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Abstract

Introduction

Chronic exposure to stress has been shown to impact a wide range of health-related out-

comes in older adults. Despite extensive animal literature revealing deleterious effects of

biological markers of stress on the dentate gyrus subfield of the hippocampus, links

between hippocampal subfields and psychological stress have not been studied in humans.

This study examined the relationship between perceived stress and hippocampal sub-

field volumes among racially/ethnically diverse older adults.

Methods and Materials

Between July 2011 and March 2014, 116 nondemented participants were consecutively

drawn from the Einstein Aging Study, an ongoing community-based sample of individuals

over the age of 70 residing in Bronx, New York. All participants completed the Perceived

Stress Scale, Geriatric Depression Scale, and underwent 3.0 T MRI. FreeSurfer was used

to derive total hippocampal volume, hippocampal subfield volumes (CA1, CA2/CA3, CA4/

Dentate Gyrus (CA4/DG), and subiculum), entorhinal cortex volume, whole brain volume,

and total intracranial volume.

Results

Linear regression analyses revealed that higher levels of perceived stress were associated

with smaller total hippocampal volume (β = -0.20, t = -2.40, p = 0.02), smaller CA2/CA3

volumes (β = -0.18, t = -2.24, p = 0.03) and smaller CA4/DG volumes (β = -0.19, t = -2.28,
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p = 0.03) after controlling for total intracranial volume, age, gender, and race. These findings

remained unchanged after removal of individuals with clinically significant symptoms of

depression.

Discussion

Our findings provide evidence of a relationship between a direct indicator of psychological

stress and specific hippocampal subfield volumes in elderly individuals. These results high-

light the importance of clinical screening for chronic stress in otherwise healthy older adults.

Introduction
Many biological and environmental factors are thought to contribute to age-related individual
differences in health. Cumulative exposure to stress, characterized as a biological, psychologi-
cal, or behavioral response to a real or perceived threat, has been shown to impact a wide range
of health outcomes in older adults[1–5]. Although the stress response is adaptive or even pro-
tective on a short-term basis, prolonged stress may produce deleterious effects on health,
including brain changes[6–9]. Stress can be measured at the level of environmental demands
(e.g., major life events or daily hassles), at the level of perceived stress, and by examining bio-
logical consequences of stress on the hypothalamic pituitary axis (HPA) or the autonomic ner-
vous system (e.g., cortisol). Although some research has linked markers of biological stress to
brain structure, fewer studies have examined direct measures of psychological stress and their
relationships to the brain. Here, we focus on the hippocampus and the entorhinal cortex
because they are particularly sensitive to normal aging effects and age-related pathology. In
addition, the hippocampus is part of a connected brain network that regulates the HPA axis
that promotes adaptation to stressors (allostasis) and, when compromised, contributes to mal-
adaptive responses to stressors (excessive allostatic load)[10]. The hippocampus contains a
large number of receptors for stress hormones such as glucocorticoids and is uniquely vulnera-
ble to the negative effects of stressful experiences[6, 11]. Animal models have established that
the hippocampal formation comprises multiple subfields with distinct histology, connectivity,
and function[12]. Despite extensive examination in animals[13] that has found links between
stress and the dentate gyrus subfield of the hippocampus, associations between hippocampal
subfield integrity and psychological stress have not been studied in older humans[14]. Our
focus on older adults is driven by the observation that hippocampal subfields are differentially
affected by age across individuals. The causes and behavioral consequences of individual differ-
ences in hippocampal subfields among older adults are poorly understood. Our study sought
to determine whether measures of psychological stress were related to these individual differ-
ences in hippocampal subfields among older adults. We hypothesize that higher levels of per-
ceived stress will be associated with smaller total hippocampal volumes and hippocampal
subfield volume (CA4/Dentate Gyrus (CA4/DG)) among a racially/ethnically diverse sample
of nondemented community-dwelling older adults.

Materials and Methods

Participants
Between July 2011 and March 2014, a subset of 116 older adults was consecutively drawn from
the Einstein Aging Study (EAS), an ongoing community-based volunteer sample of individuals
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over the age of 70 residing in Bronx, New York. EAS study design and methods have been
described in detail elsewhere[15]. Briefly, potential participants were recruited through system-
atic sampling from Bronx County voter registration lists from the New York City Board of
Elections. Participants were excluded who report severe sensory loss or medical conditions
(including psychiatric symptomatology such as active hallucinations) that would interfere with
completion of the in-house assessment, were non-English speakers, or were institutionalized.
In addition to these exclusion criteria, participants were ineligible for the neuroimaging sub-
study if they were diagnosed with dementia or were ineligible for an MRI (e.g., unsafe metallic
implants, claustrophobia). Dementia diagnosis was based on standardized clinical criteria from
the Diagnostic and Statistical Manual, Fourth Edition (DSM-IV)[16] and required impairment
in memory plus at least one additional cognitive domain as well as evidence of cognitive-related
functional decline. Diagnoses were assigned at consensus case conferences attended by a study
neurologist and neuropsychologist and included a comprehensive review of neuropsychologi-
cal test results, relevant neurological signs and symptoms, and functional status. Written
informed consent was obtained from all participants in accordance with study protocols
approved by the Institutional Review Board of the Albert Einstein College of Medicine.

Clinical Assessment
General cognitive status was assessed with the Blessed Information-Memory-Concentration
test (BIMC; [17]). Scores range from 0 to 33, with higher scores reflecting greater global cogni-
tive impairment. Depression was also assessed as previous studies have reported a relationship
between depression and stress in older adults[18, 19] as well as depression and hippocampal
integrity in older adults[20, 21]. Depressive symptoms were assessed using the 15-item Geriat-
ric Depression Scale (GDS) in which participants respond either “yes” or “no” to 15 depressive
symptoms experienced over the past week. Total GDS scores range from 0 to 15 with higher
scores reflecting greater depressive symptomatology. Clinically significant depression was
defined using a cut-off of 5 or greater [22].

Stress Assessment
The 14-item Perceived Stress Scale (PSS-14) is a global assessment of an individual’s perception
of psychological stress consisting of items that measure perceived stress experienced during the
last month[23]. We selected the PSS-14 as a sensitive measure of chronic stress associated with
ongoing life circumstances as well as possible future events. We have previously showed that
the PSS-14 has a reliable factor structure and predictive validity in our larger older adult sam-
ple[18]. Additionally, we have shown that the PSS-14 measurement is stable over a 2-year
period (ICC = 0.68) among older adults, demonstrating that it can capture the persistent nature
of chronic stress.[5] The PSS-14 contains seven negative items (questions 1, 2, 3, 8, 11, 12, and
14) and seven positive items (questions 4, 5, 6, 7, 9, 10, and 13) with each item rated on a five
point Likert-scale as follows: 0 = “never,” 1 = “almost never,” 2 = “sometimes,” 3 =“fairly
often,” and 4 = “very often.” Total scores are calculated after reverse keying positive item scores
and summing across items. Total scores range from 0 to 56, with higher scores reflecting
greater perceived stress.

MRI Acquisition
Imaging was performed using a 3.0 T MRI scanner (Achieva Quasar TX; Philips Medical Sys-
tems, Best, the Netherlands) and 32-channel head coil (Sense Head Coil; Philips Medical Sys-
tems). T1-weighted whole-head structural imaging was performed using sagittal three-
dimensional magnetization-prepared rapid acquisition gradient echo (MPRAGE) with TR/TE
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9.9/4.6ms; 240 mm2 field of view; 240×240 mmmatrix; partition thickness, 1mm; and parallel
acceleration factor 2.0.

Image Processing
MRI data were processed with the FreeSurfer software package (http://surfer.nmr.mgh.
harvard.edu/). Technical details of the development and validation of FreeSurfer have been
previously described[24–26]. Briefly, skull stripping is achieved using a hybrid watershed/
deformation procedure followed by automated Talairach transformation and segmentation of
subcortical white and gray matter volumetric structures[26, 27]. FLAIR images were used for
pial surface refinement. Hippocampal subfield volumes were measured based on methods
described in Van Leemput and colleagues[28] that use Bayesian inference and a statistical
model of the medial temporal lobe. The current analyses focused on four hippocampal sub-
fields of interest: CA1, CA2/CA3, CA4/Dentate Gyrus (CA4/DG), and subiculum. The ana-
tomical borders used to delineate these subdivisions are described fully in Van Leemput et al
[28]. Segmentation results were visually inspected for errors in all datasets and manual edits
were performed as needed. Entorhinal cortex (EC) and total hippocampal volume (HIP) were
also obtained as primary MRI-derived variables of interest. The entorhinal cortex has been
shown to be involved in the pathophysiology of Alzheimer’s disease[29, 30]. Whole brain
(WB) volume was obtained as a control that was not thought to be associated with measures of
perceived stress. Additionally, we controlled for differences in head size using estimated total
intracranial volume (TICV) that was calculated based on procedures described in[31].

Statistical Analyses
Statistical analyses were conducted using IBM SPSS Statistics for Windows, Version 22.0. (IBM
Corp.; Armonk, NY). Age and education were examined as potential covariates using Pearson
product-moment correlation coefficients. Race and gender were examined as potential covari-
ates using Student’s t-tests. Pearson correlation coefficients were utilized to examine relation-
ships between perceived stress and MRI-derived variables of interest (CA1, CA2/CA3, CA4/
DG, subiculum, EC, HIP). Separate linear regression analyses were performed to examine per-
ceived stress as an independent variable and MRI-derived variables of interest (CA1, CA2/
CA3, CA4/DG, subiculum, EC, HIP) as dependent variables, with TICV, age, gender, and race
as covariates. Linear regression was repeated with whole brain volume as a dependent variable
to establish specificity of the findings.

Results

Sample Characteristics
Sample demographics, perceived stress, and MRI-derived volumes of interest are presented in
Table 1. Due to unequal distributions of individuals across all ethnicity categories, we elected
to focus on the dichotomous racial categories of “Caucasian” and “Not Caucasian.” As we did
not have a priori laterality hypotheses, left and right volumes for all MRI variables were com-
bined to reduce the number of statistical comparisons.

Simple Correlations
Pearson correlation coefficients revealed that older age was associated with smaller brain vol-
umes in HIP (r = -0.42, p≤0.01), CA2/CA3 (r = -0.32, p≤0.01), CA4/DG (r = -0.32, p≤0.01),
and subiculum (r = -0.33, p≤0.01). Age was not associated with PSS-14 (r = 0.15, p = 0.12).
Individuals with higher perceived stress had smaller regional brain volumes in HIP (r = -0.28,
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p≤0.01), CA2/CA3 (r = -0.26, p≤0.01), and CA4/DG (r = -0.26, p≤0.01) (S1 and S3 Figs). Men
had larger volumes across all hippocampal regions of interest (range t = -2.92 to -5.06,
p≤0.01all values) but gender was not associated with perceived stress (t = 1.43, p = 0.16). Edu-
cation and race were not associated with the primary variables of interest, with the exception of
Caucasians having larger CA1 subregion volumes (t = 2.57, p≤0.01). Because of their correla-
tions with primary variables of interest, age, gender, and race were included as covariates in
subsequent analyses.

Perceived Stress and Hippocampal Subfield and Entorhinal Cortex
Volumes
Linear regression models assessing the effect of perceived stress on hippocampal subfield and
entorhinal cortex volumes are shown in Table 2. The model of the relationship of PSS-14 and
CA2/CA3 volume controlling for TICV, age, gender, and race (F(5, 115) = 9.33, p≤0.01, R2 =
0.30) revealed higher levels of perceived stress were associated with smaller CA2/CA3 volumes.
The model of the relationship of PSS-14 and CA4/DG volume controlling for TICV, age, gen-
der, and race (F(5, 115) = 8.53, p≤0.01, R2 = 0.28) revealed higher levels of perceived stress were
associated with smaller CA4/DG volumes. The contributions of additional covariates to these
models are shown in Table 2. Models of associations between PSS-14 and CA1, subiculum,
and EC volumes were not significant.

Perceived Stress and Total Hippocampal andWhole Brain Volumes
Linear regression models assessing the effect of perceived stress on total hippocampal volume
and whole brain volume are shown in Table 3. The model of the relationship of PSS-14 and
total hippocampal volume controlling for TICV, age, gender, and race (F(5, 115) = 8.35, p≤0.01,
R2 = 0.28) revealed that higher levels of perceived stress were associated with smaller HIP and

Table 1. Sample Demographics, Perceived Stress, and MRI Variables of Interest.

Total Sample (N = 116)

Age, years, mean (SD) 79.42 (5.04)

Gender, %, women 63.8

Race, %, Caucasian 50.9

Education, years, mean (SD) 14.12 (3.38)

BIMC, total errors, median (range) 2.00 (0–13)

PSS-14, total score, mean (SD) 15.76 (7.85)

GDS, total score, mean (SD) 1.44 (1.52)

CA1 volume, mean (SD) 614.35 (70.42)

CA2/CA3 volume, mean (SD) 1696.07 (206.56)

CA4/Dentate gyrus volume, mean (SD) 956.77 (117.93)

Subiculum volume, mean (SD) 1060.85 (126.48)

Entorhinal cortex volume, mean (SD) 3220.69 (651.53)

Total Hippocampal volume, mean (SD) 6524.98 (806.00)

Whole brain volume, mean (SD) 981346.38 (103979.86)

TICV volume, mean (SD) 1343678.53 (204396.79)

Note: SD = Standard deviation; BIMC = Blessed Information-Memory-Concentration Test, score range

0–33; PSS-14 = Perceived Stress Scale– 14 item, score range 0–63; GDS = Geriatric Depression Scale,

score range 0–15; TICV = Total Intracranial Volume. MRI volumetric data are given in cubic millimeters.

doi:10.1371/journal.pone.0154530.t001
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older age. The contributions of additional covariates to the model are shown in Table 3. The
model of the association between PSS-14 and whole brain volume was not significant.

Perceived Stress, Hippocampal Regions of Interest, and Depressive
Symptoms
Depressive symptoms were not normally distributed in our sample, with the majority of partic-
ipants reporting one or no symptoms out of a total possible score of 15 (sample mean (SD) =
1.44(1.52)). Therefore, we elected to focus on the contribution of clinically significant depres-
sive symptoms (GDS�5) to our findings, with seven (6%) individuals meeting these criteria.
All linear regression analyses were repeated with the removal of these individuals and the pri-
mary pattern of findings remained unchanged.

Perceived Stress, Hippocampal Regions of Interest, and Global
Cognitive Function
In order to assess the possible contribution of global cognitive function to our findings, Spear-
man’s correlations were performed to examine the relationship between BIMC and PSS-14 and
the hippocampal regions of interest. Spearman’s correlations were chosen because the BIMC
data were not normally distributed. BIMC was not correlated with PSS-14, but poorer perfor-
mance on the BIMC was associated with smaller HIP (rs = -0.18, p = 0.04), CA2/CA3 (rs =
-0.22, p = 0.02), CA4/DG (rs = -0.19, p = 0.04), subiculum (rs = -0.27, p≤0.01), and EC (rs =
-0.24, p = 0.01). All linear regression analyses were repeated with the inclusion of BIMC as a
covariate and the primary pattern of findings remained unchanged.

Table 2. Linear Regression Models Assessing the Effect of Perceived Stress on Hippocampal Subfield and Entorhinal Cortex Volumes.

CA1 CA2/CA3 CA4/Dentate Gyrus Subiculum Entorhinal Cortex

Beta t p-value Beta t p-value Beta t p-value Beta t p-value Beta t p-value

PSS-14 -0.08 -1.05 0.30 -0.18 -2.24 0.03 -0.19 -2.28 0.03 -0.02 -0.19 0.85 0.04 0.45 0.65

Age -0.12 -1.52 0.13 -0.27 -3.25 ≤0.01 -0.26 -3.12 ≤0.01 -0.31 -3.72 ≤0.01 -0.07 -0.77 0.45

Gender 0.13 1.34 0.18 0.16 1.61 0.11 0.20 2.00 0.05 0.16 1.55 0.13 0.20 1.95 0.05

Race -0.12 -1.58 0.12 -0.10 -1.25 0.22 -0.10 -1.15 0.26 -0.12 -1.36 0.18 -0.23 -2.74 0.01

TICV 0.45 4.77 ≤0.01 0.24 2.41 0.02 0.18 1.75 0.08 0.25 2.44 0.02 0.27 2.64 0.01

Note: PSS-14 = Perceived Stress Scale; TICV = Total Intracranial Volume.

doi:10.1371/journal.pone.0154530.t002

Table 3. Linear Regression Models Assessing the Effect of Perceived Stress on Total Hippocampal andWhole Brain Volumes.

Hippocampus Whole Brain

Beta t p-value Beta t p-value

PSS-14 -0.20 -2.40 0.02 0.01 0.21 0.83

Age -0.38 -4.53 ≤0.01 -0.33 -7.36 ≤0.01

Gender 0.10 1.03 0.31 -0.00 -0.06 0.95

Race -0.07 -0.77 0.44 -0.00 -0.09 0.93

TICV 0.13 1.23 0.22 0.83 15.24 ≤0.01

Note: PSS-14 = Perceived Stress Scale; TICV = Total Intracranial Volume.

doi:10.1371/journal.pone.0154530.t003
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Discussion
Among older adults, higher levels of perceived chronic stress are associated with smaller vol-
umes of CA4/dentate gyrus and CA2/CA3, subfields of the hippocampus that are thought to be
uniquely sensitive to the modulation of stress[13]. We observed these relationships even after
statistically controlling for age, gender, race, and after excluding individuals with significant
depressive symptoms. Prior studies have linked HPA axis dysfunction with total hippocampal
volume loss in clinical populations with Cushing’s syndrome[32], certain psychiatric disorders
[33], including PTSD[34–36], and Alzheimer’s disease[37–39]. Lupien and colleagues reported
that older adults with persistently elevated cortisol levels over a 5–6 year period had smaller
hippocampal volumes and demonstrated poor performance on memory tasks, though stress
was not directly measured[40]. Our study extends these findings by demonstrating a relation-
ship between specific subfields of the hippocampus and psychological stress among older indi-
viduals living in the community.

Although prior human studies have measured total volume of the hippocampus, animal
studies have demonstrated that the hippocampal formation is a heterogeneous structure with
anatomically and functionally differentiated subfields[13] that may change differentially with
age[41]. Input to the hippocampus occurs through the entorhinal cortex and then proceeds to
the dentate gyrus, which in turn extends to the CA3 pyramidal neurons. The dentate gyrus is a
region of sustained neurogenesis throughout adult life[41, 42]. Adult neurogenesis through
neuronal cell proliferation, differentiation, and cell survival has been observed in most mam-
mals, including humans[14, 43]. Neurogenesis in the dentate gyrus occurs in the subgranular
zone where progenitor cells differentiate and eventually extend to CA3 pyramidal cells[13].
Neurogenesis declines with advanced age and may be associated with cognitive decline[14, 44].

Our finding that perceived stress is associated with preferential volume loss in CA4/DG and
CA2/CA3 is largely consistent with animal models; both acute and chronic stress (e.g., electric
shock, restraint, social isolation, predator odor) may inhibit cell proliferation, reduce neuronal
differentiation and jeopardize new cell survival in the dentate gyrus[14, 42, 45]. Other findings
indicate that perseveration of cells in the dentate gyrus is involved in HPA regulation and the
development of anxiety-related behaviors, suggesting that neurogenesis in the dentate gyrus is
integral to emotion regulation and to the pathophysiology of stress disorders[13], although
some have cautioned against an oversimplification of this relationship [46]. Given the direct
excitatory connections between dentate gyrus and CA3, it seems reasonable that dysfunction in
the dentate gyrus may exert negative downstream effects on the CA2/CA3 subregion, a possi-
bility supported by our observation of smaller volumes in this area. Proposed biological mecha-
nisms for these relationships include elevated levels of circulating glucocorticoids released by
stress-associated HPA activity and increased levels of cytokines such as interleukin-I[14, 47].
Our finding that higher perceived stress was associated with smaller CA4/DG and CA2/CA3
volumes but not entorhinal cortex is likely a reflection of our study sample that excluded per-
sons with dementia. The entorhinal cortex is known to be involved in the pathophysiology of
Alzheimer’s disease[29, 30]. Our observed pattern of stress and brain volume associations does
not preclude a potential contribution of stress to the development of dementia, but rather sug-
gests that stress may operate as an independent deleterious process in older adults even in the
absence of other well-known neuropathological conditions.

As our study is cross-sectional, we are unable to determine causality; high levels of perceived
stress may result in smaller hippocampal subfield volumes or, perhaps smaller hippocampal
subfield volumes confer heightened vulnerability to the experience of stress in older adults.
Future longitudinal studies are needed to fully examine this complex issue. In addition, in this
study we used brain volumetric measures as a surrogate marker of neurodegeneration.
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However, measuring functional status of cell populations in these subregions requires further
study using neuroimaging modalities such as fMRI, diffusion tensor imaging, or magnetic reso-
nance spectroscopy imaging. Finally, our study focused on older adults. Future studies are
needed to determine whether these same relationships would be observed in other age groups
in individuals across the lifespan.
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