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Background-—In neonates with single ventricle, smaller ascending aorta diameter is associated with cerebral white matter (WM)
microstructural abnormalities. We sought to determine whether this association persists into adolescence.

Methods and Results-—Ascending aorta Z scores were obtained from first postnatal echocardiogram. Brain magnetic resonance
imaging with diffusion tensor imaging was acquired in adolescence and used to obtain fractional anisotropy, axial diffusivity, radial
diffusivity, and mean diffusivity in 33 WM tract regions of interest. Partial Pearson correlation coefficients were evaluated for
associations between ascending aorta Z scores and WM microstructure measures, adjusting for sex, age at magnetic resonance
imaging, scanner field strength, and Norwood status. Among 42 single ventricle patients aged 10 to 19 years, 31 had undergone the
Norwood procedure as neonates. Lower ascending aorta Z scores were associated with lower fractional anisotropy in bilateral pontine
crossing tracts (P=0.02), inferior fronto-occipital fasciculus (P=0.02), and inferior longitudinal fasciculus (P=0.01); left cingulum–
cingulate bundle (P=0.01), superior longitudinal fasciculus (P=0.04), and superior longitudinal fasciculus–temporal component
(P=0.01); and right cingulum–hippocampal bundle (P=0.009) and inferior cerebellar peduncle (P=0.01). Lower ascending aorta Z
scores were associated with higher radial diffusivity and mean diffusivity in a similar regional pattern but not with axial diffusivity.

Conclusions-—In adolescents with single ventricle, smaller aorta diameter at birth is associated with abnormalities of WM
microstructure in a subset of WM tracts, mostly those located in deeper brain regions. Our findings suggest that despite multiple
intervening medical or surgical procedures, prenatal cerebral blood flow may have a lasting influence on WM microstructure in
single-ventricle patients. ( J Am Heart Assoc. 2018;7:e010395. DOI: 10.1161/JAHA.118.010395)
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N eurodevelopmental outcomes in children and adoles-
cents with congenital heart disease (CHD) have shown

only modest improvement over the past decade despite
substantial changes in perioperative management.1–3

Recognizing that cardiac surgical management factors
account for only a small percentage of the variance in
outcomes, recent research efforts have explored how brain
development is affected by patient factors, such as
perinatal cerebral oxygen delivery and innate genetic
abnormalities.4–7

Infants with CHD, particularly those with single ventricle (SV),
are at high risk of cerebral white matter (WM) injury. WM injury is
present in 15% to 40% of infants undergoing neonatal surgery,
emerging before or after surgery.8,9 In a majority of cases, such
injury no longer appears on routine neuroimaging within
3 months, although more sensitive quantitative magnetic reso-
nance imaging (MRI) techniques can detect WM abnormalities
years later.8,10–12 Specifically, both SV and 2-ventricle popula-
tions with CHD have been shown to have widespread reductions
in WM volume and abnormal WM microstructure in late infancy
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through adolescence.12–14 Moreover, these abnormalities are
associated with worse neurodevelopmental outcomes.12,14

Reduced cerebral blood flow (CBF) in the fetal period may
influence long-term WM development. WM tracts begin
forming as early as the first trimester of pregnancy, with
additional tracts emerging and maturing throughout gestation.
Transient cerebral compartments that appear during the fetal
period—such as the intermediate and subplate zones—are
critical for establishing the infrastructure for WM connections
and may be specifically vulnerable to hypoxia–ischemia.15–18

Indeed, neonates with CHD have dysmature WM microstruc-
tural development at birth.19 Smaller ascending aorta diam-
eter at birth, an indicator of reduced prenatal CBF, has been
linked to abnormal WM microstructure in SV neonates even
before they undergo cardiac surgery.20

It is unknown whether the association in the neonate
between abnormalities of WM microstructure and smaller
ascending aorta diameter persists into later childhood and
adolescence. We sought to determine whether reduced
antegrade CBF prenatally correlates with long-term alteration
of WM microstructure despite the intervening medical and
surgical events in an SV population. We hypothesized that
smaller ascending aorta diameter at birth would predict
altered WM microstructure in adolescence.

Methods
The data, analytic methods, and study materials will be made
available to other researchers for purposes of reproducing the
results or replicating the procedure, upon request.

Participants
Earlier publications have described recruitment details and
data obtained in our cohort of Fontan children and adoles-
cents who underwent brain MRI and neurodevelopmental

evaluation.21,22 Briefly, patients who had previously under-
gone Fontan palliation were recruited between 2010 and
2012 at Boston Children’s Hospital. Eligible patients were 10
to 19 years of age at enrollment, had SV heart disease, and
underwent testing at least 6 months after their open heart
surgery. Patients were excluded if they had contraindications
to MRI or if their primary language was not English. Parents
and patients at least 18 years of age provided informed
consent, and patients <18 years of age provided assent. For
the current ancillary study, we analyzed the subset of patients
who had available ascending aorta diameter and body surface
area measurements from their first echocardiogram after
birth, in addition to diffusion tensor imaging (DTI) in late
childhood or adolescence. This study was approved by the
Boston Children’s Hospital institutional review board and
adhered to institutional guidelines.

Data Obtained
The parent Fontan study collected information on participant
characteristics, surgical- and catheter-based interventions, and
complications.22 Participant characteristics explored in the
current analysis included sex, race, ethnicity, genetic abnor-
mality, birth weight, and gestational age at birth. Medical
history variables included age at first operation; Norwood
status; open first operation (versus shunt); deep hypothermic
circulatory arrest (DHCA) and total support duration at first
operation; complications at first operation; total numbers of
operations, catheterizations, and their complications; and
incidence of seizure, stroke, or any neurological event (ie,
seizure, stroke, choreoathetosis, or meningitis).

Ascending aorta diameter and body surface area were
extracted from a clinical database of the first echocardiogram
after birth. From these data, we calculated ascending aorta Z
scores (AoZ scores) as ascending aorta diameter adjusted for
body surface area.23 The majority of patients with available
ascending aorta dimensions at birth had undergone a
Norwood operation.

Methods regarding DTI acquisition and analysis have been
reported previously.24 Briefly, participants were scanned on
either a 3- or 1.5-T Twinspeed scanner (General Electric Medical
Systems) including a diffusion weighted spin-echo echo-planar
sequence: repetition/echo time=15 s/83.8 ms; flip angle=90°;
acquisition matrix=96996; field of view=240 mm, with resul-
tant voxel size=2.592.592.5 mm3. Twenty-five diffusion-
weighted gradient directions were acquired at b=1000 s/mm2

and 1 non–diffusion-weighted image at b=0 s/mm2. DTI data
were processed using the FMRIB Software Library v5.0.6
(University of Oxford). Raw diffusion data were corrected for
movement and eddy current artifacts, then skull stripped.

Fractional anisotropy (FA), axial diffusivity, radial diffusivity
(RD), and mean diffusivity (MD) were calculated by fitting a

Clinical Perspective

What Is New?

• This study is the first to examine the relationship between
aortic diameter at birth, a proxy for fetal cerebral blood flow,
and adolescent cerebral white matter microstructure.

• Smaller aortic diameter at birth was associated with
abnormal microstructure in a subset of white matter tracts.

What Are the Clinical Implications?

• Abnormal prenatal cerebral blood flow may have a long-term
influence on structural brain development.

• Further studies should clarify the relationship between prenatal
cerebral blood flow and neurodevelopmental outcome.
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tensor model at every voxel, providing an indirect measure of
WM microstructural organization through measurement
of water mobility. FA is a weighted average of the eigenvalues
of the diffusion tensor.25 Axial diffusivity is the principal
eigenvalue of the diffusion tensor representing the principal
diffusion direction of water. RD represents the amount of
water diffusion perpendicular to the principal diffusion
direction and has been associated with disruption of myeli-
nation or diminished axonal density. MD is a simple average
of the eigenvalues.

We calculated the mean of each diffusion measure for each
participant in 33 regions of interest determined by 2 atlases:
the Johns Hopkins University WM tractography atlas and the
DTI-81 atlas.26,27 These 2 atlases were selected to separately
address hemispheric and brainstem/projection tracts, respec-
tively. The regions of interest included the following tracts
bilaterally: anterior thalamic radiation, cerebral peduncle,
cingulum–cingulate bundle, cingulum–hippocampus bundle,
corticospinal tract, external capsule, inferior cerebellar pedun-
cle, inferior fronto-occipital fasciculus, inferior longitudinal
fasciculus, medial lemniscus, superior cerebellar peduncle,
superior longitudinal fasciculus (SLF), SLF–temporal compo-
nent, and uncinate fasciculus. Interhemispheric tracts were
body of the corpus callosum, forceps major, forceps minor,
middle cerebellar peduncle, and pontine crossing tract (PCT).

Statistical Analysis
Group comparisons were examined by Fisher exact tests for
categorical measures and 2-sample t tests with equal variance
or Wilcoxon rank sum tests for normal or nonnormal
continuous distributions, respectively. Partial Spearman cor-
relation coefficients and linear regression adjusting for
Norwood status were used to examine the relationships of
AoZ scores with participant and medical history characteris-
tics. For closed procedures, values of DHCA and total support
duration were set to 0. Descriptive statistics for the DTI
measures were calculated with values of axial diffusivity, RD,
and MD multiplied by 1000 for reporting purposes. Partial
Pearson correlation coefficients adjusting for sex, age at MRI,
scanner field strength, and Norwood status were used to
examine relationships of AoZ scores with DTI measures. Given
the exploratory nature of the analysis, we did not adjust for
multiple comparisons. SAS 9.4 (SAS Institute) was used for all
analyses, and all tests were 2-sided.

Results

Participants
Of 144 Fontan participants who underwent MRI, 102 partic-
ipants (71%) had available regional DTI measurements. Among

those, AoZ scores were available for 42 participants, measured
at a median of 0 (range: 0–42) days of age (Table S1). Among
those Fontan participants with DTI measurements, partici-
pants with versus without available AoZ score data were
younger at first operation and were more likely to be neonates,
to have undergone a Norwood procedure, and to have a first
operation that used cardiopulmonary bypass and DHCA. Those
with available AoZ score data had longer DHCA duration,
longer total support duration, and more operative complica-
tions at first operation; had more total open operations and
total operative complications; were less likely to have had a
stroke; and were younger at MRI. Participants with versus
without AoZ score data were not significantly different with
respect to sex, race, ethnicity, genetic abnormality, birth
weight, gestational age at birth, total operations, total number
of catheterizations and their complications, and incidence of
seizure or any neurological event.

Table 1 describes the sociodemographic, echo, and med-
ical history characteristics, stratified by Norwood status, of
participants in the current study. Those who underwent a
Norwood procedure (n=31), compared with participants who
did not (n=11), had significantly lower AoZ scores (P<0.001);
at first operation, were more likely to be a neonate (P=0.049),
were more likely to have undergone an open procedure
(P<0.001), and to have had more operative complications
(P=0.04); and had more total open operations (P<0.001).

Analysis of AoZ Scores With Participant and
Medical History Characteristics
In regression analyses adjusting for Norwood status, AoZ
scores were significantly lower in participants who underwent
DHCA during their first operation compared with those who
did not (b estimate: �2.3 [95% confidence interval, �3.8 to
�0.8], P=0.004). Furthermore, lower AoZ scores were
associated with longer DHCA duration at first operation
(partial Spearman r=�0.35, P=0.03), longer total support
duration at first operation (r=�0.34, P=0.04), and fewer total
catheterization complications (r=0.38, P=0.01). AoZ scores
were not significantly associated with participant character-
istics, such as birth weight or gestational age at birth, or with
other medical history variables, such as age at first operation,
total operations, or total operative complications.

Analysis of AoZ Scores With DTI Measures
Average DTI measures for regions of interest are provided in
Table S2. Associations of AoZ scores with the DTI measures
adjusting for sex, age at MRI, scanner field strength, and
Norwood status are provided in Table 2. AoZ scores corre-
lated with FA, with lower AoZ scores associated with lower FA
in the PCT; bilaterally in the inferior fronto-occipital fasciculus
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and inferior longitudinal fasciculus; in the left cingulum–
cingulate bundle, SLF, and SLF–temporal component (Figure);
and in the right cingulum–hippocampus bundle and inferior
cerebellar peduncle. Lower AoZ scores were associated with
higher RD bilaterally in the cingulum–hippocampus bundle

and SLF, in the left cingulum–cingulate bundle and SLF–
temporal component, and in the right external capsule and
inferior cerebellar peduncle. Similarly, lower AoZ scores were
associated with higher MD bilaterally in the SLF as well as in
the left cingulum–hippocampus bundle and SLF–temporal

Table 1. Participant, Echocardiogram, and Medical History Characteristics of Fontan Participants With AoZ Scores and DTI Data

Variable Norwood (n=31) Non-Norwood (n=11) P Value*

Participant characteristics

Male sex, n (%) 24 (77) 6 (55) 0.24

Race, n (%) >0.99

Black 2 (6) 1 (9)

White 29 (94) 10 (91)

Hispanic ethnicity, n (%) 1 (3) 1 (9) 0.46

Genetic abnormality, n (%) 10 (32) 3 (27) >0.99

Birth weight, kg, mean�SD 3.3�0.6 3.2�0.7 0.44

Gestational age, wk, mean�SD 39.0�2.2 38.3�2.1 0.32

Echocardiogram characteristics

Age, d, median (range) 0 (0–42) 0 (0–35) 0.57

AoZ score, mean�SD �2.5�1.5 0.2�1.1 <0.001

Echocardiogram to first operation, d, median (range) 3 (1–14) 2 (1–532) 0.78

Medical history

Status at first operation

Age, d, median (range) 4 (1–44) 7 (2–532) 0.35

Neonatal status (age ≤30 d), n (%) 30 (97) 8 (73) 0.049

Open procedure, n (%) 31 (100) 4 (36) <0.001

Participants undergoing DHCA, n (%) 26 (90) 2 (50) 0.10

DHCA duration, min, median (range) 49 (0–107) 26.5 (0–93) 0.64

Total support duration, min, median (range) 127 (83–325) 111.5 (43–191) 0.19

Number of operative complications, median (range) 2 (0–10) 0 (0–3) 0.04

Total operations, median (range) 3 (2–4) 3 (1–4) 0.19

Total open operations, median (range) 3 (2–4) 2 (1–3) <0.001

Total operative complications, median (range) 3 (0–12) 4 (0–6) 0.56

Total catheterizations, median (range) 4 (2–8) 4 (1–8) 0.21

Total catheterization complications, median (range) 1 (0–4) 1 (0–4) 0.71

Seizure, n (%) 6 (20) 0 0.17

Stroke, n (%) 1 (3) 0 >0.99

Any neurological event, n (%)† 7 (23) 0 0.16

Concurrent measures

Age at MRI, y, mean�SD 14.3�2.9 12.6�2.4 0.10

Field strength, 3T, n (%) 16 (52) 5 (45) >0.99

Family social status, mean�SD‡ 46�14 49�12 0.62

AoZ score indicates ascending aorta Z score; DHCA, deep hypothermic cardiac arrest; DTI, diffusion tensor imaging; MRI, magnetic resonance imaging.
*P values for group comparisons were determined by Fisher exact tests for categorical measures, 2-sample t tests with equal variance for continuous measures represented with means,
and Wilcoxon rank sum tests for continuous measures represented with medians.
†Includes seizure, stroke, choreoathetosis, and meningitis.
‡Score on Hollingshead Four-Factor Index of Social Status, with higher scores indicating higher social status.
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component. No significant associations were observed
between AoZ scores and axial diffusivity.

Discussion
We sought to determine whether prenatal CBF, using AoZ score
at birth as its proxy, is associated with WM microstructure in

adolescent patients with repaired SV. Our group previously
identified widespread bihemispheric and brainstem abnormal-
ities in WM microstructure among adolescents who underwent
the Fontan procedure in early childhood.24 In this ancillary
study of the same cohort, we found that smaller ascending
aorta diameter at birth was associated with abnormalities of
WM microstructure in a subset of WM tracts, especially those

Table 2. Partial Pearson Correlation Coefficients of AoZ Scores With WM ROI Measures (n=42)

ROI FA AD RD MD

Body of the corpus callosum 0.20 (0.23) �0.23 (0.16) �0.25 (0.13) �0.29 (0.08)

Forceps major 0.28 (0.08) 0.20 (0.22) �0.20 (0.23) �0.05 (0.75)

Forceps minor 0.17 (0.29) �0.16 (0.34) �0.23 (0.17) �0.22 (0.18)

Middle cerebellar peduncle 0.23 (0.16) 0.04 (0.79) �0.18 (0.28) �0.09 (0.58)

PCT 0.37 (0.02) 0.08 (0.62) �0.24 (0.14) �0.15 (0.37)

Anterior thalamic radiation, LH 0.26 (0.12) �0.12 (0.47) �0.24 (0.14) �0.23 (0.17)

Anterior thalamic radiation, RH 0.28 (0.09) 0.15 (0.38) �0.17 (0.30) �0.06 (0.72)

Cerebral peduncle, LH 0.25 (0.12) 0.16 (0.33) �0.17 (0.31) �0.05 (0.77)

Cerebral peduncle, RH 0.17 (0.30) 0.13 (0.43) �0.10 (0.56) 0.01 (0.95)

Cingulum–cingulate bundle, LH 0.39 (0.01) �0.03 (0.88) �0.39 (0.02) �0.30 (0.07)

Cingulum–cingulate bundle, RH 0.24 (0.15) 0.07 (0.67) �0.14 (0.41) �0.05 (0.77)

Cingulum–hippocampus bundle, LH 0.18 (0.27) �0.15 (0.38) �0.36 (0.03) �0.33 (0.04)

Cingulum–hippocampus bundle, RH 0.42 (0.009) 0.17 (0.32) �0.46 (0.003) �0.23 (0.17)

Corticospinal tract, LH 0.11 (0.52) �0.18 (0.27) �0.21 (0.21) �0.24 (0.14)

Corticospinal tract, RH 0.05 (0.76) �0.22 (0.18) �0.22 (0.19) �0.29 (0.08)

External capsule, LH 0.25 (0.12) 0.04 (0.81) �0.27 (0.11) �0.17 (0.31)

External capsule, RH 0.30 (0.06) 0.03 (0.87) �0.33 (0.04) �0.23 (0.17)

Inferior cerebellar peduncle, LH 0.31 (0.05) 0.12 (0.46) �0.19 (0.26) �0.08 (0.62)

Inferior cerebellar peduncle, RH 0.40 (0.01) �0.04 (0.81) �0.33 (0.046) �0.24 (0.15)

Inferior fronto-occipital fasciculus, LH 0.36 (0.02) 0.18 (0.27) �0.31 (0.06) �0.15 (0.38)

Inferior fronto-occipital fasciculus, RH 0.36 (0.03) 0.15 (0.35) �0.24 (0.15) �0.09 (0.59)

Inferior longitudinal fasciculus, LH 0.41 (0.01) 0.13 (0.42) �0.30 (0.07) �0.16 (0.35)

Inferior longitudinal fasciculus, RH 0.38 (0.02) 0.15 (0.36) �0.26 (0.11) �0.12 (0.47)

Medial lemniscus, LH 0.05 (0.75) �0.09 (0.59) �0.11 (0.51) �0.12 (0.48)

Medial lemniscus, RH 0.19 (0.26) 0.09 (0.58) �0.12 (0.46) �0.04 (0.80)

Superior cerebellar peduncle, LH 0.04 (0.82) 0.01 (0.95) �0.08 (0.62) �0.05 (0.76)

Superior cerebellar peduncle, RH 0.26 (0.11) �0.02 (0.90) �0.27 (0.10) �0.20 (0.23)

SLF, LH 0.34 (0.04) �0.16 (0.35) �0.41 (0.01) �0.40 (0.01)

SLF, RH 0.23 (0.17) �0.17 (0.29) �0.37 (0.02) �0.36 (0.03)

SLF–temporal component, LH 0.39 (0.01) �0.17 (0.31) �0.45 (0.004) �0.46 (0.004)

SLF–temporal component, RH 0.17 (0.30) �0.11 (0.50) �0.28 (0.09) �0.27 (0.10)

Uncinate fasciculus, LH 0.20 (0.22) 0.15 (0.37) �0.15 (0.36) �0.05 (0.78)

Uncinate fasciculus, RH 0.20 (0.22) 0.09 (0.61) �0.15 (0.36) �0.08 (0.63)

Values are partial Pearson r (P value). P values were determined by partial Pearson correlation coefficients adjusting for sex, age at magnetic resonance imaging, scanner field strength, and
Norwood status. AD indicates axial diffusivity; AoZ score, ascending aorta Z score; FA, fractional anisotropy; LH, left hemisphere; MD, mean diffusivity; PCT, pontine crossing tract; RD,
radial diffusivity; RH, right hemisphere; ROI, region of interest; SLF, superior longitudinal fasciculus; WM, white matter.
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located in deeper regions of brain. Specifically, we found
relationships between AoZ scores and WM microstructure in
the PCT, inferior cerebellar peduncle, inferior fronto-occipital
fasciculus, inferior longitudinal fasciculus, and SLF regions and
in tracts relating to the cingulum, cingulate, and hippocampus.
In many of these tracts, lower AoZ scores were associated with
lower FA and higher RD, which may reflect disruption of
myelination or diminished axonal density. The region with the
most consistent disruption of WM, as reflected by low FA and
high RD and MD, was the left SLF, an important associative
tract connecting the 4 lobes of the brain with a role in many
cognitive functions, including attention, executive functions,
and language.28–30 Overall, our findings suggest that despite
the multiple intervening medical and surgical procedures,
prenatal CBF may exert a lasting influence on WM microstruc-
ture in certain regions of brain.

Our findings are consistent with a growing body of evidence
suggesting that reduced prenatal CBF and oxygen/nutrient
delivery have a significant impact on brain development in CHD.
Among a heterogeneous group of fetuses with CHD, those

fetuses with a lower percentage of combined ventricular output
from the aorta showed smaller total brain volumes.31 In the
same study, the N-acetyl aspartate:choline ratio, an indicator of
neuronal and axonal health, was found to be lowest in those
lacking antegrade blood flow through the aortic arch. Among
those fetuses with hypoplastic left heart syndrome, who would
be expected to have substantially reduced cerebral oxygena-
tion and perfusion, regional brain volumes in cortical and
subcortical gray matter and WM were smaller than in controls,
and cortical development appeared delayed.32 Sun and
colleagues measured cerebral oxygen consumption and found
a positive relationship with total brain volume in a cohort of
near-term fetuses with heterogeneous CHD, and measures of
oxygen delivery showed a trend in the same direction.4

Whereas prenatal CBF, using neonatal aorta diameter as a
proxy, has been previously associated with WM microstructure
at term, our cohort demonstrates that this association persists
to adolescence in at least some regions of the brain.20 This
relationship is particularly notable in our population, as SV
patients with CHD undergo multiple subsequent medical and

Figure. Relationships of ascending aorta Z scores (AoZ scores) with fractional anisotropy (FA) of the (A) left
superior longitudinal fasciculus (L SLF) and (B) L SLF–temporal branch, stratified by Norwood status.C, L SLF
in sagittal (left), coronal (middle), and axial (right) planes. “Hot” colors represent the voxel’s probability of
belonging to the L SLF, based on the Johns Hopkins University white matter tractography atlas.
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surgical stresses with potential for ongoing cerebral insult that
might be expected to dominate prenatal factors.33,34 A pattern
of reduced FA with increased RD has been observed previously
in WM of adolescents born preterm and very low birth
weight.33,35 It is possible that our finding of FA reduction and
RD enhancement in adolescence and the correlation with
reduced neonatal aorta diameter could reflect lastingWM injury
sustained very early in life, including the prenatal period.

The mechanism through which reduced prenatal CBF and
oxygen delivery may lead to abnormal WM development in
these regions is uncertain. It is possible that the location of
certain tracts may make them particularly vulnerable to
reduced prenatal CBF in SV. Cerebral vasculature undergoes
substantial development throughout the third trimester, with
perfusion gradually increasing to deeper regions via branching
of penetrating arteries.36 Areas with less mature vascular
structure are more vulnerable to reduced cerebral perfusion,
specifically WM in deep periventricular end zones as well as
more diffuse subcortical end/border zones.36,37 Furthermore,
CBF has a gradient throughout the brain, with much lower
flow rates in deep WM than in the cerebral cortex.36 Deep WM
may be particularly vulnerable in fetuses with SV, in whom
reduced cerebral perfusion may injure nascent oligodendro-
cytes only to compromise subsequent myelination, with
lasting effects.35,38 Many of the tracts where we found that
WM microstructure correlated with aorta diameter at birth are
located in deep regions that would be dependent on a less-
developed vasculature in the third trimester and potentially
would be more vulnerable to low cerebral perfusion.

An alternative hypothesis is that the timing of emergence
and maturation of different WM tracts creates a heightened
vulnerability in certain developing tracts during the late fetal
period.39 WM tracts in the brain emerge and develop at
variable times; broadly speaking, limbic and commissural
tracts tend to develop earliest, followed by projection and
association tracts.40,41 Except for the PCT, many of the
regions in which we found correlations are association tracts
that emerge by about 19 weeks of gestation and undergo
significant maturation in the third trimester. Although all of
the tracts examined could be adversely affected by deficient
CBF that results in damage to nascent oligodendrocytes, the
early-developing tracts in which we identified associations
would be especially good candidates for CBF-related oligo-
dendrocyte injury to result in abnormal myelination. This
pattern would not fully explain our results; for example, the
PCT undergoes substantial transformation before that time
period. Nonetheless, rapid growth of several of these WM
tracts in the late second and third trimesters may in part
explain the pattern of associations we found between aorta
diameter at birth and WM microstructure.

Our study has limitations. Smaller size of the aorta at birth
is associated with greater operative complexity, including

longer duration of DHCA and total support, which may
confound our results. Of note however, in our prior DTI
analysis with a larger sample, these medical variables were
not independently associated with DTI measures. We did not
have sufficient power to analyze the effect of aortic atresia on
WM microstructure; however, we would anticipate that the
patients with aortic atresia would have the smallest ascending
aortas. Although we adjusted for Norwood status in our
analyses, our sample size had insufficient power to detect
effect modification by Norwood status. We did not find a
widespread correlation between AoZ scores and WM
microstructure. Aside from the PCT, the WM tracts found to
be significantly associated with AoZ scores at term are a
subset of those that were previously found to differ in post-
Fontan adolescents compared with a control group.24 We
hypothesized that only certain tracts are affected by dimin-
ished prenatal CBF because of their location in brain or the
timing of maturation; however, it is also possible that the lack
of more widespread correlation is due to the small sample
size in our study. Finally, given our small sample size, we also
did not examine relationships to neurodevelopmental out-
come measures. Our findings should be considered explora-
tory and interpreted with caution.

In conclusion, these data suggest that fetal CBF, using
ascending aorta diameter at birth as its proxy, may have a
lasting impact on cerebral WM microstructure in patients with
CHD. Studies with a larger sample size are needed to
determine the broader relationship among aorta diameter at
birth, postnatal medical and surgical factors, and WM
microstructure in adolescence.
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SUPPLEMENTAL MATERIAL 
 



Table S1. Subject, echocardiogram, and medical history characteristics of Fontan subjects with DTI data. 

Variables With AoZ score (n = 42) Without AoZ score (n = 60) P value* 

Subject characteristics 
  

 

  Male sex, n (%) 30 (71) 31 (52) 0.06 

  Race, n (%) 
  

0.31 

    Asian 0 3 (5)  

    Black 3 (7) 2 (3)  

    Caucasian 39 (93) 55 (92)  

  Hispanic ethnicity, n (%) 2 (5) 9 (15) 0.12 

  Genetic abnormality, n (%) 13 (31) 27 (45) 0.22 

  Birth weight, kg, mean ± SD 3.3 ± 0.6 3.2 ± 0.6 0.68 

  Gestational age, wk, mean ± SD 38.8 ± 2.1 38.9 ± 2.5 0.87 

Echocardiogram characteristics 
  

 

  Age, d, median (range) 0 (0 to 42) 
 

 

  AoZ score, mean ± SD –1.8 ± 1.8 
 

 

  Echocardiogram to first operation, d, median (range) 3 (1 to 532) 
 

 

Medical history 
  

 

  Status at first operation 
  

 



    Age, d, median (range) 4.5 (1 to 532) 7.5 (1 to 757) 0.02 

    Neonatal status (age ≤ 30 d), n (%) 38 (90) 41 (68) 0.009 

    Norwood status, n (%) 31 (74) 9 (15) <0.001 

    Open procedure, n (%) 35 (83) 22 (37) <0.001 

      Subjects undergoing DHCA, n (%) 28 (85) 8 (47) 0.008 

      DHCA duration, min, median (range) 49 (0 to 107) 0 (0 to 66) 0.01 

      Total support duration, min, median (range) 125 (43 to 325) 86 (45 to 156) <0.001 

      Number of operative complications, median (range) 2 (0 to 10) 0 (0 to 5) <0.001 

  Total operations, median (range) 3 (1 to 4) 3 (1 to 5) 0.69 

  Total open operations, median (range) 3 (1 to 4) 2 (1 to 5) <0.001 

  Total operative complications, median (range) 3 (0 to 12) 2 (0 to 9) 0.005 

  Total catheterizations, median (range) 4 (1 to 8) 4 (2 to 17) 0.35 

  Total catheterization complications, median (range) 1 (0 to 4) 0 (0 to 5) 0.10 

  Seizure, n (%) 6 (15) 6 (10) 0.54 

  Stroke, n (%) 1 (2) 9 (15) 0.04 

  Any neurological event, n (%)† 7 (17) 16 (27) 0.33 

Concurrent measures 
  

 

  Age at MRI, yr, mean ± SD 13.8 ± 2.9 15.3 ± 2.9 0.01 



  Field strength, 3T, n (%) 21 (50) 21 (35) 0.15 

DTI indicates diffusion tensor imaging; AoZ, ascending aorta Z; DHCA, deep hypothermic cardiac arrest. 

*P values for group comparisons were determined by Fisher’s exact tests for categorical measures, 2-sample t tests with equal variance 

for continuous measures represented with means, and Wilcoxon rank sum tests for continuous measures represented with medians. 

†Includes seizure, stroke, choreoathetosis, and meningitis. 

  



Table S2. WM ROI measures (n = 42). 

ROIs FA AD (x1000) RD (x1000) MD (x1000) 

Body of the corpus callosum 0.59 ± 0.05 1.59 ± 0.08 0.55 ± 0.07 0.89 ± 0.06 

Forceps major 0.63 ± 0.03 1.45 ± 0.05 0.45 ± 0.04 0.79 ± 0.03 

Forceps minor 0.44 ± 0.02 1.24 ± 0.06 0.55 ± 0.04 0.78 ± 0.04 

Middle cerebellar peduncle 0.49 ± 0.02 1.10 ± 0.04 0.49 ± 0.02 0.69 ± 0.02 

PCT 0.45 ± 0.03 1.08 ± 0.04 0.55 ± 0.04 0.72 ± 0.04 

Anterior thalamic radiation, LH 0.40 ± 0.02 1.14 ± 0.04 0.61 ± 0.03 0.78 ± 0.03 

Anterior thalamic radiation, RH 0.39 ± 0.02 1.14 ± 0.04 0.61 ± 0.02 0.78 ± 0.03 

Cerebral peduncle, LH 0.61 ± 0.03 1.47 ± 0.06 0.49 ± 0.03 0.81 ± 0.03 

Cerebral peduncle, RH 0.61 ± 0.02 1.47 ± 0.06 0.48 ± 0.02 0.81 ± 0.03 

Cingulum-cingulate bundle, LH 0.46 ± 0.04 1.18 ± 0.06 0.55 ± 0.04 0.76 ± 0.04 

Cingulum-cingulate bundle, RH 0.41 ± 0.04 1.13 ± 0.07 0.59 ± 0.05 0.77 ± 0.05 

Cingulum-hippocampus bundle, LH 0.41 ± 0.04 1.20 ± 0.07 0.61 ± 0.04 0.81 ± 0.04 

Cingulum-hippocampus bundle, RH 0.41 ± 0.04 1.17 ± 0.07 0.60 ± 0.04 0.79 ± 0.04 

Corticospinal tract, LH 0.58 ± 0.02 1.32 ± 0.04 0.48 ± 0.02 0.76 ± 0.02 

Corticospinal tract, RH 0.58 ± 0.02 1.32 ± 0.04 0.47 ± 0.02 0.76 ± 0.02 

External capsule, LH 0.35 ± 0.02 1.13 ± 0.04 0.65 ± 0.03 0.81 ± 0.02 



External capsule, RH 0.36 ± 0.02 1.14 ± 0.04 0.65 ± 0.03 0.81 ± 0.03 

Inferior cerebellar peduncle, LH 0.45 ± 0.03 1.22 ± 0.05 0.59 ± 0.04 0.80 ± 0.03 

Inferior cerebellar peduncle, RH 0.45 ± 0.03 1.18 ± 0.05 0.57 ± 0.04 0.78 ± 0.04 

Inferior fronto-occipital fasciculus, LH 0.46 ± 0.02 1.23 ± 0.04 0.58 ± 0.03 0.80 ± 0.02 

Inferior fronto-occipital fasciculus, RH 0.45 ± 0.02 1.22 ± 0.04 0.57 ± 0.03 0.79 ± 0.03 

Inferior longitudinal fasciculus, LH 0.44 ± 0.02 1.24 ± 0.04 0.60 ± 0.03 0.81 ± 0.03 

Inferior longitudinal fasciculus, RH 0.46 ± 0.02 1.25 ± 0.04 0.58 ± 0.03 0.80 ± 0.03 

Medial lemniscus, LH 0.51 ± 0.03 1.32 ± 0.07 0.56 ± 0.04 0.81 ± 0.04 

Medial lemniscus, RH 0.51 ± 0.03 1.30 ± 0.06 0.55 ± 0.04 0.80 ± 0.04 

Superior cerebellar peduncle, LH 0.50 ± 0.03 1.46 ± 0.08 0.64 ± 0.05 0.91 ± 0.04 

Superior cerebellar peduncle, RH 0.49 ± 0.03 1.46 ± 0.08 0.67 ± 0.05 0.93 ± 0.05 

SLF, LH 0.42 ± 0.02 1.09 ± 0.03 0.56 ± 0.03 0.74 ± 0.02 

SLF, RH 0.43 ± 0.02 1.10 ± 0.04 0.55 ± 0.03 0.73 ± 0.03 

SLF - temporal component, LH 0.46 ± 0.03 1.14 ± 0.03 0.55 ± 0.03 0.74 ± 0.02 

SLF - temporal component, RH 0.47 ± 0.03 1.17 ± 0.05 0.55 ± 0.03 0.75 ± 0.03 

Uncinate fasciculus, LH 0.38 ± 0.03 1.13 ± 0.04 0.60 ± 0.03 0.78 ± 0.03 

Uncinate fasciculus, RH 0.38 ± 0.03 1.11 ± 0.05 0.55 ± 0.03 0.74 ± 0.03 



WM indicates white matter; ROI, region of interest; FA, fractional anisotropy; AD, axial diffusivity; RD, radial 

diffusivity; MD, mean diffusivity; PCT, pontine crossing tract; LH, left hemisphere; RH, right hemisphere; SLF, 

superior longitudinal fasciculus.  

Values are means ± SD 

    
 


