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SALM4 suppresses excitatory synapse
development by cis-inhibiting trans-synaptic
SALM3–LAR adhesion
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Hyeyeon Kang6, Tae-Yong Choi7, Jungyong Nam1, Won Mah4, Dongmin Lee8, Seong-Gyu Lee9, Ho Min Kim9,

Hyun Kim8, Se-Young Choi7, Ji Won Um6, Myoung-Goo Kang5,9, Yong Chul Bae4, Jaewon Ko2 & Eunjoon Kim1,3

Synaptic adhesion molecules regulate various aspects of synapse development, function and

plasticity. These functions mainly involve trans-synaptic interactions and positive regulations,

whereas cis-interactions and negative regulation are less understood. Here we report that

SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses

excitatory synapse development through cis inhibition of SALM3, another SALM family

protein with synaptogenic activity. Salm4-mutant (Salm4� /� ) mice show increased

excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits

trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine

phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly,

deletion of Salm3 in Salm4� /� mice (Salm3� /� ; Salm4� /� ) normalizes the increased

excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory

synapses via cis inhibition of the trans-synaptic SALM3–LAR adhesion.
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S
ynaptic adhesion molecules regulate synapse development,
function and plasticity. Previous studies have identified a
large number of synaptic adhesion molecules, including

neuroligins and neurexins1–11. The known functions of these
molecules include aspects of trans-synaptic interactions between
pre- and postsynaptic adhesion molecules and positive synapse
regulations (that is, promotion of synapse development,
maturation and maintenance), although opposite aspects
(cis-interactions between nearby synaptic adhesion molecules
on pre- or postsynaptic membranes and negative regulations) are
less well understood.

Synaptic cell adhesion-like molecules (SALMs; also known as
Lrfns) represent a family of leucine-rich repeat (LRR)-containing
synaptic cell adhesion molecules, with five known members:
SALM1/Lrfn2, SALM2/Lrfn1, SALM3/Lrfn4, SALM4/Lrfn3
and SALM5/Lrfn5 (refs 12–15). SALMs share a similar domain
structure, containing six LRRs, an immunoglobulin (Ig) domain, a
fibronectin III (FNIII) domain in the extracellular region, a
transmembrane domain and a cytoplasmic region. Despite these
apparent similarities in their overall structures, however, SALMs
also possess several structurally distinct features. For instance, their
cytoplasmic regions differ substantially in their lengths and amino-
acid (aa) sequences. In addition, SALM1–3 (but not SALM4 and -5)
contain a C-terminal PDZ-binding motif that binds to the PDZ
domains of postsynaptic density (PSD)-95 (refs 12–15).

Functionally, SALMs regulate neurite outgrowth and branch-
ing12,16,17. In addition, they have been implicated in the
regulation of synapse development and function. For instance,
SALM1 interacts with the GluN1 subunit of NMDA receptors
(NMDARs), and promotes dendritic clustering of NMDARs in
cultured neurons12. SALM2 associates with both NMDARs and
AMPA receptors (AMPARs), and promotes the development of
excitatory (but not inhibitory) synapses13. SALM3 and SALM5
(but not the other SALMs) have synaptogenic activities,
promoting both excitatory and inhibitory presynaptic
differentiation in contacting axons18 via trans-synaptic
interactions with presynaptic LAR family receptor tyrosine
phosphatases19. However, with the exception of SALM3, the
functions of the SALMs have not been examined using in vivo
approaches, such as mouse genetics.

Although individual SALM isoforms are structurally and
functionally distinct, they have been shown to associate with one
another and are likely to form larger complexes20. Specifically,
SALM1–3 (but not SALM4 and -5) were found to form a
co-immunoprecipitable complex in the rat forebrain. In
heterologous cells, all of the SALMs can interact with one
another, further extending the complexity of inter-SALM
interactions20. In addition to these cis-interactions, SALMs can
participate in trans-interactions, with SALM4 and -5 forming
homophilic and trans-cellular adhesion complexes20. These results
suggest that the individual SALM isoforms are unlikely to be
physically or functionally isolated, but instead may participate in
intricate interplays with other SALM isoforms. However, the
details of such interactions remain largely unexplored.

In the present study, we generated and characterized
Salm4-mutant (Salm4� /� ) mice. To our surprise, we found that
Salm4� /� mice display increased excitatory and inhibitory synapse
numbers in the hippocampus. Our data suggest that SALM4
cis-interacts with SALM3, inhibits the trans-synaptic interaction of
SALM3 with presynaptic LAR and suppresses SALM3-dependent
presynaptic differentiation at excitatory synapses.

Results
SALM4 expression pattern in the CNS. In order to understand
the functions of SALM4, we first determined the expression

patterns of Salm4 in the nervous system. SALM4 mRNAs were
detected in the mouse brain and spinal cord at embryonic days 16
and 18, as determined by in situ hybridization (Fig. 1a). In
postnatal brains, SALM4 mRNAs were detected in various brain
regions, including the neocortex, striatum and hippocampus.

SALM4 proteins (B95 kDa) were mainly detected in the
rat brain, as determined by immunoblot analysis using
SALM4-specific antibodies and different tissue lysates (Fig. 1b,c
and Supplementary Fig. 1a–c). SALM4 protein expression
gradually increased during postnatal brain development (Fig. 1d
and Supplementary Fig. 1d). SALM4 proteins were detected in
synaptic brain fractions, including crude synaptosomes, synaptic
membranes and PSD fractions (Fig. 1e,f and Supplementary
Fig. 1e,f), consistent with the previously reported ultrastructural
localization of SALM4 proteins around cell junctions, including
neuronal synapses20.

Generation and basic characterization of Salm4� /� mice. To
explore the in vivo functions of SALM4, we generated Salm4� /�

mice (Salm4� /� knockout (KO) mice) lacking Salm4 exons
2 and 3, which encode the full-length SALM4 protein (Fig. 2a,b).
SALM4 mRNAs were undetectable in the Salm4� /� brain, as
determined by in situ hybridization (Fig. 2c). SALM4 proteins
were also undetectable, as determined by two different SALM4
antibodies (Fig. 2d and Supplementary Fig. 1g). The Salm4� /�

brain had normal gross morphology and neuronal density in the
hippocampus (Fig. 2e,f).

Because SALM4 is known to regulate neurite outgrowth and
branching in cultured hippocampal neurons16,17, we examined
the morphology of Salm4� /� CA1 pyramidal neurons in the
hippocampus using biocytin dye injection and Sholl analysis. We
found that Salm4� /� neurons had normal dendritic
complexities in both apical and basal dendrites (Fig. 2g).

Assessment of SALM4 protein expression by X-gal staining of
Salm4þ /� brain slices (5-week-old mice) revealed that SALM4
could be observed in various regions, including the neocortex,
striatum, hippocampus and cerebellum (Fig. 2h). Notably,
SALM4 X-gal signals in the hippocampus were stronger in the
CA1 and CA3 regions than in the dentate gyrus. This contrasts
with the similar levels of SALM4 mRNAs in the CA1/3 and
dentate gyrus regions (Figs 1a and 2c), indicative of different
expression levels of SALM4 mRNAs and proteins in different
brain regions, similar to those observed in the cerebellum.
SALM4 deletion had no effect on the levels of other SALMs or
synaptic proteins, either in the whole brain or the hippocampus
(Fig. 2i,j and Supplementary Fig. 1h).

Salm4� /� mice display increased synapse numbers. Electron
microscopic (EM) studies previously detected SALM4 signals in
axons, dendrites and synapses20, suggesting that SALM4 may
regulate synapse development and function. We thus measured
spontaneous excitatory synaptic transmission in hippocampal
CA1 pyramidal neurons. We found that the frequency (but not
the amplitude) of miniature excitatory postsynaptic currents
(mEPSCs) was significantly increased in Salm4� /� neurons
(Fig. 3a). A similar increase was also observed in the frequency
(but not amplitude) of miniature inhibitory postsynaptic currents
(mIPSCs; Fig. 3b). We could not detect any changes in the input–
output relationship of evoked excitatory synaptic transmission
and the paired pulse facilitation at Salm4� /� Schaffer collateral-
CA1 pyramidal synapses (Supplementary Fig. 2), which is not in
line with the increased frequency of mEPSCs (Fig. 3a). It is
possible that mEPSCs in CA1 pyramidal neurons represent
synaptic inputs other than those from the Schaffer collateral
pathway (that is, the temporoammonic pathway), or that evoked
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EPSCs are less sensitive in detecting the changes in excitatory
synapse number.

EM analysis of the Salm4� /� hippocampus (CA1 stratum
radiatum) revealed significant increases in the density and length
of the PSD apposed to presynaptic vesicles, whereas there was no
change in the thickness or perforation (a measure of maturation)
of the PSD (Fig. 3c). In addition, the density of symmetrically
electron-dense regions apposed to GABA (g-aminobutyric acid)-
positive inhibitory nerve terminals was increased, whereas there
was no change in their length or thickness (Fig. 3d). These results
suggest that SALM4 deletion increases the number of excitatory
and inhibitory synapses in the hippocampus.

SALM4 re-expression rescues excitatory synapse numbers. To
determine whether the increased synapse number observed in
Salm4� /� neurons was caused by SALM4 deficiency, we
re-expressed SALM4 in Salm4� /� CA1 pyramidal neurons by
herpes simplex virus (HSV) infection on postnatal days (P) 15–18
(Supplementary Fig. 3a). We found that SALM4 re-expression,
confirmed by immunoblot analysis (Fig. 3e and Supplementary
Figs 1i and 3b), rescued the increased mEPSC frequency in
Salm4� /�neurons to a normal range without affecting the
amplitude (Fig. 3f). In contrast, SALM4 overexpression in wild-
type (WT) neurons had no effect on the frequency or amplitude
of mEPSCs, suggesting that endogenous levels of SALM4 proteins
are sufficient to have the full negative effect on mEPSC frequency.

In contrast, SALM4 expression in Salm4� /� CA1 pyramidal
neurons had no effect on the frequency or amplitude of mIPSCs
(Supplementary Fig. 3c). Moreover, Salm4� /� neurons expres-
sing enhanced green fluorescence protein (EGFP) showed mIPSC

frequencies similar to those of WT neurons expressing EGFP,
which is in contrast to the increased mIPSC frequency observed
in uninfected Salm4� /� neurons. This might be attributable
to the viral infection, which may have adverse effects on
inhibitory (but not excitatory) synaptic transmission under our
experimental conditions.

SALM4 cis-interacts with SALMs 2/3/5. To better understand
the molecular mechanisms underlying the SALM4-dependent
negative regulation of neuronal synapses, we performed an
unbiased proteomic screen of SALM4-associated proteins in WT
and Salm4� /� (control) mouse forebrains. We first enriched
mature membrane proteins, including SALM4, using a
wheat germ agglutinin (WGA) column (Fig. 4a). When these
preparations were immunoprecipitated with SALM4 antibodies
and subjected to proteomic analyses, we identified SALM2 as a
major protein associated with SALM4 in WT brains but absent in
Salm4� /� immunoprecipitates (of the total 20 peptides, 12 were
SALM4 and 8 were SALM2; Fig. 4b,c).

This identification of an in vivo association between SALM4
and SALM2 contrasts with the previous reports that SALM1–3,
but not SALM4 or -5, form complexes with one another in the rat
brain20. This discrepancy might reflect that our antibodies are
somehow more efficient in pulling down SALM4 proteins in
complex with SALM2. Indeed, a previous study reported that
SALM1–3 exhibited antibody-dependent differential co-
immunoprecipitation, wherein SALM1 immunoprecipitates
contained almost undetectable amounts of SALM2 and SALM3,
but SALM2 and SALM3 immunoprecipitates contained
significant amounts of SALM1 (ref. 20).
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Figure 1 | Expression patterns of SALM4 mRNAs and proteins. (a) Distribution patterns of SALM4 mRNAs in mouse embryonic (E16 and E18) sagittal

sections and postnatal brain (P7, P14, P21 and P56) horizontal sections, as revealed by in situ hybridization. E, embryonic day; P, postnatal day. Scale bar,

6 mm. (b) SALM4 antibodies specifically recognize SALM4 but not other SALM family proteins. C terminally Myc-tagged SALM family proteins

(SALMs 1–5) expressed in HEK293T cells were immunoblotted with SALM4 antibodies (1820 antibody). (c) Tissue distribution of SALM4 proteins

(1820 antibody). (d) SALM4 protein expression increases during postnatal rat brain development (1820 antibody). (e) SALM4 protein distribution in rat

brain fractions (1820 antibody). H, homogenates; P1, cells and nucleus-enriched pellet; P2, crude synaptosomes; S2, supernatant after P2 precipitation; S3,

cytosol; P3, light membranes; LP1, synaptosomal membranes; LS2, synaptosomal cytosol; LP2, synaptic vesicle-enriched fraction. (f) Detection of SALM4

proteins in PSD fractions (2620 antibody). PSD-95 and synaptophysin (SynPhy) were used as controls. Note that the prestained markers here seem to

migrate slightly faster than normal markers in other panels.
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To further characterize the interaction between SALM4 and
SALM2, we performed co-immunoprecipitation experiments in
heterologous cells. We found that SALM4 formed a complex with
SALM2 (Fig. 4d and Supplementary Fig. 4a). In addition, the
extracellular (ecto) domain of SALM4 (but not the cytoplasmic
domain; SALM4-Ecto) could associate with SALM2, suggesting
that the ecto domains of SALM4 and SALM2 are involved.

SALM2 forms a complex with SALM3 in vitro and in vivo and
with SALM5 in vitro20. In addition, SALM3 and SALM5 (but not

the other SALMs) have synaptogenic activities18. We therefore
hypothesized that SALM4 might suppress neuronal synapses
through a cis-interaction with SALM3 and/or SALM5. To
examine this hypothesis, we first tested whether SALM4 could
associate with SALM3 and SALM5, in addition to SALM2.

We found that SALM4 forms a complex with SALM3 in
heterologous cells, but neither the ecto nor cytoplasmic domain of
SALM4 was sufficient to mediate the interaction (Fig. 4e and
Supplementary Fig. 4b), dissimilar to the domain requirement of
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the SALM4–SALM2 interaction. However, both full-length and
ectodomain of SALM4 could associate with SALM5 (Fig. 4f and
Supplementary Fig. 4b), similar to the SALM4–SALM2
interaction.

In order to further narrow down the domains of SALM4
involved in the interactions with SALM2, SALM3 and SALM5,
we generated additional deletion variants of SALM4 that
lacks the LRR domain (SALM4-DLRR), the FNIII domain
(SALM4-DFNIII) and a large portion of the cytoplasmic region
(SALM4-DC44aa), which displayed normal total expression levels

but markedly reduced surface expression levels in SALM4-DLRR
and SALM4-DFNIII but not in SALM4-DC44aa (Fig. 5a,b and
Supplementary Fig. 4c). Assuming that non-surface SALM4
proteins may still interact other SALMs in cytoplasmic compart-
ments, we performed co-immunoprecipitation experiments and
found that SALM4-DLRR interacted with SALM3 but not with
SALM2 or SALM5 (Fig. 5c–e and Supplementary Fig. 4d). In
addition, SALM4-DFNIII and SALM4-DC44aa interacted with all
three SALMs (SALM2, SALM3 and SALM5; Fig. 5c–e). These
results collectively suggest that the LRR domain of SALM4 is
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Figure 3 | Increased excitatory and inhibitory synapse numbers in the Salm4� /� hippocampal CA1 region. (a,b) The frequency, but not amplitude, of
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significant, Student’s t-test. (d) The density, but not the length or thickness, of symmetric, electron-dense synaptic structures is increased in the

Salm4� /� hippocampal CA1 region (P14–21). GABAergic terminals, indicated by asterisks, are visualized by EM immunogold staining for GABA.

Postsynaptic dendrites (d) are indicated. Scale bar, 500 nm. n¼ 3 mice for WT and KO, **Po0.01, ns, not significant, Student’s t-test. (e,f) SALM4

re-expression rescues the increased mEPSC frequency in Salm4� /� CA1 neurons. Salm4� /� or WT neurons were infected with HSV carrying
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important for the interaction with SALM2 and SALM5, while the
transmembrane domain of SALM4 is important for the
interaction with SALM3.

SALM4 inhibits synapse-promoting effects of SALM2/3/5.
Because SALM4 associates with SALM2, SALM3 and SALM5, we
tested whether SALM4 regulates the functional properties of
SALM2/3/5. SALM2 has been shown to facilitate excitatory
synapse differentiation, as shown by that cultured hippocampal
neurons overexpressing SALM2 show increased excitatory
synapse number13. When we coexpressed SALM2 and SALM4 in

cultured hippocampal neurons, SALM4 reversed the SALM2-
dependent increase in excitatory synapse number, as indicated by
the density of Shank1/2/3 (Fig. 6a), an excitatory postsynaptic
marker protein. In contrast, the size and intensity of Shank
clusters were not changed by either the overexpression of SALM2
or SALM2þ SALM4. This suggests that SALM4 suppresses
excitatory synapse-promoting effect of SALM2.

SALM3 and SALM5 have been shown to promote presynaptic
differentiation in contacting axons18. We thus tested whether
SALM4 could inhibit SALM3- or SALM5-dependent presynaptic
differentiation, using neuron–fibroblast-mixed culture assays21.
We found that coexpression of SALM4 with SALM3 in
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Figure 4 | SALM4 cis-interacts with SALMs 2/3/5. (a) Enrichment of mature membrane proteins from forebrain crude synaptosomes (P21) using a WGA

column. (b,c) The WGA eluants were immunoprecipitated (IP) with SALM4 antibodies (2026) and then subjected to preparative SDS–PAGE (c). A small

aliquot of each precipitate was immunoblotted (IB) for SALM4 to confirm self-immunoprecipitation (b). The three bands (arrows) in c contained peptides

of SALM4 (all three) and SALM2 (top blue). (d–f) SALM4 co-precipitates with SALM2/3/5 in heterologous cells. HEK293T cell lysates doubly

transfected with SALM4 (Myc full-length, HA/Myc ectodomain or EGFP cytoplasmic domain)þ EGFP-SALM2/3/5 (EGFP/Myc full-length) were IP and
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heterologous cells markedly suppressed SALM3-dependent
synapsin I clustering in contacting axons of cocultured
hippocampal neurons (Fig. 6b). SALM4 had similar effects on
SALM5-dependent synapsin I clustering. In control experiments,
SALM4 coexpression had no effect on synapsin I clustering
induced by LRRTM2, an LRR-containing adhesion molecule with
synaptogenic activity22,23. SALM4 expression did not change the
surface levels of coexpressed SALM3, SALM5 or LRRTM2,
although there were decreasing tendencies, as determined by
surface immunofluorescence staining (Fig. 6b) and surface
biotinylation assays (Fig. 6c and Supplementary Fig. 5a).

SALM4 inhibits the interaction between SALM3/5 and LAR.
Because SALM4 suppresses SALM3- and SALM5-dependent
presynaptic differentiation, we next tested whether SALM4 could

inhibit the interaction between SALM3 and its known presynaptic
ligand, LAR19, or that between SALM5 and LAR24. To this end,
we tested whether the binding of LAR (a soluble form) to SALM3
displayed on heterologous cell surfaces could be inhibited by
SALM4 coexpressed in the same cell. Indeed, the interaction of
SALM3 with increasing concentrations of soluble LAR
(extracellular Ig1-3 domains; LAR-Ig1-3-Fc) was significantly
reduced by SALM4 coexpression (Fig. 7a). Similarly, LAR binding
to SALM5 was significantly inhibited by SALM4 coexpression
(Fig. 7b).

In control experiments, we used a mutant SALM4 that lacks
SALM3 binding (SALM4-Ecto; see Fig. 4e) to see whether it fails to
inhibit LAR binding to SALM3. We found that SALM4-Ecto
partially reversed full-length SALM4-dependent suppression of
LAR binding to SALM3 (Fig. 7c). SALM4-Ecto did not affect the
surface expression of SALM3 (Fig. 7d and Supplementary Fig. 5b).
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Figure 5 | Domains of SALM4 involved in the interaction with SALM2, SALM3 and SALM5. (a) Deletion variants of HA-SALM4 (HA-S4). FL, full length.

(b) Total and surface expression levels of SALM4 deletion variants. HEK293T cells expressing HA-SALM4 deletion variants were biotinylated, precipitated

and immunoblotted. (c–e) Deletion variants of HA-SALM4 differently interact with SALM2/3/5 in heterologous cells. HEK293T cell lysates doubly

transfected with HA-SALM4 (WT and deletion variants)þ SALM2/3/5 (Myc-SALM2, SALM3-EGFP and SALM5-EGFP) were immunoprecipitated and

immunoblotted with the indicated antibodies.
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Figure 6 | SALM4 inhibits SALM2-dependent excitatory synapse facilitation and SALM3/5-dependent presynaptic differentiation. (a) SALM4 inhibits

SALM2-dependent promotion of excitatory synapse number. (Top panels) Representative images of cultured hippocampal neurons transfected with control

(EGFP alone), SALM2 and EGFP (SALM2), SALM4 and EGFP (SALM4) or co-transfected with SALM2 and SALM4 (SALM2þ SALM4) at DIV10. Neurons

were analysed at DIV14 by triple immunofluorescence for EGFP (green), Shank (an excitatory postsynaptic marker protein; red) and SALM4 (blue). Scale

bar, 10 mm, applies to all images. (Bottom panels) Bar graphs summarizing the effects of SALM4 overexpression on SALM2-induced postsynaptic

development, quantified using Shank immunoreactivity (pan-Shank). n¼ 15 for control (EGFP alone), SALM2, SALM4 and SALM2þ SALM4, **Po0.01,

***Po0.001, ns, not significant, ANOVA with Tukey’s test. (b) SALM4 suppresses SALM3/5-dependent presynaptic differentiation. (Top panels)

Representative images of cocultures. Hippocampal neurons were cocultured for 2 days (DIV 10–12) with HEK293T cells expressing EGFP alone (control),

SALM3/5, SALM3/5þ SALM4, LRRTM2 or LRRTM2þ SALM4, and stained for EGFP/HA (blue), SALM4 (green) and synapsin I (red). Scale bar, 10mm.

(Bottom panels) Quantification of heterologous synapse-forming activities of SALM3/5 and LRRTM2, by measuring the ratio of synapsin I to surface HA

immunofluorescence (absolute red/synapsin and blue/HA fluorescence values are also indicated). Note that SALM4 coexpression does not affect the

surface expression of SALM3, SALM5 or LRRTM2, as indicated by fluorescence intensity of HA signals. n¼ 12 for control, 11 for SALM3, 10 for

SALM3þ SALM4, 10 for SALM5, 10 for SALM5þ SALM4, 12 for LRRTM2 and 11 for LRRTM2þ SALM4, **Po0.01, ***Po0.001, ns, not significant,

ANOVA with Tukey’s test. (c) SALM4 does not affect surface levels of SALM3 or SALM5, as determined by surface biotinylation assays. HEK293T cells

transfected with SALM3/5 alone, or SALM3/5þ SALM4, were biotin-labelled, followed by avidin precipitation and immunoblotting. Input and surface,

1% and 8%, respectively. n¼ 3 for SALM3 and SALM3þ SALM4, ns, not significant, Student’s t-test.
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Figure 7 | SALM4 inhibits the interaction between SALM3/5 and LAR. (a) Soluble LAR binding to SALM3 on heterologous cells is reduced by

coexpression of SALM4. HEK293T cells transfected with HA-CD8 (control), SALM3 alone or SALM3þ SALM4 were incubated with LAR-Ig1-3-Fc (Ig1-3

domains of LAR fused to human Fc) at increasing concentrations, followed by staining for Fc (bound LAR-Ecto-Fc), HA (CD8 or SALM3; red) and SALM4

(blue). For quantification, signals for bound LAR-Ig1-3-Fc were normalized by surface HA-SALM3 signals. Surface expression of HA-SALM3 is not affected

by SALM4 coexpression (bottom right). n¼ 18 cells for CD8, 23 for S3, 20 for S3þ S4 and 19 for S4 (0.25 mM); 8, 13, 18 and 18 (0.5 mM); 17, 27, 26 and

22 (1 mM); 13, 27, 19 and 19 (1.5 mM); 23, 27, 32 and 15 (2 mM). ***Po0.001 (relative to SALM3þ SALM4 or SALM4 alone), ns, not significant, ANOVA.

Scale bar, 20mm. (b) LAR binding to SALM5 is reduced by coexpression of SALM4. Experiments were performed as in a, except using SALM5 rather than

SALM3 and a single concentration of LAR-Ig1-3-Fc (2 mM) for simplicity. n¼ 53 for CD8, 46 for S5 and 41 for S5þ S4, ***Po0.001, ns, not significant,

ANOVA. Scale bar, 20mm. (c,d) SALM4-Ecto (SALM4e) that lacks SALM3 binding, replacing full-length SALM4, shows partially reverses SALM4-

dependent suppression of LAR binding to SALM3. SALM4 or SALM4e does not affect surface expression of SALM3, as shown by biotinylation of surface

proteins (d). n¼ 34 for S3, 28 for S3þ S4 and 30 for S3þ S4e, ***Po0.001, ns, not significant, ANOVA and #Po0.05, Student’s t-test. Scale bar, 20mm.

(e) SALM4-Ecto, replacing full-length SALM4, substantially reverses SALM4-dependent rescue of the increased mEPSC frequency in Salm4� /� CA1

neurons. WT neurons were infected with HSV carrying EGFP, and Salm4� /� neurons were infected with HSV carrying EGFP, EGFPþHA-SALM4 and

EGFPþHA-SALM4-Ecto (P15–18), followed by mEPSC measurements. n¼ 9 cells (three mice) for WT-EGFP, 9 (three mice) for KO-EGFP, 8 (three mice)

for KO-SALM4 and 9 (three mice) for KO-SALM4e, *Po0.05, **Po0.01, ns, not significant, ANOVA and #Po0.05, Student’s t-test.
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Figure 8 | Double KO of SALM3 and SALM4 normalizes excitatory synapse numbers in both Salm4� /� and Salm3� /� neurons. (a) Comparison of

SALM3 and SALM4 protein expression patterns in sagittal brain sections by X-gal staining of Salm3þ /� and Salm4þ /� single KO slices (5 weeks). Note that

the hippocampal CA3 and CA1 signals are stronger than those in the dentate gyrus. Scale bar, 1 mm. (b) Salm3� /� ; Salm4� /� CA1 pyramidal neurons

display mEPSC frequencies comparable to those of WT neurons (P18–21), indicative of normalization in both in Salm4� /� and Salm3� /� neurons, although

such effects are weaker in Salm3� /� neurons. Note that the double KO has no effect on mEPSC amplitudes. n¼ 12 cells (four mice) for WT, 11 (three mice)

for Salm3� /� , 12 (three mice) for Salm4� /� and 13 (four mice) for Salm3� /� ; Salm4� /� , *Po0.05, **Po0.01, ***Po0.001, ns, not significant, ANOVA

with Bonferroni’ multiple comparison test; #Po0.05, Student’s t-test. (c) The double KO does not rescue the increased mIPSC frequency in Salm4� /� CA1

pyramidal neurons. n¼ 15 (four mice) for WT, 13 (three mice) for Salm3� /� , 12 (three mice) for Salm4� /� and 12 (four mice) for Salm3� /� ; Salm4� /� ,

*Po0.05, ns, not significant, ANOVA with Bonferroni’ multiple comparison test. (d) The increased PSD density in the Salm4� /� hippocampus is normalized

by the double KO, as shown by the EM analysis of the hippocampal CA1 stratum radiatum region (P20). Normal and perforated PSDs are indicated by arrows

and arrowheads, respectively. Scale bar, 500 nm. n¼ 3 mice for WT, Salm4� /� , and Salm3� /� ;Salm4� /� , *Po0.05, **Po0.01, ns, not significant

(P¼0.1551 for PSD thickness and 0.3996 for perforated spines), ANOVA. (e) The increased density of symmetric, electron-dense synaptic structures in the

Salm4� /� hippocampus is not normalized by the double KO, as shown by the EM analysis of the hippocampal CA1 stratum radiatum region (P20).

GABAergic terminals (asterisks) are indicated by EM immunogold staining for GABA. Postsynaptic dendrites (d) are also indicated. Scale bar, 500 nm. n¼ 3

mice for WT, Salm4� /� , and Salm3� /� ; Salm4� /� , ***Po0.001, ns, not significant, ANOVA.
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In another set of experiments measuring mEPSCs in HSV-
infected hippocampal neurons, SALM4-Ecto substantially
reversed full-length SALM4-dependent normalization of the
increased mEPSC frequency in Salm4� /� CA1 pyramidal
neurons (Fig. 7e, Supplementary Fig. 3d–f; Supplementary
Fig. 5c,d). These results collectively suggest that SALM4
suppresses SALM3- and SALM5-dependent presynaptic differ-
entiation through cis-interactions.

Double Salm3-Salm4 KO normalizes excitatory synapse numbers.
The cis-regulation of SALM3/5 by SALM4 requires their
expression in the same cells. In line with this, X-gal staining
revealed that the expression patterns of SALM3 and SALM4
proteins significantly overlapped in mouse brain regions,
including the neocortex, hippocampus and striatum (Fig. 8a and
Supplementary Fig. 6a), and also in hippocampal CA3 and CA1
regions. The potential overlap between SALM4 and SALM5 could
not be tested because Salm5� /� mice that allow X-gal staining
were unavailable; however, we note that the known mRNA
distribution pattern of SALM5 substantially overlap with those of
SALM3 and SALM4 (refs 13,14).

Next, we hypothesized that if SALM4-dependent suppression
of excitatory synapse number involves the inhibition of SALM3/5,
removal of SALM3/5 might rescue the increased excitatory
synapse number observed in Salm4� /� neurons. To this end, we
crossed Salm3� /� mice, which we recently reported to exhibit
reduced excitatory synapse numbers in the hippocampus19, with
Salm4� /� mice to obtain double KO mice (Supplementary
Figs 6b and 5e). Salm3� /� ;Salm4� /� mice and Salm3� /�

mice (but not Salm4� /� mice) displayed slightly lower body
weights than controls (Supplementary Fig. 6c).

We found that the increased mEPSC frequency observed in
Salm4� /� CA1 pyramidal neurons was normalized to near-WT
levels in Salm3� /� ; Salm4� /� CA1 pyramidal neurons
(Fig. 8b). This result also indicates that the reduced mEPSC
frequency in Salm3� /� neurons was normalized in the double
KO mice, although the extent of normalization was weaker than
that for Salm4� /� neurons. The double KO had no effect on the
amplitude of mEPSCs.

When mIPSCs were compared, we found that the double KO
did not rescue the increased mIPSC frequency seen in
Salm4� /� mice (Fig. 8c), nor did it affect the mIPSC frequency
in Salm3� /� mice. Moreover, the observed mIPSC amplitudes
were comparable across the four genotypes. Together, these
results indicate that the double KO of SALM3 and SALM4
rescues the increased frequency of mEPSCs (but not mIPSCs) in
Salm4� /� mice.

We next performed EM analysis to see whether the double KO
normalizes the increased excitatory and inhibitory synapse
densities in Salm4� /� mice. We found that the Salm3� /� ;
Salm4� /� hippocampus (CA1 stratum radiatum) shows the
density of the PSD significantly smaller than that of Salm4� /�

hippocampus but comparable to that of WT hippocampus
(Fig. 8d). In contrast, the increased inhibitory synapse density in
Salm4� /� hippocampus was not normalized by the double KO
(Fig. 8e). These results further suggest that SALM3 mediates the
SALM4-dependent inhibition of excitatory synapse number.

Discussion
In the present study, we report that Salm4� /� mice display
increased excitatory and inhibitory synapse numbers in the
hippocampus, and that SALM4 cis-interacts with SALM3, inhibits
the SALM3–LAR interaction and suppresses SALM3-dependent
presynaptic differentiation.

Our data indicate that a SALM4 mutant that lacks SALM3
binding (SALM4-Ecto), unlike full-length SALM4, loses the
ability to inhibit LAR binding to SALM3 in HEK293T cells, and
to rescue the increased mEPSC frequency in CA1 pyramidal cells
(Fig. 7d–f). However, the extent of these reversals are partial,
especially in the LAR-binding experiments in vitro. One
possibility is that SALM4-Ecto, although it no longer associates
with SALM3 in HEK293T cells under co-immunoprecipitation
conditions (Fig. 4e), may still weakly associate with, or get
sufficiently close to, SALM3 on the surface membrane through its
intact extracellular domain and inhibit LAR binding to SALM3;
the fact that SALM4-DLRR binds to SALM3 does not exclude the
possibility that the LRR domain of SALM4 may still weakly bind
to SALM3. This nonspecific inhibition, if present, might be
stronger when SALM4-Ecto is highly expressed in HEK293T
cells, whereas it is weaker when SALM4-Ecto is weakly expressed
in neurons, or SALM4-Ecto cannot easily have an access to
endogenous SALM3 at excitatory synaptic sites.

Our hypothesis (SALM3 inhibition by SALM4) is genetically
supported by our observation that double KO of SALM3 and
SALM4 normalizes mEPSC frequency and excitatory synapse
number phenotypes. This suggests that SALM3, but not SALM5,
may act as a major downstream effector of SALM4 for the
inhibition of excitatory synapse number in the hippocampus. In
line with this possibility, SALM3 and SALM4 show substantial
overlaps in their protein distribution patterns in the brain
(Fig. 8a). Moreover, a previous study showed that the temporal
expression patterns of SALM3 and SALM4 mRNAs along the
embryonic developmental stages are more similar than those of
the other SALMs14. These results, however, do not exclude the
possibility that SALM5 may closely interact with SALM4 in some
other brain regions.

Our data, however, provide relatively few clues as to how
SALM4 negatively regulates inhibitory synapses. The increased
inhibitory synapse number in Salm4� /� mice might merely
represent a compensatory change induced by the increase in
excitatory synapse number. Alternatively, it could be a more
direct effect involving SALM4. In line with this, a previous study
showed that SALM3 and SALM5, which associate with SALM4,
can induce both excitatory and inhibitory presynaptic differentia-
tion in cocultured neurons18. In addition, the LAR family
proteins, which bind to SALM3 and SALM5, can induce both
excitatory and inhibitory postsynaptic differentiations by
interacting with NGL-3, TrkC, IL1RAPL1, IL1RAcP and
Slitrks2,6.

It is likely that ‘postsynaptic’ SALM4 cis-interacts with SALM3
to suppress excitatory synapses. SALM4 is detected at both pre-
and postsynaptic sites, and is thought to mediate homophilic and
trans-synaptic adhesions20. This homophilic adhesion, however,
is unlikely to contribute to the SALM4-dependent negative
regulation of SALM3 because we herein showed that HSV-
mediated re-expression of SALM4 in Salm4� /� CA1 pyramidal
neurons (postsynaptic side) was sufficient to rescue the increased
mEPSC frequency in a cell-autonomous manner.

Our study extends the reported complexity of interactions
among the SALM family members. The proteomic data derived
from WT and KO (control) brain samples suggest that there is a
strong biochemical association between SALM4 and SALM2
in vivo. In addition, SALM4 associates with SALM3 and SALM5
in addition to SALM2 in heterologous cells. Given that SALMs
1–3 form a strong co-immunoprecipitable complex in the brain20,
SALM4, together with SALMs 1–3 and SALM5, may form
combinations of protein complexes larger than previously
revealed in different brain regions. This complex might be
further stabilized by interactions with PSD-95 through SALMs
1–3, and with LAR family proteins through SALMs 3 and 5
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(refs 12–14,19). Therefore, the SALM4-dependent suppression of
SALM2-dependent excitatory synapse development (Fig. 6a)
could be mediated indirectly through SALM3. Conversely, the
SALM4-dependent suppression of SALM3-dependent
presynaptic differentiation could also be mediated or modulated
by SALM2, a major binding partner of SALM4 in the brain
(Fig. 4b,c).

Inhibition of neuronal synapses via cis-interactions of SALM4
is reminiscent of the previously reported cis-interaction between
neuroligin-1 and neurexin-1b, which suppresses neuroligin-1-
dependent presynaptic differentiation in contacting axons25. In
addition, postsynaptic MDGA1 was shown to cis-interact with
neuroligin-2 and thereby suppress neuroligin-2-dependent
inhibitory presynaptic differentiation26,27. These results suggest
that postsynaptic adhesion molecules may cis-interact with one
another to regulate their trans-interactions. In addition, we
recently showed that a trans-interaction between postsynaptic
NGL-1 and presynaptic netrin-G1 (a glycosylphosphatidylinisotol
(GPI)-anchored synaptic adhesion molecule) induces the cis-
interaction of netrin-G1 with LAR28. These results suggest that
there may be functional interplays between cis- and trans-
adhesions at the synapse.

SALMs have been implicated in autism spectrum disorders,
intellectual disability and schizophrenia29–33. In addition, LAR
family proteins are implicated in autism spectrum disorders,
attention deficit/hyperactivity disorder, restless leg syndrome and
schizophrenia2,6. Therefore, the mechanisms revealed in the
present study might help us better understand these disorders.

In conclusion, our results suggest that postsynaptic SALM4
negatively regulates excitatory synapse numbers through a cis-
interaction with SALM3 and the inhibition of both the SALM3–
LAR interaction and SALM3-dependent presynaptic differentia-
tion. Our study provides genetic support for the emerging notion
that neighbouring adhesion molecules cis-interact with one
another to regulate neuronal synapses.

Methods
Generation of Salm4� /� mice. A mouse ES cell clone (15252A-A12;
Lrfn3_AA12), derived from the C57BL/6N strain, was obtained from Velocigene
(VG15252). The cassette (ZEN-Ub1) for an allele deletion contained LacZ and
neomycin (b-geo) and parts of exons 2 and 3 of the Salm4/ Lrfn3 gene for homo-
logous recombination. To generate male chimeric mice, cultured ES cells (C57BL/
6N) were microinjected into the blastocyst of the C57BL/6J-Tyroc-2J4(albino B6).
Chimeric mice were bred with albino B6 females (C57BL/6J-Tyroc-2J4) to
generate germline-transmitted F0 mice (C57BL/6J-Tyroc-2J4þC57BL/6N strain).
F0 mice were backcrossed to C57BL/6J for two to seven generations. The F2 mice
were used for the analysis of brain morphology and synaptic protein levels. Elec-
trophysiology and electron microscopy were performed using F3–7 generations. All
mice were bred and maintained according to the KAIST Animal Research
Requirements, and all procedures were approved by the Committees of Animal
Research at KAIST. Mice were fed ad libitum by standard rodent chow and tap
water, and housed under 12-h light/dark cycle (lights off at 19:00).

cDNA constructs. Full-length untagged rat SALM4 (aa 1–626) expression
construct was generated by amplifying the insert from a rat brain cDNA library
(BD Bioscience Clontech) by PCR and subcloning it into GW1 vector. Haemagglutinin
(HA)-tagged full-length mouse SALM3 (aa 28–636) was subcloned into pDisplay
vector. Full-length untagged mouse SALM4, Myc-tagged SALMs, EGFP-tagged SALMs
and SALM4/5-Ecto constructs have been described previously18. Cytoplasmic regions of
mouse SALM4 (aa 561–626) were subcloned into pEGFP-C1. The pDisplay-LRRTM2
construct has been described34. HA-tagged full-length mouse SALM4 (aa 28–627),
SALM4-DLRR (aa 287–627), SALM4-DFNIII (aa 28–400, 530–627), SALM4-DC44aa
(aa 28–583) with their own transmembrane domains, cytoplasmic domains and stop
codons were subcloned into pDisplay, and SALM4-Ecto (aa 28–530) was subcloned
into a modified pDisplay vector lacking the Myc epitope but with an intact HA epitope
and transmembrane domain. pIRES2-SALM2-WT-EGFP has been described
previously13.

In situ hybridization. Mouse brain sections (12 mm thick) at embryonic day (E16
and E18) and postnatal days (P7, P14, P21 and P56) were prepared using a cryostat
(Leica CM 1950). Mouse brain sections from WT and Salm4� /� mice (P56) were

also generated to visualize the lack of SALM4 mRNAs in Salm4� /� mice.
Hybridization probe specific for mouse SALM4 mRNA was prepared using the
following regions: nt 1,429–1,881 of SALM4 (GenBank DQ078787). Antisense
riboprobe was generated using 35S-uridine triphosphate (UTP) and the Riboprobe
system (Promega).

Antibodies. SALM4 antibodies (1,820, 1:500 for western blot (WB); 2026, 1:1,000
for WB or purified form 1:200 for immunocytochemistry (ICC); both guinea pigs)
were generated by using GST-SALM4 aa 561–626 and 596–626 (last 30 aa;
NM_175478) as immunogens, respectively. SALM1 (2,022, 1:500 for WB; guinea
pig), SALM2 (2,058, 1:500 for WB; guinea pig) and SALM3 (2,024, 1:500 for WB;
guinea pig) antibodies were generated using the last 30 aa of mouse proteins.
SALM5 (1,943, 1:500 for WB; guinea pig) antibodies generated using the
H6-cytoplasmic domain of mouse SALM5 (aa 551–746). EGFP antibodies (1,168,
1:1,000 for WB, not for ICC; rabbit) were generated using the full-length EGFP
protein as immunogen. Rabbit polyclonal Shank antibodies, which are specific for
all three Shanks (Shank1/2/3, 1:500 for ICC), were generated using H6-Shank1-
SAM domain (aa 1,852–2,167) as immunogen. The following antibodies have been
described previously: SALM3 (1,828, 1:500 for WB; rabbit) and SALM5 (1,907,
1:500 for WB; rabbit)18, PSD-95 (1,688, 1:1,000 for WB; guinea pig), SAP102
(1,447, 1:500 for WB; guinea pig), SAP97 (1,443, 1:500 for WB; guinea pig),
CaMKII (1,299, purified form,1:2,000 for WB; rabbit)35, PSD-93/chapsyn-110
(1,634, 1:1,000 for WB; rabbit), SynGAP (1,682, 1:300 for WB; rabbit), GluR1
(1,193, 1:500 for WB; rabbit), GluR2 (1,195, 1:1,000 for WB; rabbit), CASK (1,640,
1:500 for WB; rabbit)36, Homer (1,133, 1:400 for WB; rabbit)37, GKAP
(1,243,1:1,000 for WB; guinea pig)38 and S-SCAM (1,146, 1:1,000 for WB;
rabbit)39. The following antibodies were purchased from commercial sources:
synaptophysin (Santa Cruz, sc-9116, 1:1,000 for WB), GluN1 (BD Biosciences
Transduction Laboratories, 556308, 1:1,000 for WB), GluN2A (Invitrogen, A-6473,
1:500 for WB), GluN2B (NeuroMab,N59/36, 1:1,000 for WB), synapsin I (SySy, 106
011, 1:1,000 for WB, 1:500 for ICC), SALM4 (SySy, 294 403, 1:1,000 for WB), Myc
(Cell Signalling, 2276S,1:1,000 for WB, not ICC), ERK (Cell Signalling, 9102S,
1:1,000 for WB), p38 (Cell Signalling, 9212S, 1:1,000 for WB), a-tubulin (Sigma,
T5168, 1:10,000 for WB), NeuN (Millipore, MAP377, 1:300 for IHC), HA (Sigma,
H6908/H3663, 1:500 for WB, 1:200 for ICC), Myc (Sigma, M4439, 1:500 for WB,
1:200 for ICC) and EGFP (Rockland,1:500 for ICC).

Subcellular and PSD fractions. Subcellular fractionations of the rat brain were
prepared as described previously40. PSD fractions were purified as described
previously41.

Mouse genotyping. Mouse genotyping was performed using the following three
PCR primers: 50-TCTCTGTAGCTCGTCTAGAC-30 (50 forward primer for both
WT and KO alleles), 50-CAGTCTATTACCATCTAGGTGC-30 (30 reverse primer
for WT) and 50-GTCTGTCCTAGCTTCCTCACT G-30 (30 reverse primer for KO).
The PCR products for WT and KO alleles are 617 and 417 bp long, respectively.

Immunohistochemistry and immunoblotting. Three-week-old mouse brain slices
(50 mm) were permeabilized with 0.5% Triton X-100 in 1� PBS for 1 h followed by
primary and secondary antibody incubations. Fluorescent images were acquired
using confocal laser scanning microscope (LSM510, Zeiss) and analysed using the
MetaMorph software (series 7.1; Universal Imaging). We performed immunoblot
experiments three times for Figs 3e and 6c and once for Figs 1b–f and 2d,i,j,
Figs 4a–f and 5b–e and Fig. 7d, Supplementary Fig. 3e,f and Supplementary Fig. 6b.

X-gal staining. Mice were transcardially perfused with heparinized 1� PBS and 4%
formaldehyde in 1�PBS and postfixed at 4 �C for overnight. For X-gal staining,
brain slices (250mm) were sectioned using vibratome (Leica VT 1000S) and incu-
bated in X-gal staining solution containing 1 mg ml� 1 X-gal at 37 �C for overnight.

Sholl analysis. Biocytin hydrochloride (0.5%; Sigma) was added to the pipette
solution for whole-cell patch clamp, and infused into CA1 pyramidal cells, after
measurements of basal transmission for general health check for 2–3 min. Then,
the slices were fixed with 4% formaldehyde at 4 �C overnight and permeablized
with 0.5% Triton X-100 in 1� PBS. Alexa Fluor 555-conjugated streptavidin
(2 mg ml� 1, Invitrogen) in 1�PBS was used for staining (1:300) for 1–2 h.
Fluorescent images were acquired using confocal laser scanning microscope
(LSM780, Zeiss).

Electrophysiology. To measure mEPSCs and mIPSCs, CA1 pyramidal cells
(P15–21, 250 mm with cold, oxygenated, 95% O2 and 5% CO2, sucrose-substituted
ACSF (SCSF) (in mM): 212 sucrose, 10 glucose, 25 NaHCO3, 5 KCl, 1.25
NaH2PO4, 1.2 L-ascorbate, 2 pyruvate with 3.5 MgCl2 and 0.5 CaCl2) were held at
� 70 mV (6–8 min), using a MultiClamp 700B amplifier (Clampex 9.2, Molecular
Devices). Pipette solutions contained (in mM) 117 CsMeSO4, 8 NaCl, 10 TEACl, 10
HEPES, 5 Qx-314Cl, 4 Mg-ATP, 0.3 Na-GTP and 10 EGTA (295 mOsm) for
mEPSC measurements; or 115 CsCl, 10 TEACl, 8 NaCl, 10 HEPES, 5 Qx-314Cl,
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4 Mg-ATP, 0.3 Na-GTP and 10 EGTA (294 mOsm) for mIPSC measurements.
TTX (0.5 mM; Tocris) and picrotoxin (100 mM; Sigma-Aldrich) were added to
oxygenated artificial cerebrospinal fluid (ACSF) (in mM): 125 NaCl, 10 glucose, 25
NaHCO3, 2.5 KCl, 1.25 NaH2PO4 with 1.3 MgCl2 and 2.5 CaCl2 for mEPSC
recordings. TTX (0.5 mM), NBQX (10 mM; Tocris) and AP5 (25 mM; Tocris) were
added for mIPSC measurements. Synaptic currents were analysed using a
customized macro in Igor Pro 4.01 (WaveMetrics) and Clampfit (pCLAMP 10.4).

For field recordings, transverse hippocampal slices (400 mm) were prepared
from 3- to 4-week-old male littermates. The brain was rapidly isolated and placed
in ice-cold, oxygenated dissection buffer containing (in mM) 212.7 sucrose, 5 KCl,
1.23 NaH2PO4, 0.5 CaCl2, 10 MgCl2, 26 NaHCO3 and 10 glucose. Hippocampal
slices were prepared by cutting with a Leica VT1000P vibratome (Leica) and
transferred for recovery to a holding chamber containing oxygenated ACSF
consisting of (in mM) 124 NaCl, 5 KCl, 1.23 NaH2PO4, 2.5 CaCl2, 1.5 MgCl2, 26
NaHCO3 and 10 glucose at 28–30 �C for at least 1 h before recording. After
recovery, slices were transferred to a recording chamber where they were perfused
continuously with oxygenated ACSF (27–28 �C) at a flow rate of 2 ml min� 1.
Hippocampal CA1 field excitatory postsynaptic potentials were evoked by Schaffer
collateral stimulation (0.2 ms current pulses) with concentric bipolar electrode.
Synaptic responses were recorded with ACSF-filled microelectrodes
(1–2 MO) and were quantified as the initial slope of field excitatory postsynaptic
potential). Data from slices with stable recordings (o5% change over the baseline
period) were included in the analysis. All data are presented as mean±s.e.m.
normalized to the preconditioning baseline (at least 20 min of stable responses).
The experiments were blind to mouse genotypes. Recordings were performed using
an AM-1800 Microelectrode amplifier (A-M systems), and the IGOR software
(WaveMetrics, Lake Oswego, OR, USA) was used for digitizing and analysing the
responses.

Electron microscopy. WT, Salm4� /� and Salm3� /� ;Salm4� /� mice were
deeply anaesthetized with sodium pentobarbital (80 mg kg� 1, intraperitoneally
(i.p.)) and were intracardially perfused with 10 ml of heparinized normal saline,
followed by 50 ml of a freshly prepared fixative of 2.5% glutaraldehyde and 1%
paraformaldehyde in 0.1 m phosphate buffer (PB, pH 7.4). The hippocampus was
removed from the whole brain, postfixed in the same fixative for 2 h and stored in
PB (0.1 M, pH 7.4) overnight at 4 �C. Sections were cut transversely on a Vibratome
at 70mm. The sections were osmicated with 0.5% osmium tetroxide (in 0.1 m PB)
for 1 h, dehydrated in graded alcohols, flat embedded in Durcupan ACM (Fluka)
and cured for 48 h at 60 �C. Small pieces containing the stratum radiatum of
hippocampal CA1 region were cut out of the wafers and glued on the plastic block
by cyanoacrylate. Ultrathin sections were cut and mounted on Formvar-coated
single-slot grids. For excitatory synapses, sections were stained with uranyl acetate
and lead citrate, and examined with an electron microscope (Hitachi H-7500;
Hitachi) at 80 kV accelerating voltage. For inhibitory synapses, sections were fur-
ther immunogold-stained for GABA.

Postembedding immunogold staining for GABA. Sections were immunostained
for GABA by the postembedding immunogold method, as previously described42,
with some modifications. In brief, the grids were treated for 5 min in 1% periodic
acid to etch the resin, and for 8 min in 9% sodium periodate to remove the osmium
tetroxide, and then washed in distilled water, transferred to Tris-buffered saline
containing 0.1% Triton X-100 (TBST; pH 7.4) for 10 min and incubated in 2%
human serum albumin in TBST for 10 min. The grids were then incubated with
rabbit antiserum against GABA (GABA 990, 1:10,000) in TBST containing 2%
human serum albumin for 2 h at room temperature. The antiserum (a kind gift
from Professor O.P. Ottersen at the Center for Molecular Biology and
Neuroscience, University of Oslo) was raised against GABA conjugated to bovine
serum albumin with glutaraldehyde and formaldehyde43, and characterized by spot
testing44. To eliminate cross-reactivity, the diluted antiserum was pre-adsorbed
overnight with glutaraldehyde (G)-conjugated glutamate (500 mM, prepared
according to a previous report45). After extensive rinsing in TBST, the grids were
incubated for 3 h in goat anti-rabbit IgG coupled to 15 nm gold particles (1:25 in
TBST containing 0.05% polyethylene glycol; BioCell Co., Cardiff, UK). After a rinse
in distilled water, the grids were counterstained with uranyl acetate and lead citrate,
and examined with an electron microscope (Hitachi H-7500; Hitachi) at 80 kV
accelerating voltage. To assess the immunoreactivity for GABA, gold particle
density (number of gold particles per mm2) of each GABAþ terminal was
compared with gold particle density of terminals, which contain round vesicles and
make asymmetric synaptic contact with dendritic spines (background density).
Terminals were considered GABA-immunopositive (þ ) if the gold particle density
over the vesicle-containing areas was at least five times higher than background
density.

Quantitative analysis of excitatory and inhibitory synapses. For quantification
of excitatory synapse, 24 electron micrographs representing 368.9 mm2 neuropil
regions in each mouse were taken at a � 40,000. Number of spines (PSD density),
proportion of perforated spines, PSD length and PSD thickness from each three
WT, Salm4� /� and Salm3� /� ; Salm4� /� mice were quantified by using the
ImageJ software. For quantification of inhibitory synapse, 24 electron micrographs

representing 655.5mm2 neuropil regions in each mouse were taken at a � 30,000.
Number of GABAþ terminals showing clear PSD (inhibitory synapse density),
length and thickness of PSD contacting GABAþ terminals from each three WT,
Salm4� /� and Salm3� /� ; Salm4� /� mice were quantified by using the ImageJ
software. The measurements were performed by an experimenter blind to the
genotype. Digital images were captured with the GATAN DigitalMicrograph
software driving a charge-coupled device camera (SC1000 Orius, Gatan) and saved
as TIFF files. Brightness and contrast of the images were adjusted in Adobe
Photoshop 7.0 (Adobe Systems).

Herpes simplex virus. Rat SALM4 in the pGW1-rSALM4 construct was sub-
cloned into the p1005 HSV vector, a modified HSV amplicon plasmid46, to
generate the HSV-SALM4 construct. For amplification and packaging of HSV-
SALM4, or HSV-GFP (control), viruses, 2-2 cells (10% CO2) were transfected with
HSV constructs and a helper virus. NIH3T3 cells were used to measure the titre of
harvested viruses (HSV-EGFP: 1.9� 108 and HSV-SALM4: 1.2� 108 transducing
unit ml� 1). For HSV infection, anaesthetized mice head-fixed in the stereotaxic
apparatus was bilaterally infused of HSV viruses (HSV-EGFP, 0.4 ml� 2 each
hemisphere; HSV-SALM4, 0.6 ml� 2) at target regions (� 1.3 AP/anteroposterior,
±1.4 medial lateral and � 1.5 dorsal ventral) using a Hamilton syringe (World
Precision Instruments Inc.) and 33-gauge blunt needle. For additional HSV
experiments using HA-tagged SALM4 constructs, virus titres were 7.6� 107

transducing unit per ml for HSV-HA-SALM4 and 4.6� 107 for HSV-HA-SALM4-
ecto. Injection conditions were as follows: HSV-EGFP (0.3 ml� 2 each hemisphere),
HSV-HA-SALM4 (0.45 ml� 2 each hemisphere) and HSV-HA-SALM4-ecto
(0.53 ml� 2 each hemisphere).

Cultured neuron transfection and imaging. Cultured hippocampal neurons were
prepared from E18 rat brains, as described previously47, on coverslips coated with
poly-D-lysine and grown in Neurobasal medium supplemented with B-27
(Invitrogen), 0.5% fetal bovine serum, 0.5 mM Glutamax (Invitrogen) and sodium
pyruvate (Invitrogen). For the overexpression of SALMs in cultured neurons,
hippocampal neurons were transfected with pIRES-SALM2-EGFP, pGW1-
Myc-SALM4 or EGFP (Control) using a CalPhos Kit (Clontech) at DIV10 and
immunostained at DIV14. For the ICC, cultured neurons were fixed with 4%
paraformaldehyde/4% sucrose, permeabilized with 0.2% Triton X-100 in PBS,
immunostained with primary antibodies (against EGFP, Shank1 and SALM4
(to identify the triply transfected hippocampal neurons)), and Cy3-, Cy5- and
fluorescein isothiocyanate-conjugated secondary antibodies (Jackson
ImmunoResearch). The images were acquired using a confocal microscope
(LSM710, Carl Zeiss) with a � 63 objective lens. All image settings were kept
constant. The Z-stacked images were converted to maximal projection and
analysed to obtain the size, intensity and density of the puncta immunoreactivities
derived from marker proteins. The quantification was performed in a blind manner
using MetaMorph (Molecular Devices).

Mixed culture synapse-formation assays. Mixed culture assays were performed
with HEK293T cells (American Type Culture Collection) as described23. Cultured
hippocampal neurons were incubated until HEK293T cells transfected with EGFP
(Control), or the indicated SALM3, SALM5 or LRRTM2 constructs, were added at
10 days in vitro (DIV 10) for further coculture experiments. HEK293T cells were
transfected with FuGene (Roche, USA) as indicated. After 48 h, transfected
HEK293T cells were trypsinized, seeded on the hippocampal neuron cultures at
DIV 10, further cocultured for 48 h and double-immunostained with synapsin I,
SALM4 and HA/GFP antibodies at DIV 12 as described previously48. All images
were acquired using a confocal microscope. For quantifications, the contours of the
transfected HEK293T cells were chosen as the region of interest. The fluorescence
intensity of synapsin puncta normalized to each HEK293T cell area was quantified
for red, green and blue channels with the MetaMorph Software (Molecular Device).

Recombinant protein expression and purification. The Ig1-3 domains (aa
30–318) of human LAR-RPTP was cloned into the BamHI and XbaI sites of the
pAcGP67 vector (BD Bioscience) tagged with the Fc domain of human IgG gene.
The High Five insect cells (Invitrogen) were transfected with corresponding P4
baculovirus for 3 days and harvested. The supernatants containing secreted pro-
teins were loaded on protein A-Sepharose column (GE Healthcare Life Science) for
the purification of Fc-tagged proteins. The affinity resin was washed with the buffer
containing 50 mM Tris-HCl (pH 8.0) and 200 mM NaCl. Fc-tagged proteins
immobilized in the protein A-Sepharose column were eluted with glycine buffer
(100 mM glycine, pH 2.1).

Recombinant protein-binding assays. For recombinant LAR-binding assays,
HEK293T cells expressing combinations of SALMs were incubated with extra-
cellular solution containing (in mM):168 NaCl, 2.6 KCl, 10 HEPES, 2 CaCl2,
2 MgCl2, 10 D-glucose and 100mg ml� 1 BSA (pH 7.2) for 1 h at 4 �C, and then
purified soluble LAR-Ig1-3-Fc proteins at 0.25, 0.5, 1, 1.5 and 2 mM concentrations
were added and incubated for 1 h at 4 �C to allow protein binding; a single 2 mM
was used for SALM5 binding. After washing of LAR-Ig1-3-Fc and fixation of the
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cells, LAR binding was visualized by incubating the cells with anti-human-Fc
antibodies (Sigma; 2 mgml� 1, goat). Then, the cells were incubated with HA
antibodies (Sigma; 1:500, mouse or rabbit), or Myc antibodies (Sigma; 1:500,
mouse), without permeabilization for surface HA staining (HA-SALM3/CD8),
followed by permeabilization and staining with SALM4 C-terminal antibodies
(#2026; purified, 1:500, Gp).

Mass spectrometric screen of SALM4-associated proteins. Preparation of
protein samples, affinity chromatography and proteomic analysis were performed
as described previously49. Briefly, crude synaptosomes were prepared from mouse
forebrains (15 WT and KO mice; 3 weeks), and solubilized in 1� PBS containing
0.5% Triton X-100, 0.1% SDS, 0.5 mM EDTA, 0.5 mM EGTA and protease
inhibitor cocktail (Roche). From the solubilized proteins, mature membrane
proteins were enriched using WGA column chromatography (WGA bead, Vector
Laboratories) and eluted using N-acetyl-d-glucosamine (Sigma). The samples were
incubated with SALM4 antibodies (2026, purified, Gp) prebound to protein
A-Sepharose beads (GE Healthcare), followed by protein elution with 2.5� XT
MOPS buffer (BIO-RAD). Boiled samples were resolved using 4B12% Criterion
XT Precast Gels (BIO-RAD) followed by silver staining. From the stained gels,
protein bands were excised and subjected to mass spectrometric analyses. Mass
spectrometry was performed using LTQ-Orbitrap XL ETD (Thermo Scientific) at
the Korea Basic Science Institute.

Statistics. The results of statistical analysis are indicated in Supplementary
Table 1.

Data availability. The authors confirm that all relevant data are available from the
authors.
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