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Abstract
Background. Variations in prognosis and treatment options for gliomas are dependent on tumor grading. When 
tissue is available for analysis, grade is established based on histological criteria. However, histopathological diag-
nosis is not always reliable or straight-forward due to tumor heterogeneity, sampling error, and subjectivity, and 
hence there is great interobserver variability in readings. 
Methods. We trained convolutional neural network models to classify digital whole-slide histopathology images 
from The Cancer Genome Atlas. We tested a number of optimization parameters. 
Results. Data augmentation did not improve model training, while a smaller batch size helped to prevent overfitting 
and led to improved model performance. There was no significant difference in performance between a modular 
2-class model and a single 3-class model system. The best models trained achieved a mean accuracy of 73% in 
classifying glioblastoma from other grades and 53% between WHO grade II and III gliomas. A visualization method 
was developed to convey the model output in a clinically relevant manner by overlaying color-coded predictions 
over the original whole-slide image. 
Conclusions. Our developed visualization method reflects the clinical decision-making process by highlighting the 
intratumor heterogeneity and may be used in a clinical setting to aid diagnosis. Explainable artificial intelligence 
techniques may allow further evaluation of the model and underline areas for improvements such as biases. Due 
to intratumor heterogeneity, data annotation for training was imprecise, and hence performance was lower than 
expected. The models may be further improved by employing advanced data augmentation strategies and using 
more precise semiautomatic or manually labeled training data.

Key Points

 • Data augmentation did not improve training, smaller batch size improved model 
performance.

 • No significant difference in performance between 2- and 3-class models.

 • We present an output visualization method that may be used clinically to aid 
histopathologists.

Optimization of deep learning methods for visualization 
of tumor heterogeneity and brain tumor grading 
through digital pathology
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Diffuse glioma prognosis is associated with age, tumor type, 
WHO grade, extent of resection, and genetic alterations.1 
Following resection and biopsy, where possible, diagnosis 
is given based on histopathology and signature molec-
ular genetic alterations. The grades of tumors are currently 
classified according to the 2016 World Health Organization 
Classification of Tumors of the Central Nervous System, 
comprising of a 4-tiered system with grade IV, also known 
as glioblastoma (GBM), being the most malignant.2

However, the grading of gliomas can pose a challenge 
in clinical practice. Tumors are often heterogenous and 
can have characteristics of both low- and high-grade le-
sions in different tissue areas, making a distinction be-
tween grades difficult, especially with imprecise diagnosis 
criteria, particularly between WHO grades II and III.3 There 
is also an element of subjectivity and thus there are varia-
tions in grades given between different histopathologists.4 
Effective, accurate, and objective grading of gliomas is of 
high importance as this determines therapeutic strategies 
and availability of clinical trials to the individual patients, 
affecting prognosis. Therefore, the development of an 
objective, quantitative tool to aid clinicians in the classi-
fication process is required to improve the accuracy and 
reliability of glioma diagnosis and we here explore deep 
learning methods. 

Machine learning is a statistical and computational tech-
nique to analyze and model data without prior knowledge, 
thus relying on the inference of patterns in the dataset.5 
Deep learning is a subset of machine learning that in-
volves the extraction of abstract pattern representations at 
multiple levels and layers, with each layer comprising of 
representation at a higher and more abstract level.6 In clas-
sification tasks of image data, for example, tumor grading 
using histopathology images, the hierarchical approach al-
lows extraction of various important features (eg, edges, 
colors, orientation, and location) for discrimination and to 
suppress irrelevant, artefactual information.

There are various architectures relating to the deep 
learning methodology, encompassing both unsupervised 
and supervised strategies.6 Convolutional neural networks 
(CNNs) in particular have been demonstrated to be very ef-
fective for image recognition, classification, and computer 
vision.7 They utilize a convolution operation across mul-
tiple layers to extract different features from the input im-
ages, which are learned automatically, and the outputs are 
classes or categories such as tumor/nontumor, or tumor 

grades. The performance between CNNs and other ma-
chine learning techniques for medical imaging has been 
compared in various instances.8 As such CNNs for med-
ical imaging are starting to gain popularity among deep 
learning techniques for its winning error rate9 and good ac-
curacy across multiple types of medical images.8

The aim of this study was to develop a computational 
pipeline for the classification of gliomas through histopatho-
logical images and CNNs. The effect of data augmentation, 
hyperparameter tuning, and multiclass classification strategies 
on CNN model performance was investigated. Furthermore, 
we devised a novel method for visualizing output to tackle the 
inherent heterogeneity that exists within these brain tumors 
and to improve the explainability of the model.

Materials and Methods

Data Source

Hematoxylin and eosin (H&E) stained whole-slide histo-
pathology images (WSIs) were obtained from The Cancer 
Genome Atlas (TCGA).10 Data included 785 WSIs from 249 
WHO grade II patients, 773 images from 264 WHO grade III pa-
tients, and 2053 WSIs from 607 GBM patients. In differentiating 
between GBM and non-GBM tumors, the data from the WHO 
grade II and III patients were combined to include 1558 WSIs 
from 513 patients. In TCGA, the non-GBM samples are classi-
fied as astrocytoma, oligoastrocytoma, or oligodendroglioma. 
The samples are stratified according to these tumor types to 
give an equal distribution of each type in each training, valida-
tion, and evaluation dataset (Table 1).

Preprocessing

Image files were in .svs format and had magnifications of 
20× or 40× with varying dimensions (Figure 1A). In order to 
normalize images to appropriate dimensions and magni-
fication for use as inputs, the WSIs were divided into tiles 
(Figure 1B). A tile size of 1024 × 1024 pixels, obtained at 20× 
magnification, was used. The background of each tile was 
removed, and the percentage of tissue present was cal-
culated (Figure 1C). Tiles with 90% or more tissue present 
were included in model development or evaluation. A total 
of over 680 000 tiles across all classes were used.

Importance of the Study

Interobserver variability in histopathology 
brain tumor grading requires an objective ap-
proach. While machine learning methods have 
been explored in grading brain tumors, we de-
veloped a methodology to highlight regions 
of the tumor which are considered more ag-
gressive by the machine learning network. This 
approach highlights how clinicians make their 
diagnosis from digital pathology and is aimed 

at aiding the histopathologist to identify the re-
gions considered to be most aggressive. The 
methodology also follows a discussion with a 
patient and public involvement group that sug-
gested that artificial intelligence should be used 
to help clinicians in making their diagnosis and 
that they would be concerned around the use 
of a black-box technique to diagnose patients. 
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Table 1. Number of Cases in Each Tumor Subtype and Grade, Stratified Across Training, Validation, and evaluation datasets

Grade Type Number of Cases

Total Training Validation Evaluation

GII Astrocytoma 63 45 11 6

Oligoastrocytoma 74 53 13 7

Oligodendroglioma 112 81 20 11

All 249 179 45 25

GIII Astrocytoma 131 94 24 13

Oligoastrocytoma 55 40 10 6

Oligodendroglioma 78 56 14 8

All 264 190 48 26

GBM — 607 109 61 437

Tumor types as defined on the TCGA database.

  

  
A
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Figure 1. Examples demonstrating the data preprocessing. (A) Example of a whole-slide histopathology image (WSI) of a brain tumor sample imaged at 
40× magnification. (B) A tile sized 1024 × 1024 pixels is extracted from the WSI at 20× magnification. (C) The background is removed in order to calculate 
the percentage of tissue present on the tile. Tiles with tissue percentage more than 90% were included in model development or evaluation.
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Deep Convolutional Residual Neural Networks 

CNNs are regularized multilayer perceptrons, that is, networks 
where each neuron in a layer is connected to all neurons in the 
successive layer, regularized by building on the hierarchical struc-
ture to identify more complex patterns based on simpler patterns.6 
CNNs are composed of convolutional, pooling, and fully con-
nected layers. The convolutional layer employs a kernel (a filter 
window), which is an array of weights, that slides, or convolves, 
across the input image and multiplies its values to the image’s 
pixels. The result of the multiplication is an array of numbers, re-
ferred to as an activation map or feature map. The pooling layer is 
used to down-sample the feature map, that is, reduce the spatial 
size. The down-sampling allows dominant features to be extracted 
while reducing the computational requirement for data proc-
essing. Our CNNs employ the Rectified Linear Units activation 
function to model neuron’s output. The output of the last convo-
lutional layer is flattened into a single vector and passed through 
the fully connected layers for classification with a probability of the 
input belonging to each class.7

There are numerous CNN architectures with different 
depths and varying validation errors. In order to extract 
more features from the data, there is an inclination to 
increase the depth (ie, the number of layers) of the model. 
However, the problems with increasing depth include the 
vanishing gradient.11 Residual neural networks (ResNets) 
are able to tackle these issues by having layers split into 
residual blocks and allowing the skipping of layers.12 The 
skipped connection of residual learning allows the ability 
to train deeper networks without compromising accuracy. 
Compared to other CNN architectures, ResNets are able to 
achieve the most depth and best accuracy.11 In this regard, 
the model developed herein follows ResNet18 architec-
ture. The ResNet18 architecture consists of 18 layers, di-
vided into 5 convolutional blocks, an average pool layer, 
and a fully connected layer12 (Figure 2).

Transfer Learning and Training

In cases where there is limited data, as in the case of our 
current study, transfer learning may be adopted.13 By 
transferring knowledge learned from one task to learning 
in a different but related task the learning process is 
improved.14

Our model was trained via transfer learning with layers 
initialized with weights from the ResNet18 pretrained 
model using backpropagation. The pretrained ResNet18 
has been trained using the ImageNet project.15 We further 
trained the initialized model with our dataset to gain higher 
level features pertaining to histopathological images of 
gliomas. The current study utilized the cross-entropy loss 
function and the stochastic gradient descent (SGD) op-
timizer. Parallelization was employed in order to train 
models utilizing multiple graphic processing units and re-
duce training time. 

The WSIs were split by cases into training (807 cases), vali-
dation (201 cases), and evaluation (115 cases) datasets. After 
data preprocessing, tiles were selected randomly from the 
training, validation, and evaluation sets, giving a total data 
split of 60/20/20% training/validation/evaluation. Models 

were trained in randomly selected batches, where an epoch 
is one complete feed of the entire training dataset to the 
model. In order to avoid overfitting, the model training was 
cut off at the point of validation loss inflection. The weights 
for the final trained model were taken from the epoch with 
the highest validation accuracy prior to cutoff.

Evaluation

The resulting model performance was evaluated on a tile 
basis using the hold-out evaluation dataset of 115 TCGA 
patients not used during model training and validation 
(ie, the model has not seen any images from this dataset). 
Confusion matrices were calculated. Receiver operating 
characteristic (ROC) curves were plotted and the areas 
under the curves (AUROCs) calculated.

For the modular 2-class models, the abovementioned 
metrics were calculated for the whole classifier. For 3-class 
classifiers, the metrics were calculated for each class, and 
the macro-average of all classes for accuracy (ACCM), ROC 
curves and AUROCs were computed. The macro-average 
ROC curves were plotted using the macro-average true 
positive rates (TPRM) and false positive rates (FPRM) at var-
ious thresholds.16 Metrics were compared between groups 
using a standard t-test.

Data Augmentation

Deep neural networks require a large amount of data in 
order to effectively train the model.17 However, where such 
an amount is unavailable, the dataset may be artificially in-
flated to increase in size using data augmentation.18 In the 
context of CNNs, augmentation involves transformations 
to the original images, creating new images for training. 
Transformations may be geometric, which alter the pos-
ition and orientation of the image (eg, flip, crop, rescale, 
and rotation), or photometric, which alter the colors of the 
image (eg, saturation, contrast, brightness, and hue).19

Geometric transformations are the standard in training 
many CNNs as they provide the most improvement in per-
formance.19 For histopathology images, there are consider-
able photometric variations between samples. This is due to 
differences in factors affecting stain binding, microscopes, 
and scanners.20 Therefore, we investigated applying both ge-
ometrics and photometric transformations in augmentation. 
Geometric transformations applied were random horizontal 
flip, random affine (shear factor of 10, scale range of 0.8–1.2). 
Photometric transformations applied were random color 
jitter (saturation factor range of 1–2, contrast factor range of 
1–2, where 1 is the factor of the original image). 

Results

Data Augmentation and Training Parameter 
Adjustments

The performance of our model differentiating between 3 
classes did not improve with the addition of photometric 
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augmentation (mean macro-average accuracy  =  56%, 
mean macro-average AUROC  =  0.50) compared to geo-
metric augmentation only (mean macro-average accu-
racy = 55%, P = .751; mean macro-average AUROC = 0.50, 
P  =  .0745; Figure  3A, B, D , and E) . Moreover, model 
training became less effective with the addition of photo-
metric augmentation (mean validation accuracy  =  35%) 
compared to geometric augmentations only (mean valida-
tion accuracy = 68%, P < .01). Hence, photometric augmen-
tations were not used in further development. 

In order to improve model learning and performance, 
the batch size was adjusted. The model learns the data in 
batches of randomly selected, unrepeated images from the 
dataset. An epoch is complete when the entire dataset has 
been learnt once, and the model weights are updated fol-
lowing each epoch. We compared model and training per-
formance of batch sizes 4 and 32. Batch size of 32 yielded 
a mean macro-average accuracy of 55% and mean macro-
average AUROC of 0.50 at evaluation, while the batch size 
of 4 yielded improved training performance with a mean 
macro-average accuracy of 63% (P < .001) and mean 
macro-average AUROC of 0.67 (P < .001) at evaluation 
across models (Figure 3C and F).

Two-Class vs 3-Class Classification

Previously, Ertosun and Rubin21 developed a mod-
ular approach to grading brain tumors from histopa-
thology images. This involves the use of 2 separate 

CNN models, one to classify GBM versus non-GBM and 
another to classify grade II versus grade III. If the classi-
fication obtained from the first model is non-GBM, the 
input will be passed through the second model to clas-
sify the specific grade. 

In our current study, we investigated 2 classification 
approaches, first a modular approach as proposed by 
Ertosun and Rubin and second a single 3-class model 
classifying between 3 grades. Our models distin-
guishing between GBM and non-GBM achieved a mean 
accuracy of 72% and mean AUROC of 0.79 at evaluation 
(Figure 4A and E). The models distinguishing between 
grade II and grade III obtained a mean accuracy of 51% 
and mean AUROC of 0.52 at evaluation (Figure 4B and 
F). Three-class  CNN models distinguishing between 
grade II, grade III, and GBM were trained. For the clas-
sification between grades II and III combined (non-
GBM) and GBM, the 3-class models obtained a mean 
accuracy of 73% and mean AUROC of 0.78 (Figure 4C 
and G). Performance in classifying GBM from other 
classes is not significantly different between the mod-
ular 2-class and 3-class models in terms of accuracy 
(P  =  .84) nor AUROC (P  =  .53). For the classification 
of grade II and grade III, the 3-class models obtained 
mean macro-average accuracy of 53% and mean 
AUROC of 0.53 between the 2 classes at evaluation 
(Figure 4D and H). Performance in classifying grades II 
and III is not significantly different between the 2-class 
and 3-class models in terms of accuracy (P =  .10) nor 
AUROC (P = .44).
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Figure 2. Architectures of CNN and ResNet18 models. (A) Schematic showing the typical architecture of a CNN which involves the input being 
passed through multiple hidden layers, including convolutional and pooling layers. The weights from the hidden layers are flattened into a single 
vector and passed through the fully connected layer for classification. (B) Schematic showing the architecture of the ResNet18 model. The first 
convolutional layer (conv1) with 64 kernels sized 7 × 7 sliding with stride 2. Subsequent convolutional layers are divided into 4 blocks with 2 layers 
each. The layers employ kernels of size 3 × 3, with layers in the second block (conv2_x) having 64 kernels each, the third (conv3_x) having 128 per 
layer, the fourth (conv4_x) having 256 per layer, and the last (conv5_x) having 512 per layer. Weights from the last convolutional layer are average-
pooled and passed through the fully connected layer for classification.
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Visualization of Outputs and Explanation of CNN

There exists heterogeneity within a tumor in terms of ge-
netic, molecular, and cellular characteristics.3,22 Hence, 
with regard to histopathology, there may be various cel-
lular and morphological characteristics on a single WSI 
pertaining to different tumor grades, as well as noncan-
cerous tissues. Rather than attempting to calculate an ag-
gregate prediction for the WSI based on the tiles as defined 
by arbitrary thresholds, it may be preferable to provide lo-
calized predictions on a tile basis in order to convey the 
heterogeneity to clinicians and pathologists.

An algorithm was written to visualize the output of the 
model. A WSI provided is divided into tiles and each tile 
satisfying the abovementioned criteria is subsequently 
passed through the model to obtain predicted probabil-
ities of belonging to each class. The class with the highest 
predicted probability will be visualized. Each class is asso-
ciated with a monochrome color map ranging from light 
to dark: green represents grade II, blue represents grade 
III, and red represents GBM. The probability translates log-
arithmically to the color map so that lower probabilities 
(<50%) are displayed as very light in color and rapidly in-
creases in intensity at higher probabilities (≥50%). The 

color determined by the class and probability is overlaid 
on the tile. The result is a heatmap corresponding to the 
class of with the highest probability and such probability 
overlaid over the original WSI (Figure  5). A  selection of 
tiles was also reviewed by a consultant histopathologist 
(C.L.-S.) and shown in Figure 5.

Discussion

We investigated the use of deep learning in classifying 
brain tumor histopathological images for grading. Several 
CNN models were trained with varying strategies, in-
cluding data augmentations, batch size adjustments, and 
2-class versus 3-class classifiers. A methodology for visu-
alizing the output in order to highlight heterogeneity was 
developed to aid clinicians in diagnosis. 

Data Augmentation Strategies

The effectiveness of learning and ultimately the perfor-
mance of a machine learning model are dependent on the 
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Figure 3. The effects of different augmentation and batch sizing strategies on 3-class classifier model performance. Confusion matrices for 
3-class models (A) with geometric but no photometric augmentation and a batch size of 32, (B) with geometric and photometric augmentation and 
a batch size of 32, and (C) with geometric but no photometric augmentation and batch size of 4. Values are a fraction of the total count for the re-
spective true label (ie, each value is a proportion of the total of its row). Macro-average ROC curves for 3-class models (D) with geometric but no 
photometric augmentation and a batch size of 32, (E) with geometric and photometric augmentation and a batch size of 32, and (F) with geometric 
but no photometric augmentation and a batch size of 4. Each line represents the macro-average ROC of all classes for each model run with the 
same augmentation strategy and hyperparameters, and the area under each macro-average ROC curve is calculated. 
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characteristics of the dataset provided and the architecture 
of the model with its hyperparameters.23–25 For this study, 
we looked to optimize our training dataset through data 
augmentation and adjusting model hyperparameters, spe-
cifically batch size, to maximize learning and performance. 

Data from the TCGA are obtained from multiple cen-
ters, hence there are variabilities in protocols for tissue 
processing, staining, microscopy imaging, and digital-
ization, which introduce a myriad of variance in image 
properties.10 Therefore, we looked to augment the 
dataset with photometric transformations to imitate 
the variations in saturation, contrast, and brightness. 
However, our photometric augmentation compromised 
learning, contrary to what was expected. Although in 
theory data augmentation has been thought to improve 
learning, its effectiveness in providing meaningful data 
has also been discussed previously. The alterations and 
transformations offered by the traditional methods of 
data augmentation are relatively minimal and do not 
offer new, indistinguishable information from the orig-
inal data which could significantly improve learning and 
subsequently predictive capabilities.26

Depending on the nature of the dataset and the type of 
augmentation, photometric transformations have been 
shown to reduce model performance.15,27,28 In the cur-
rent study, the transformations performed on the images 
were randomized. We provided ranges for the transforma-
tion factors, and the algorithm computed a random value 
within those ranges for the different transformations, 
namely, saturation, contrast, and brightness. There may 
have been transformations to the images where the color 
properties no longer fall within the normal ranges of the 
unmodified data. Such modification may also remove 
important features and class-dependent color informa-
tion, thus producing data not reflective of the label. Hence 
the augmented data increase the complexity within the 
training dataset, providing unrealistic and out-of-context 
inputs to the model, impairing the ability of the model to 
effectively learn.29

One promising data augmentation technique is genera-
tive adversarial networks (GANs). GANs in themselves are 
a type of machine learning network which aim to generate, 
hence generative, new, synthetic data that are indistin-
guishable from the original training dataset.30 This allows 
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Figure 4. Confusion matrices and receiver operating characteristic (ROC) curves for 2-class and 3-class classifying models distinguishing dif-
ferent classes. Confusion matrices for 2-class models (A) distinguishing between non-glioblastoma (GBM), which includes grades II and III, and 
GBM and (B) distinguishing between grades II and III. Three-class models were trained to distinguish between all 3 grades. Confusion matrices 
for 3-class models for classification (C) between grades II and III combined (non-GBM) and GBM and (D) between grades II and III. Values are a 
fraction of the total count for the respective true label (ie, each value is a proportion of the total of its row). Confusion matrices are used to cal-
culate accuracies. ROC curves are plotted for 2-class classifying models (E) distinguishing between non-GBM and GBM and (F) distinguishing 
between grades II and III. Within 3-class models, ROC curves are plotted for classification (G) between grades II and III combined and GBM and 
(H) between grades II and III. Each type of model (ie, two 2-class models and a single 3-class model) was trained 3 separate times, with the same 
training datasets, augmentation strategy, and hyperparameters. Each ROC curve summarizes a model trained and the area under each ROC curve 
is calculated. 
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Figure 5. Examples of model output visualization. Whole-slide images (WSIs) are divided into tiles of size 1024 × 1024 at 20× magnification, and tiles 
with more than 90% tissue are used as inputs for the model. A single voxel is ≈0.501 μm, and an individual tile is ≈513 × 513 μm. Outputs are obtained 
from the model on a tile basis in terms of scores for each class. The class with the highest score for each tile is chosen for visualization. Each class 
corresponds with a monochromatic color map, with green corresponding to grade II, blue to grade II, and red to GBM. The intensity of the color is 
logarithmically proportional to the output score so that higher scores are considerably more intensely visualized relative to lower scores. The scores 
reflect the model’s confidence in a particular prediction. Examples of (A1) a grade II WSI, (B1) a grade III WSI, and (C1) a GBM WSI with visualized 
model outputs. For example, individual tiles labeled by CNN as grade II (A2, B2), grade III (A3, B3, C3), and grade IV (A4, B4, C4) are shown for each of 
the patients (A–C). Considering the grade II patient (column A): a large number of tiles were detected as grade II by the CNN (continued on page 9) 
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the dataset to be artificially inflated with greater modifi-
cations and more variability in features compared to clas-
sical data augmentation and potentially enrich the training 
dataset further. Combined with classical data augmenta-
tion, the strategy has the potential to inflate the data to a 
considerable extent (up to 100 times).30 GANs have been 
shown to be useful in augmenting datasets and improve 
machine learning performance in the context of medical 
imaging, especially when combined with classical data 
augmentation techniques.31,32 Hence, in future work, GANs 
are an avenue of exploration for further improving model 
training and performance.

Hyperparameter Adjustments

Algorithm hyperparameters are factors influencing model 
accuracy and loss, and hence are often fine-tuned to op-
timize performance, which can be in itself a complex and 
difficult task.33 One important hyperparameter is training 
batch size. There is no particular generalized formula or 
rule-of-thumb in determining the batch size for optimal 
learning. Batch size choice is dependent on the objective 
of training (eg, increase training speed and increase gen-
eralizability), thus there are conflicting conclusions on 
whether increasing or decreasing batch size would result 
in better performance. Larger batch size has been evi-
denced to produce higher classification accuracy,25 aside 
from increasing training speed.34 However, in tasks where 
generalizability is a major consideration, larger batch sizes 
have been shown to degrade model quality, particularly 
with the SGD optimization method used herein.35 Smaller 
batch sizes also prevent overfitting as the resulting gradient 
noise acts as a good regularizer, avoiding sharp minima 
and thus leading to better generalization.35,36 For histopa-
thology particularly, and medical imaging as a whole, gen-
eralization is an important consideration due to the great 
interindividual and intertumor heterogeneity.3,22 This is re-
flected in our current study, where a smaller batch size of 4 
produced superior model learning and performance com-
pared to a batch size of 32.

Two-Class vs 3-Class Models

We tested 2 methods for classifying tumor histopathology 
images into multiple grades: (1) a modular approach 
involving two 2-class models, first between GBM and non-
GBM and then between grades II and III within the non-
GBM group as previously proposed by Ertosun and Rubin 

and (2) a single 3-class model distinguishing between 
grades II, III, and GBM. 

It is generally evidenced that 2-class models are more 
effective at learning compared to one classifying multiple 
classes simultaneously as they are less complex.37–39 It 
is also suggested that multiclass systems demand more 
specific hyperparameter tuning and optimization.40 On 
the other hand, several 2-class classifiers collectively re-
quire more training time as well as have slower classifica-
tion speed, due to the input being passed through various 
layers of classification, as compared to a single multiclass 
classifier.40 

It was observed in this study that multiple 2-class clas-
sifiers did not significantly outperform a single 3-class 
classifier. Furthermore, the two 2-class models collec-
tively took approximately twice as long to train per epoch 
compared to a single 3-class model in our case. In this re-
spect, for the task presented, there appeared to be no ad-
vantage of a 2-class system over a 3-class system. There 
is also evidence in the literature of multiclass classifiers 
outperforming multiple 2-class classifiers.40 Results from 
our study suggest that the use of a 3-class system is more 
appropriate for grading histopathological images. This is 
particularly important as the task in clinical practice would 
require a quick and responsive system, especially if the 
technique is to be extended to provide real-time feedback 
with on-line microscopy. 

Previously Ertosun and Rubin attempted the same clas-
sification task for brain tumor histopathological images 
from the TCGA database using 2-class classifiers and 
achieved 96% accuracy in distinguishing GBM from grades 
II and III combined and 71% in classifying between grade 
II and grade III.21 The model in the current study did not 
achieve accuracies as high. While their approach involved 
extracting the nuclei of cells from histopathology images 
and only using this feature for training, our approach util-
izes the raw images with minimal preprocessing. This in-
cludes and utilizes more features in training aside from 
the nuclei, for example, cellular morphology and vascular-
ization of the tumor. However, in attempting to integrate 
as many features as possible, the complexity of the data 
was considerably increased, rendering learning more 
complex. Another important aspect of our approach is the 
use of transfer learning with initialized weights from the 
ResNet18 model, whereas Ertosun and Rubin trained their 
CNNs from randomly initialized weights. This may partially 
account for the discrepancy between our findings as dis-
cussed in the next section. 

Figure 5. (continued from page 8) and indicated regions which showed normal or only a few neoplastic cells (A2); some tiles indicated the 
possibility of grade III regions which appeared to show higher cellularity (A3), although the confidence of the CNN was in this case low (pale 
blue); other tiles indicated the possibility of a GBM albeit again in a pale red indicating low confidence and showed regions of hemorrhage (A4). 
Considering the grade III patient (column B):3 tiles were indicated as grade II and while these regions showed insufficient pathology and cellu-
larity for a grade III diagnosis, it is unclear why tile B2 is labeled as grade II while tile B3 is labeled as grade III. This highlights the importance 
of, in parallel, developing methods that indicate the regions of the tile that were considered most important by the CNN in making a diagnosis as 
discussed in Section Visualization of Output and Tumor Heterogeneity. Furthermore, within patient B, regions detected as GBM showed 
regions of hemorrhage (B4) similar to A4. Considering the GBM patient, no tiles were detected as grade II; regions detected as grade III were less 
vascular and slightly less polymorphic (C3) as compared to regions detected as GBM (C4).
  



 10 Truong et al. Deep learning methods for visualization of heterogeneity

The models performed better in distinguishing GBM 
from other grades. This is to be expected as characteristics 
of GBM are more distinctive than those pertaining to other 
grades.21 On the other hand, classification between grades 
II and III is more clinically challenging. This is reflected in 
the poor performance observed in both of our strategies 
(close to random chance), as well as the relatively inferior 
performance to GBM classification observed by Ertosun 
and Rubin.21

Nevertheless, in the current study neither strategies, 
2-class nor 3-class, have produced models with optimal 
performance. This can be mainly attributed to the training 
dataset, where the labeling did not permit effective learning. 
A WSI may contain normal tissue aside from tumor tissue, 
which were included in the training dataset and labeled as 
tumors. Furthermore, there is heterogeneity in a WSI which 
may contain tissues with different histopathological fea-
tures pertaining to different grades. In practice, a pathologist 
would be able to identify the heterogeneity in characteristics 
and assign a grade based on the present features associated 
with the highest grade.4 However, this heterogeneity had not 
been accounted for and the entire WSI and its constituent 
tiles are labeled with the patient’s diagnosed grade. Hence 
this imprecision in the labeling of the training data impaired 
the effectiveness of learning and subsequently performance 
of the models. This could potentially be addressed in the fu-
ture by using weakly supervised learning systems as sug-
gested in Ref. 41.

ResNet18 and Transfer Training

Through transfer learning, weights are initialized from a 
well-established CNN to exploit the features learned rather 
than random initialization. Here we utilized the ImageNet 
weights for basic features such as edge detection and con-
trast, however transferring from histological datasets may 
offer more relevant features.42 While this is usually advan-
tageous, it may still pose a challenge in finding the op-
timum model for a task highly divergent from the dataset 
of the transferred model. A recurrent problem in developing 
neural networks generally, and transfer learning particu-
larly, is the local minima problem.43

Initialization with specific weights, as with the case of 
transfer learning, puts the model at a specific point on 
the loss landscape. As such training of multiple models in 
the same manner is likely to obtain similar results as the 
models ultimately reach the same local minima. This re-
stricts the ability of the algorithm to potentially reach the 
global minimum, or other more optimal local minima, 
which would otherwise be possible with the random ini-
tialization, but at the expense of training time as well as 
the risk of overfitting. Nevertheless, random initialization 
is a straight-forward and popular method to avoid the local 
minima problem.44 Other strategies, such as simultaneous 
learning or hidden nodes, have been proposed which 
could be explored in the future.45,46

Visualization of Output and Tumor Heterogeneity

One approach for utilizing digital pathology deep learning 
models is to obtain a single classification output for each 

WSI input to the CNN. Due to the large dimension of WSI, 
the slide is sectioned into tiles and the outputs were given 
on a tile basis. In order to obtain a single output per WSI, 
the tile outputs would need to be aggregated. Several op-
tions were considered, including average voting, that is, 
taking the average score of all tiles for each class and the 
final output is the class with the highest average score, and 
maximum voting, that is, taking counts of the class with 
the highest score from each tile and the final output is the 
class with the highest counts. 

However, neither of these strategies are reflective 
of the decision-making process in practice. Due to the 
intratumor heterogeneity, where characteristics of mul-
tiple grades are exhibited in a sample, the pathologists 
are inclined to assign the highest possible grade with 
features present.47 In which case, there are multiple 
thresholds which need to be defined in order to imple-
ment the abovementioned strategies with confidence, for 
example, the proportion of the higher class that needs to 
be present and the minimum average score of the higher 
class in order to overrule the lower class’ majority. It is 
challenging to define such thresholds in a clinically rel-
evant manner due to the subjective nature of the task. 
Grading guidelines are imprecise and thus individual 
histopathologist and clinician would have their own per-
sonal criteria and an interobserver variation in grading 
glioma exists.4

Hence, rather than attempting to define arbitrary 
thresholds, which further magnifies the problem of sub-
jectivity, we aimed to provide a tool to aid in the clinical 
decision-making process rather than attempt to replace it 
with machine learning. Accordingly, the outputs are visu-
alized on a tile basis, which highlights the different classes 
predicted and thus heterogeneity within a sample. This 
helps to guide the reading by bringing attention to local-
ized features. This method (Figure 5) was developed with 
a consultant histopathologist (C.L.-S.) with the vision of 
creating a tool that is able to identify the most aggres-
sive regions of a WSI. Furthermore, we discussed the use 
of machine learning tools in the clinic with a brain tumor 
patient and public involvement group and while there is 
support for using computers to improve the diagnostic 
processes, patients are weary of having a computer 
making a final diagnosis. The method we describe would 
potentially speed up the diagnostic process and reduce 
interobserver variability, while also addressing patient 
concerns. 

Nevertheless, before this technique can be implemented 
in the clinic, the accuracy of the network needs to be im-
proved by addressing the various points raised within 
this study. Subsequently, the method may be evaluated 
and validated. One such way is pathologists’ analysis of 
selected tiles with high confidence to evaluate any biases, 
as well as identifying any correspondence to key diag-
nostic features or any recurrent features utilized by the 
model that may not be part of the clinical criteria. We have 
demonstrated this in Figure  5, showing how review by 
pathologists of a selection of individual tile classification 
by CNN can give feedback to the developers to further im-
prove the system. Through review we noted that the ma-
chine learning network tended to misclassify regions of 
hemorrhage as GBM. Due to the presence of abundant and 
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often structurally abnormal blood vessels, GBMs tend to 
have increased regions of hemorrhage compared to lower 
grade tumors, and this could be resulting in the machine 
learning network learning to classify these nondiagnostic 
regions of a tumor as GBM. This result indicates the im-
portance that the machine learning network gave to the 
vasculature and may also explain the difference in accu-
racy seen between our study and the study by Ertosun 
and Rubin21 which focused on nuclei. This result could 
guide the further development of the network through 
additional training that ensures that nondiagnostic areas 
of hemorrhage are not used within the classification and 
observe whether this improves the classification accuracy. 
That said, we are currently making an assumption that 
the machine learning network focused on these regions 
of hemorrhage which are evident within the misclassified 
tiles. Visualization of the network decisions may involve 
within tile assessment through other techniques such as 
Grad-CAM48 to highlight areas within the image deemed 
more important for prediction by the CNN. This could then 
confirm that, for example, the hemorrhage regions were 
indeed considered the most critical within that individual 
tile for classification. The technique may therefore provide 
further guidance in building a robust and reliable network 
that is able to conduct grade assessment more specifically 
within each of the tiles.48

Quality and Scope of Dataset

One important aspect to the success of a machine learning 
model is the quality of the input data. There are 2 main limi-
tations of the TCGA dataset with respect to the analysis car-
ried out, which are likely to have affected the performance 
of our methods.

First is the tissue preparation method used in the 
dataset. Most of TCGA’s glioma samples (68% of non-
GBM and 75% of GBM samples) were fresh frozen, 
which often results in a loss of tissue morphology due 
to freezing artifacts.49 Model performance could be im-
proved by utilizing samples prepared from a technique 
which allows for better preservations of cellular and ar-
chitectural morphology, for example, formalin-fixed 
paraffin-embedded.50

Second, the TCGA dataset was put together prior to the 
WHO 2016 classification of brain tumors2 and therefore 
lacks additional molecular information. TCGA’s dataset re-
ports IDH and 1p/19q mutation status for roughly half of 
the cases.51,52 Previously, improved performance has been 
shown when taking into consideration IDH and 1p/19q 
mutation status in predicting prognosis.53 Nevertheless, 
the model should not rely on nor weigh heavily on the 
molecular data as an input as these are not always avail-
able.54 In our study, we put an emphasis on developing 
explainable machine learning systems to grade brain tu-
mors based on tumor morphology. However, genetic pro-
files would be important in future studies and should, at 
least initially, be considered separately from morphology 
in order to build and assess explainable machine learning 
models that integrate both computational and patholog-
ical expertise. A number of studies looked into the com-
putational prediction of mutational status, for example, 

IDH,55 1p/19q,56 and TP53,57 using histopathological im-
ages. This may be useful where the information is re-
quired by the histologist for diagnosis but the test has 
failed or could not be performed and could be incorpo-
rated into our approach in the future.

Future studies would greatly benefit from the availability 
of a highly curated dataset with a wider scope of molecular 
markers and acquired using techniques that preserve tissue 
morphology. Furthermore, using a well-curated dataset can 
ensure that the primary features used in grading tumors 
clinically (eg, cellularity, mitotic activity, vascular prolifera-
tion, and necrosis) are visible at the magnification in which 
the images are acquired and will allow for use of key diag-
nostic criteria to improve model performance. 

Conclusion and Future Perspective

Deep learning, and specifically CNNs, may improve digital 
pathology analysis of brain tumors. We developed a meth-
odology to visualize a predictive tumor grading model on 
histopathology images to aid and guide the clinicians by 
highlighting features and underlining the heterogeneity in 
predictions. However, the accuracy of the trained network 
was low, particularly in differentiating between WHO grade 
II and III gliomas. Many models have been developed to 
grade gliomas using machine learning architectures other 
than CNNs and have shown high performance.58,59 Thus, 
exploration outside of CNN may be of interest for further 
investigations.

In the context of machine learning methods, in order to 
improve classification on standard H&E stains, there is a 
need for a well-curated dataset that includes molecular 
characteristics and that employs preparation techniques 
which preserve tissue morphology. Furthermore, method-
ology development is required before such tools can be 
implemented clinically, particularly related to the issue of 
tile versus WSI labels, data augmentation, and model op-
timization techniques. In our work, a selection of tiles was 
reviewed by a consultant histopathologist for evaluation of 
the machine learning tool. Future work would need to in-
clude expert evaluation of the tiles categorized by the ma-
chine learning network as critical, and these would need 
to be evaluated with reference to whether they correspond 
to key features of increased malignancy. The development 
of the CNNs needs to take place in conjunction with the 
histopathologist tile review to continually update and op-
timize the methods developed. This would lead to further 
fine-tuning of the networks developed, improving system 
reliability. Finally, while machine learning tools have the 
potential of aiding clinicians, these need to be developed 
in a strong collaboration between end-users, as well as 
clinical and computing scientists, and a strong involve-
ment from patient and carer groups.
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