it is possible to approximate the sto-
chastic switching between a number of low energy secondary
structures computationally. This stochastic switching, in the
context of evolutionary modelling, is precisely phenotype
switching or ecological bet-hedging [20,140], which we inter-
pret as RGP taking a non-functional form. It follows that the
RNA secondary structure model has potential as a tool for
studying the evolution of bet-hedging by considering a popu-
lation of individuals wherein each has a secondary structure
that can spontaneously switch. Furthermore, as the switching
probabilities are dependent on the temperature T, this bet-hed-
ging is environmentally modulated. This model was studied
by Ancel & Fontana [116] who considered the effects of pheno-
typic switching on robustness, evolvability and modularity.
They found that, under the selective pressure to evolve
towards a target structure, bet-hedging incurs a fitness cost.
The evolutionary consequences of stochastic switching in fluc-
tuating environments, where bet-hedging has been
demonstrated to offer a fitness advantage [141,142], have not
been studied in the RNA model.

Many algorithms to determine MFE secondary structure
ignoremany of the physical and temporal dynamics of folding
RNA. In reality, some parts of the structure fold into place
before others which can cause an RNA strand to reliably
fold into a secondary structure that is not the MFE [111]. The
partially folded RNA strand can be considered to exist on a
rugged energy landscape and to move ‘down-hill’ to more
stable structures. This energy landscape is an analogue to
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the epigenetic landscape introduced by Waddington [143] as a
metaphor to describe the role of development pathways
in the canalisation (robustness to genetic or environmental
variability) of phenotype. InWaddington’s work, the develop-
mental pathways are viewed as inducing a landscape,
and development as a ball ‘rolling’ down this landscape.
Highly stable phenotypes occur due to high ‘ridges’ in
the landscape that require large perturbations to knock the
‘ball’ over. The physical energy landscape of the kinetic fold-
ing model is in direct correspondence with the metaphorical
model of Waddington, suggesting that the RNA model is an
ideal candidate for studying the interplay between develop-
ment and evolution. To our knowledge, few studies have
taken this perspective, perhaps because the RNA model
misses a key aspect of evolutionary developmental biology:
that the developmental pathways (i.e. the shape of the
landscape) can also evolve, whereas in the RNA model they
are fixed by the laws of physics.
ce
16:20190332
3.4. Network models
A key observation from quantitative genetics is that not all
genes are equal in their potential to alter phenotype.
Mutations occur with (approximately) equal probability
throughout the genome, and yet the genetic drivers of pheno-
typic differences between, or within, species have been
observed to accumulate in so-called hot spot areas of the
genome [144]. This non-uniform distribution of non-neutral
genetic variation can be attributed to the differing regulatory
actions of some genes on others, which in turn drives epista-
sis and pleiotropy. This phenomenon, wherein genes regulate
one another such that mutations at different genomic sites
induce substantially different phenotypic effects (with respect
to fitness), is poorly accounted for in the fitness landscape or
secondary structure model.

A second biological phenomenon that is absent from these
models stems from developmental biology. Consider the
following: a critical process in embryonic development is the
folding of a sheet of early cells to form a precursor to a central
nervous system. A cluster of cells called the Spemann organizer
has been identified as responsible for this process both inmam-
mals and some invertebrates, for example tunicates. Those
genes expressed within the mammalian Spemann organizer
during development are present in the tunicate genome.
What is remarkable is that these genes within the tunicate
genome play no role in the development of the Spemann orga-
nizer [145,146] (although they are implicated in other aspects of
development). From the perspective of our evolutionary
model, there exist two species in which, in a restricted sense,
the genotypes and phenotype are equal (or at least, similar),
but the GP-mapping itself differs. Even if the genotype and
phenotype are identical for two species, a different mapping
means that the same mutation to g may manifest itself in dis-
tinct phenotypic differences—an important consideration if
we are to predict evolution. This scenario of differing GP-map-
pings cannot be captured by the secondary structure model,
since it is the laws of physics that determine the folded structure.
Of course, in all biology it is physical laws that determine the
GP-mapping, but where these physical interactions are intracta-
bly complex, we can consider different GP-mappings as an
abstraction that accounts for unknown or unmeasurable differ-
ences between species. It is for this reason that network models
encoding gene–gene or protein–protein interactions have arisen
as a means to study GP-mappings in both evolutionary and
developmental biology.
3.4.1. Gene regulatory models
Thegeneregulatorynetwork (GRN)modelassumestheexistence
of Lmutually regulatory genes and defines initial conditions for
the activation/expression of these genes by

S(0) ¼ (S1(0), . . . SL(0)) [ {�1, 1}L: (3:5)

The cross- and auto-regulatory interactions of these genes are
defined by a network W = [wij]L×L where,

wij ¼ 1 if gene i upregulates gene j, (3:6)

wij ¼ �1 if gene i downregulates gene j (3:7)

and

wij ¼ 0 if there is no regulatory effect of gene i on j: (3:8)

The expression of the L genes at each time t is defined by
values

S(t) ¼ (S1(t), . . . SL(t)) [ {�1, 1}L, (3:9)

and subject to synchronous updates over a time step τ accord-
ing to

Si(tþ t) ¼ s
XL
j¼1

wijS j(t)

2
4

3
5: (3:10)

In the simplest, and most common, version of the GRN
model, σ is the sign function and the phenotypes are taken
as stable expression profiles,

p ¼ limt!1S(t): (3:11)

When S(t) does not converge in a finite number of update steps,
thephenotype is assumed tobenon-viable (having fitness equal
to zero).2 The phenotype space in the GRNmodel is thus given
by P ¼ {�1, 1}L, although more complex GRN models permit
the genes to take real values and the function σ to take alterna-
tive forms. The convergence to the phenotype in equation (3.11)
is assumed to occur instantaneously so that modelling can be
simplified to not track different timescales (e.g. intra-cellular
versuspopulation-scale).A schematic of theGRNGP-mapping,
along with example updates for the gene expression values as
determined byW, is shown in figure 7.

GRNs have been used as a model for development with a
focus on how changes to the underlying network, W, affect
evolutionary phenomena such as evolvability or robustness.
From the perspective of our generalized evolutionary systems,
the genotypes,G, specify the network and not simply the L genes
whose expression is being modelled. Thus G ¼ {�1, 0, 1}L2 and
the mutation relation μ corresponds to changing an entry
within the matrix W specifying the regulatory action of one
gene on another. The environment, e, is determined by the
specifics of different studies, but a common approach is to
define a target phenotype, p*, that is globally optimal and
measure the fitness as a function of the distance from this glob-
ally optimal phenotype (figure 8). For example, Wagner [148]
used a Gaussian fitness function of the Hamming distance
between the two phenotypes

f(p, e) ¼ exp �
1
2
� 1
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0
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1
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where s > 0 denotes the strength of selection. The initial con-
ditions for gene expression differ between studies and can be
genetically, environmentally, or arbitrarily defined depending
on the purpose of the study.

Studies have explored how gene networks change through
mutations that duplicate genes, delete genes or alter regulatory
interactions [148]. Wagner [149] demonstrated that for GRNs
evolving under stabilizing selection, evolution tended towards
genotypeswith few phenotypically differentmutational neigh-
bours, highlighting again that robustness to mutation is an
evolvable property. Ciliberti et al. [150] extended this work
by introducing a geometric description of the ‘meta-network’
of neutral spaces and found that mutational robustness and
evolvability are negatively correlated for genotypes, but that
for phenotypes with a fixed measure of robustness, the shape
of the corresponding neutral space in G can increase evolvabil-
ity. Payne et al. [151] studied GRNs using a random Boolean
circuit model, also finding that robustness can evolve. These
results mirror those arising in the RNA folding model.
Crombach & Hogeweg [152] simulated the evolution of
GRNs in fluctuating environments by periodically switching
the environment between two target phenotypes, p1 and p2.
This work found that evolution converged to genotypes on
the ‘boundary’ between two neutral spaces inG corresponding
to the two phenotypes, a result which was interpreted as the
evolution of evolvability. More recently, studies have used
the GRN model to explain the apparent paradox of the evol-
ution of evolvability by drawing parallels with learning
theory [153,154], highlighting the correspondence between
the generalizability of a learning algorithm and the capacity
for organisms to develop phenotypes well adapted to
previously unseen environments.

As a conceptual tool to explain non-genetic heterogeneity
of phenotypes, Huang [155] considered the stable expression
profiles (i.e. phenotypes) induced by GRNs as attractors in a
high-dimensional space [156,157]. In this model, gene
expression profiles are assigned a ‘potential’ corresponding
to the stability of the expression profile to stochastic molecular
interactions. This assignment creates an epigenetic landscape (in
the sense of Waddington [143]—arising not from single genes
but the interaction of many). The local minima of potential in
this landscape correspond to stable expression profiles (or
equivalently phenotypes) and those gene expression profiles
with higher potential will move down-hill through regulatory
feedback mechanisms until a stable expression profile is
found. Huang argues that non-genetic heterogeneity can
then be explained by the existence of multiple accessible
stable expression profiles, and that phenotypic switching is
due to stochastic fluctuations causing jumps between stable
states. These fluctuations can be either intra-cellular, for
example, due to intrinsic thermal fluctuations of molecules,
or extra-cellular and environmentally driven. Thus, Huang’s
model of phenotypic heterogeneity can account for both bet-
hedging and phenotypic plasticity, but no distinction is
made between these two phenomena. Experimental evidence
for this attractor states model was found by temporally moni-
toring the expression of over 2700 genes simultaneously
during neutrophil differentiation following perturbation [158].

3.4.2. Phenotypic plasticity and the neural network model
Gerlee & Anderson [159] introduced an alternative network
model for the GP-mapping in order to study the effects of
phenotypic plasticity and spatial constraints in growing
tumours [160,161]. In this model, genotypes are taken to
define the internal wiring of a neural network that maps r
real-valued environmental inputs (E ¼ Rr) to s phenotypic
traits (P ¼ [0, 1]s). The original formulation of this model
was a feed-forward neural network, wherein the nodes are
organized into layers and the internal wiring determined
by g [ G only permits a node to influence those in the next
layer (blue arrows, figure 9a). The phenotype is determined
by setting the input nodes equal to some environmental
state and evaluating the internal nodes in order of layer
according to

Vj ¼ T
X
i

wijVi

 !
, (3:13)

where T :R ! [0, 1] is a thresholding function. In their work,
Gerlee & Anderson [159] take TðxÞ ¼ ð 1

1þe�2xÞ.
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Gerlee & Anderson [159] embedded this model into a
hybrid cellular automaton [162] to demonstrate the evolution
of glycolytic or acid-resistant phenotypes in cancer in
response to differing local concentrations of acid, glucose
and oxygen, as well as spatial constraints. Harsh environ-
ments, for example, dense extra-cellular matrix (ECM) or
low oxygen concentrations, drove the evolution of a glyco-
lytic phenotype. This study also demonstrated that the
network can induce different tumour morphologies, for
example, a ‘fingered’ morphology evolved in low oxygen
environments and a more compact morphology in environ-
ments with dense ECM. Gerlee & Anderson [163] studied
this phenomenon in a more general framework to derive an
approximate relationship between the parameters governing
the dispersal of nutrients and the morphology of a growing
colony. These studies clearly demonstrate that the impact of
the GP-mapping stretches beyond the cellular phenotype
and shapes the aggregate behaviour of a population. This
meta-phenotypic behaviour can be much more complicated
than simple morphology and could, for example, encapsulate
developmental processes or self-organizing behaviour. It is
from this perspective that the vital role of the GP-mapping
in reconciling the modern evolutionary synthesis with devel-
opmental biology is most clear [30]. In a later study, Gerlee &
Anderson [161] considered how the genetic and phenotypic
heterogeneity of a population changed over the course of
evolution, corroborating results derived from the RNA sec-
ondary structure model that suggest a high degree of
degeneracy in the GP-mapping.

More recently, an extension of the neural network model
to include recurrent networkswas used to compare the efficacy
of theoretical treatment strategies targeting single proteins,
whole pathways or organismal phenotype [164]. In this
model, the genotypes are unrestrictedwith respect to the influ-
ence one nodemay have on another. The GP-mapping,RGP, is
then determined by solving a dynamical system defined by

dVj

dt
¼ T

X
i

wijVi(t)

 !
� lVj(t), (3:14)

where λ is a decay term for the artificial ‘proteins’ inside the
model. Under this more complex model, the phenotype need
not be stable but could exhibit oscillatory or even chaotic behav-
iour. Because the evaluation of a recurrent neural network is
dependent on the initial values for all of the nodes, Gerlee
et al. required that the initial values of non-environmentally
determined nodes are zero. However, an alternative approach
would be to permit nodes to retain their values (subject to
decay) throughout the cell-cycle. This alternative modelling
assumption could permit the study of epigenetic cell memory
which has been demonstrated to confer an evolutionary
advantage [165,166], and which has recently been observed in
cancer [26].

At present, studies of the neural network model have
been restricted to simulations of cancer progression or
colony growth. An important parallel between the neural net-
work model and previous biological modelling becomes clear
when the GP-mapping is considered from our more general
perspective. In 1985, Via & Lande [167] introduced the con-
cept of the reaction norm—a genotype-dependent mapping
from a single environmental parameter to a phenotypic
value as a simple model of phenotypic plasticity (figure 9b).
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The work of Gerlee et al. [159] is a natural extension of this
concept to higher-dimensional functions that can approxi-
mate any biologically occurring reaction norms (figure 9c),
since recurrent neural networks can closely approximate
any function on bounded input space. Furthermore, as
neural networks can be trained without knowledge of
the underlying mechanism and from limited datasets, the
neural network model has the potential to predict non-genetic
adaptation to previously unseen environments, provided a
sufficiently large dataset can be derived.
3.4.3. Stochastic network models and intra-cellular dynamics
A number of models have been developed which encode
stochasticity explicitly into the GP-mapping. Charlebois et al.
[168] introduced a model of phenotype switching derived
from the stochastic relaxation from high to low gene
expression and explored the relationship between relaxation
time and the likelihood of resistance-conferring mutations
arising before extinction. In a further study, Charlebois et al.
[169] introduced a feed-forward transcriptional regulatory
network model to demonstrate that the specific network
architecture can extend the time that drug-insensitive cells
maintain their phenotype, and thus the time window in
which resistance-conferring mutations can arise.

In our own previous work, we introduced a model
GP-mapping wherein the phenotype is stochastically deter-
mined by the interactions of genotype-dependent intracellular
molecules [170] (figure 10). In this model, genotypes are
represented by the initial abundance of two molecules, x
and y (i.e. G = {0 ,…, gmax}

2), deterministically produced at
birth. Mutations act to alter these initial values. We considered
two possible phenotypes, P ¼ {A, B}, arising from the stochas-
tic simulation of a bistable chemical reaction network (CRN) on
the molecules x and y. Where the simulation ends in steady
state consisting of all x (or all y) molecules, the phenotype
was taken as A (or B, respectively). This stochastic simulation
forms the GP-mapping, RGP. We explored an apparent
paradox of bet-hedging: why is phenotypic heterogeneity
maintained in fixed environments when it is necessarily dele-
terious (when compared with a single phenotype strategy)?
We found that the structure of the GP-mapping itself can
serve to slow the rate of evolution, maintaining phenotypic het-
erogeneity to serve as a survival mechanism in the event of rare
catastrophic environmental change such as drug treatment.
This result indicates that an understanding of the GP-mapping
is critical not only in predicting how a population will evolve,
but also in predicting the timescale of this evolutionary process.
4. The future of genotype–phenotype-mapping
models

This survey of GP-mapping models has highlighted a number
of important evolutionary phenomena,manyofwhich are con-
served between models. By considering these different models
under the umbrella of a general evolutionary framework, we
have been able to identify a number of similarities between
models that would be missed by considering these models
on an ad hoc basis. To conclude we present a summary of key
properties of the GP-mapping arising from theoretical
models (table 1) and highlight those aspects of the GP-
mapping that have been overlooked in previous modelling
studies. Finally, we provide a partial overview of evolutionary
questions that could form the basis of future theoretical studies.
4.1. Properties of the genotype–phenotype-mapping
4.1.1. Neutrality and degeneracy
A key conserved property of models of the GP-mapping is a
high degree of degeneracy in the relationship between genes
and phenotypes. Many genotypes will map to a single pheno-
type, inducing large neutral subspaces of the genotype space,
as evidenced by the RNA structure and networkmodels. From
the perspective of evolving drug resistance, this neutrality has
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important consequences. Neutrality can induce a two-stage
pattern of evolution, wherein fitness first rapidly increases
before following a pattern of punctuated equilibria, and may
explain many aspects of disease progression [138]. The rapid
increase in fitness associated with the early stages of evolution
may explain why evolutionary escape from therapy is so
prevalent, while the later stages of punctuated equilibria can
explain why diseases that appear stable for many years may
suddenly worsen—a common scenario in cancers and HIV
infections. Understanding the relationship between neutral
mutations, the associated genetic heterogeneity, and the
potential for pre-existing or de novo evolution of drug
resistance is of particular importance to understanding the
progression of cancers and remains an active area of research
[171,172]. It is clear from our survey that a focus on the
GP-mapping could prove valuable in furthering our under-
standing of the impact of intra-tumoural heterogeneity and
developing effective diagnostic and therapeutic techniques.

4.1.2. Evolvability and robustness
Amajor contribution of theoreticalmodelling of GP-mappings
is the resolution of the apparent paradox between robustness
and evolvability. Neutral mutations can induce genetically
heterogeneous but phenotypically homogeneous populations
in which both robustness and evolvability are jointly
increased. This phenomenon was clearly demonstrated by
computational studies of structure prediction models and
corroborated in network models. Ahnert [173] provides a
detailed review of these robustness and evolvability results
for these and other GP-mapping models.

Robustness and evolvability play critical roles in the
evolution of cancers. Indeed, it is insufficient robustness to
mutation that drives oncogenesis, often through two or more
mutational hits. Furthermore, as tumours grow they accumu-
late mutations, both neutral and functional, that render the
cancer cell population heterogeneous and primed to evolve
resistance once therapy begins. Intuition gained from simpler
GP-mapping models can help in understanding this process,
and potentially provide evidence for a change in strategy.
For example, the RNA model suggests that some phenotypes
are accessible through relatively few mutations regardless of
the starting genotype. If this is the case for drug-resistant
phenotypes, then resistancemay be near-inevitable and a thera-
peutic strategy such as adaptive therapy [8] that focuses on
managing resistance may be preferable. Alternatively, since
robustness or evolvability are themselves evolving, we may
be able to alter the degree of evolvability in a disease by first
attempting to steer the evolution through a sequence of drugs.

4.1.3. Epistasis, modularity and pleiotropy
Studies of empirical fitness landscapes have highlighted the
prevalence of epistasis and mathematical arguments show
that reciprocal sign epistasis can induce rugged fitness
landscapes, limiting the number of accessible evolutionary
trajectories, and rendering evolution potentially predictable.
These results motivate the concept of evolutionary steering
[14,174], wherein drug sequences are prescribed to drive the
evolution of a disease to a phenotype that is more readily trea-
table, while avoiding the emergence of highly resistant strains.
Higher-order epistasis, wherein the fitness contribution of a
given mutation is dependent on the alleles at more than one
other loci, is also commonly observed, although the
implications of this, especially with respect to the predictabil-
ity of evolution, have yet to be fully determined [87,175]. In
cancer drug discovery, identifying genes that exhibit reciprocal
sign epistasis with an oncogene serves as a means to identify
potential targets through synthetic lethality. Specifically, inhi-
biting the action of such a gene can simulate amutationwhich,
coupled with the already mutated oncogene, is lethal where
neither mutation alone is. Extending this approach to account
for higher-order epistasis could help identify effective combi-
nation therapies if no sufficient pairwise genetic interaction
can be identified.

Model GP-mappings also provide insight howmodularity
and pleiotropy evolve. Fisher’s geometric model suggests that
mutations to highly pleiotropic genes are less likely to be ben-
eficial and therefore evolution will proceed more slowly when
organismal phenotype is less modular [74]. This phenomenon
has been called the ‘cost of complexity’ and there is some
empirical evidence to support this hypothesis [176]. However,
future studies of this phenomenon will require a much deeper
understanding of organismal phenotypes and their depen-
dence on genetics. While molecular reductionism has
generated a wealth of genetic (and proteomic, metabolomic
etc.) data, the nature of cellular phenotypes is, comparatively,
poorly understood. This represents a problem for all studies of
evolution, as well as for making evolutionary predictions in
cancers and other diseases, as phenotypes are the ultimate
determinants of fitness. Recently, Arias et al. [177] introduced
the model system toyLIFE which comprises a simplified
model of chemistry governing gene expression and the inter-
actions between proteins. In this model, the GP-mapping is
multilevel with phenotypes arising from a process of tran-
scription, protein folding and protein–protein interaction.
Robustness and evolvability have been explored in this
model [178] and it captures many of the properties arising in
other GP-mapping models. We anticipate that toyLIFE may
prove a useful tool for exploring if there are limitations of
data gathered from one stage of the GP-mapping in predicting
downstream phenotypes where pleiotropy is present.
4.1.4. Bet-hedging
A major assumption underpinning many models of the
GP-mapping is that phenotypes result from genotypes in a
deterministic way. The appeal of this deterministic assumption
is that we can ignore the phenotypes and characterize diseases
purely at the more easily quantified genetic or molecular level.
However, there is clear evidence that the genes are not the sole
determinant of phenotype and that the ‘genes as blueprints’
model is flawed [30]. Bacterial persisters [22] and their recently
discovered analogue in cancer [179,180] suggest that some
aspects of organismal phenotype may be stochastically deter-
mined. This phenomenon, known as bet-hedging, has been
demonstrated to have important implications for the pro-
gression of disease and the evolution of drug resistance. New
models that directly account for the stochasticity in the GP-
mapping, and in which the magnitude of this stochasticity is
subject to evolution, are needed if we are to understand the
evolution of bet-hedging. Further, to manage diseases with
drug resistance driven by bet-hedging we will need to design
experiments to better identify bet-hedging and simulation
studies with model GP-mappings will likely prove a useful
tool. Our own previous work in bet-hedging driven by
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stochastic intra-cellular interaction networks represents a step
towards this end [170].

4.1.5. Phenotypic plasticity
Phenotypic differences among genetically identical individuals
can also be by driven by environmental influence, endowing a
species with robustness to environmental change within cer-
tain limits. This phenotypic plasticity has been observed as a
driver of drug resistance in both cancers and bacterial infec-
tions, for example, through the development of efflux-pumps
in response to drug-treated environments [25]. We find that
plasticity is poorly represented in GP-mapping models and
that the environment is often over-simplified. For example,
theenvironment isoften takenasa single target ‘optimal’pheno-
type and fitness as some measure of difference from this
phenotype. This approach is clearly flawed. Firstly, we know
that a single optimal solution to any ‘problem’ rarely exists.
Examples include the Spemann organizer discussed earlier
[145,146], or the convergent evolution of eyes or wings [181].
Secondly, even where a single globally optimal phenotype
exists, there is no guarantee that evolutionary trajectories
towards this phenotypewill not become trapped at suboptimal
solutions owing to rugged fitness landscapes. Finally, we note
that this definition of environment is flawed as it plays no role
in the determination of phenotypes and, thus, phenotypic
plasticity (and development) is ignored. These issues are
partially mirrored in our experimental approach to under-
standing cancer. Tumours are catalogued extensively with
respect to their genotype though sequencing and their pheno-
type through immunohistochemistry, but quantification of
the tumour microenvironment still remains challenging.

The neural network model of Gerlee & Anderson [159]
partially overcomes this problem by considering a complex
environment of diffusible factors that explicitly influence
the phenotypes of cells within a growing solid tumour.
These factors are spatially heterogeneous and, coupled with
constraints on growth driven by crowding effects, are also
responsible for driving natural selection and determining
the fitness of individual cells. The drawback of this more rea-
listic environmental modelling is that fitness itself cannot
explicitly be defined but is rather emergent from simulation
of the entire system. This complexity limits the analysis of
large numbers of the drug combinations or timing strategies
required to design adaptive therapies through the phase i
paradigm [182]. The future of modelling phenotypic plas-
ticity will lie in balancing complex environmental influence
on phenotype with tractable models of fitness and evolution.
One current approach to this problem is the development of
statistical methods for the analysis of discrete cellular auto-
maton methods [183].
5. Conclusion
We have presented a generalized evolutionary framework
that provides a lens through which to compare GP-mapping
models arising fromdistinct subfields of computational biology.
By consideringmodels under this common framework, we have
found that a number of evolutionary predictions are conserved
between models, lending credence to their applicability to
genuine biology. Furthermore, our survey highlights aspects of
the GP-mapping that are unaccounted for, or underrepresented,
in theoretical studies. Specifically, the non-functional aspects of
the GP-mapping, wherein a single genotype can give rise to a
number of phenotypes either stochastically (bet-hedging) or
through environmental modulation (plasticity), are presently
understudied, despite the observed role of these phenomena
in the evolution of drug resistance. The need formodels display-
ing phenotypic plasticity was highlighted by Pigliucci [30] as a
necessary step towards reconciling developmental biology
with the modern evolutionary synthesis and moving away
from the reductionist ‘genes as blueprints’ perspective. Towards
this end, a critical first step will be to introduce models of both
phenotype and environment that capture sufficient biological
complexity while remaining computationally tractable.

Finally, we note that our survey of theoretical modelling
clearly demonstrates the power of mathematical models of the
GP-mapping in clarifying seemingly paradoxical evolutionary
phenomena. For example, the robustness/evolvability
trade-off, the evolution of modularity, or the maintenance of
bet-hedging as a survival mechanism in fixed environments
where it is deleterious [170]. In future, modelling will continue
to elucidate unintuitive properties of evolution, particularly in
the emerging field of evolutionary medicine. If we are to be
able to predict evolution, as we must to design effective
therapies for cancer and microbial infections, then characteriz-
ing unintuitive properties of evolution will be key in
interpreting experimental or clinical observations.
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Endnotes
1In mathematical terminology a ‘map’ should associate only a single
phenotype with each genotype (i.e. be a function). However, for some
models inspired by biology this need not be the case (see box 1, non-
genetic heterogeneity) and thus strictly speaking the GP-mapping is a
relation (or mapping to the powerset of phenotypes). Despite this
issue of mathematical terminology, we adhere to the naming ‘GP-
mapping’ as it is the established terminology but emphasize that it is,
in fact, a relation in the mathematical definition.
2We note that oscillatory dynamics of protein expression are in fact
common, for example, in the cell cycle [147], and thus it is not
clear whether this definition of phenotype is too restrictive.
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