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Abstract: There is interest in understanding the relationship between naturally contaminated com-
modities and the potential for the production of different useful and toxic secondary metabolites
(SMs). This study examined the impact of interacting abiotic stress parameters of water availability
and temperature of stored naturally contaminated maize on the SM production profiles. Thus, the
effect of steady-state storage water activity (aw; 0.80–0.95) and temperature (20–35 ◦C) conditions
on SM production patterns in naturally contaminated maize was examined. The samples were
analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) to evaluate (a) the
total number of known SMs, (b) their concentrations, and (c) changes under two-way interacting
environmental stress conditions. A total of 151 metabolites were quantified. These included those
produced by species of the Aspergillus, Fusarium and Penicillium genera and other unspecified ones
by other fungi or bacteria. There were significant differences in the numbers of SMs produced
under different sets of interacting environmental conditions. The highest total number of SMs (80+)
were present in maize stored at 20–25 ◦C and 0.95 aw. In addition, there was a gradation of SM
production with the least number of SMs (20–30) produced under the driest conditions of 0.80 aw

at 20–30 ◦C. The only exception was at 35 ◦C, where different production patterns occurred. There
were a total of 38 Aspergillus-related SMs, with most detected at >0.85 aw, regardless of the temper-
ature in the 50–500 ng/g range. For Fusarium-related SMs, the pattern was different, with approx.
10–12 SMs detected under all aw × temperature conditions with >50% produced at 500 ng/g. A total
of 40–45 Penicillium-related SMs (50–500 ng/g) were detected in the stored maize but predominantly
at 20–25 ◦C and 0.95 aw. Fewer numbers of SMs were found under marginal interacting abiotic stress
storage conditions in naturally contaminated maize. There were approx. eight other known fungal
SM present, predominantly in low concentrations (<50 ng/g), regardless of interacting abiotic condi-
tions. Other unspecified SMs present consisted of <20 in low concentrations. The effect of interacting
abiotic stress factors for the production of different suites of SMs to take account of the different ecological
niches of fungal genera may be beneficial for identifying biotechnologically useful SMs.
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1. Introduction

Cereals are still by far the world’s most important source of food, both for direct human
consumption and, indirectly, as inputs to livestock production [1]. Under environmental
stress conditions, specific fungal communities can colonise the grain and produce secondary
metabolites (SMs), which may be beneficial or toxic [2–4]. Stored cereal grains represent
heterogeneous solid substrates that have been exploited for the production of pharma-
related SMs, enzymes or mycotoxins. Temperature (T) and moisture content (m.c.) are the
two key abiotic factors that impact the kinetics of colonisation and SM biosynthesis in such
stored solid substrates [5–7].

Maize is often harvested with a m.c. which is conducive to mould growth (17–19%
m.c. = 0.80–0.90 water activity, aw) which can allow certain xerophilic or xerotolerant
genera such as Aspergillus and Penicillium to colonise the substrate and produce SMs. The
most important toxic SMs in maize are aflatoxins (class 1 carcinogen [8]), fumonisins
and ochratoxin A. There is significant knowledge about these toxic SMs produced by
species such as Aspergillus section Flavi, Fusarium section Liseola and Aspergillus section
Circumdati species, respectively. The most important environmental factors which influence
the ability of the naturally contaminating mycobiota to colonise the maize post-harvest
are temperature (T) and m.c. or aw. Aw is a measure of the amount of water available
for microbial growth in a substrate. These two factors interact to determine which fungi
will predominantly colonise the maize resulting in different combinations of SMs being
produced [9]. Fungal species such as Aspergillus flavus produce a range of SMs, including
mycotoxins such as the aflatoxin group (AFs) and cyclopiazonic acid (CPA), and a battery
of other potentially useful ones.

The production of a wide range of SMs by fungal species naturally contaminating
cereals, including maize, is important to understand, especially as these may change
with interacting T × aw conditions during storage. This interest has grown significantly
because of the development of more sophisticated analytical techniques such as Liquid
Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and a growing library of iden-
tifiable SMs [10]. In addition, there has been much interest in microbiomes of different food
commodities and the production of different SMs, which may provide useful leads for the
pharma industry or have an impact on food quality/safety [11,12]. Studies of stored cereals
showed the changes which can occur in targeted metabolomics profiles under different
interacting abiotic conditions [7,9]. However, in most cases, the metabolomics of solid
heterogeneous substrates has been done under one set of conditions only, without includ-
ing the impacts of fluxes in temperature or aw, which influences the predominant fungal
communities colonising solid cereal-based substrates, which may simulate more natural
ecological environments. Indeed, while effects of single factors such as temperature, light
and pH have been examined, few if any studies have examined interacting abiotic factors
to examine effects on metabolomics, especially related to fungal species for pharma-related
suites of SMs [13–15].

A recent study correlated the production of different SMs in stored wheat with molec-
ular approaches. This showed that toxic SMs such as aflatoxin B1, fumonisins, and deoxyni-
valenol (DON) were the most common compounds present. There was also a correlation
between the presence of some SM biosynthetic genes analysed by multiplex PCR with my-
cotoxin detection by LC-MS/MS. However, this study predominantly considered storage
of very dry wheat grain of <14.5% m.c. (≤0.70 aw) at which few, if any, fungi or other
microorganisms can grow (Stevenson et al. 2017). Garcia-Cela et al. [9] demonstrated
that naturally contaminated wheat or wheat inoculated with a specific fungal species,
Fusarium graminearum, and stored under different interacting conditions of aw × T stress
changed the pattern of production of SMs significantly. This affected the amounts of metabo-
lites present and also showed that the dominant SMs produced in stored temperate cereals
were mycotoxins for which legislation exists. However, there were changes in the ratios of
key metabolites, which could influence the relative contamination with individual compounds.
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They thus suggested that under more extreme environmental stresses, different dominant SMs
may be formed, which could include both beneficial or toxic suites of compounds.

There have been few, if any, similar studies carried out with naturally contaminated
maize to examine the impact of interacting abiotic factors on the spectrum of SMs and the
co-occurrence of different groups of compounds which may be present [15–17]. There is
thus a significant lack of knowledge on the impact that colonisation of such nutrient-rich
solid heterogeneous substrates such as maize may have on the SM profiles produced under
such interacting abiotic stress factors. These are often not considered in screening for new
lead compounds for pharma or other biotechnological applications.

The objectives of this study were to examine the effect of interacting conditions of
temperature (20–35 ◦C) × water availability (0.95–0.80 aw) on the changes in SM profiles,
and their concentrations present due to the colonisation of a stored heterogeneous maize
matrix by naturally present fungal species using LC-MS/MS. The number of SMs, their
concentrations and the changes which occur under these different ecological conditions
were examined.

2. Materials and Methods
2.1. Fungal Genera Present on Naturally Contaminated Maize

Serial dilution plating was used to assess the fungal contaminants naturally present
on the harvested maize grain. One gram sub-samples of maize at random were placed in
9 ml of sterile water +0.01% teen 80 in 25 mL glass Universal bottles. These were shaken
vigorously for 60 secs, and then a serial dilution series was made for up to 5–6 dilutions.
A 0.2 mL aliquot was spread-plated of each dilution onto three replicate plates of Malt
Extract Agar (MEA, CM59; Oxoid; Thermo Fisher Scientific, Hemel Hempstead, Herts,
UK) and Dichloran 18% glycerol (DG18, CM0729; Oxoid; Thermo Fisher Scientific, Hemel
Hempstead, Herts, UK). These represented freely available water and a lowered water
activity (aw) media. The media were incubated at 25 ◦C for 7 days, and the different genera
in the dilution with 5–50 colonies were enumerated. Three replicate maize samples were
plated, and the means of the fungal populations of the different genera are presented as
colony-forming units (CFUs) per gram sample (CFUs/g dry weight maize).

2.2. Maize and the Development of the Moisture Adsorption Curve

Naturally contaminated feed-grade maize grain derived from France (cv Emblem,
Limagrain, France) was used in these studies. Initially, 10 g maize samples were placed in
25 mL glass Universal bottles. Known amounts of water were added to three replicates for
each addition (between 0.25–1.5 mL). These were well mixed and then sealed. They were
stored at 4 ◦C overnight for equilibration. They were then returned to 25 ◦C and regularly
mixed until equilibration. Sub-samples of maize were used for measurement of the water
activity (aw) of each sample using a AquaLAB Meter 4 TE (Labcell Ltd., Medstead, Hants,
UK). The moisture content of the samples was also obtained by drying at 105 ◦C for 16 h.
The data of added water against aw was used to plot a water adsorption curve. This was
used to calculate the accurate amounts of water to use for modifying the maize to the target
aw levels for the experiments.

2.3. Grain Storage Studies

The naturally contaminated maize grain was then modified by using the moisture
adsorption curve by adding the amounts of water needed to obtain the target treatment
aw levels with sterile water (=0.80, 0.85, 0.90, 0.95 aw) in glass containers (10 g), sealed and
again equilibrated at 4 ◦C for 24 h with periodic shaking. Each aw treatment and replicates
were enclosed in 16 L plastic containers containing glycerol-water solutions (2 × 500 mL)
to maintain the equilibrium relative humidity (ERH) of the atmosphere the same as the
maize aw level to avoid changes during storage and then closed. These chambers were
incubated at 20, 25, 30, and 35 ◦C for 11 days. For each treatment condition, three replicates
were used.
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2.4. Mycotoxins and Secondary Metabolite Analyses

Sample preparation: The maize samples were dried at 60 ◦C for 48 h, then milled and
stored at 4 ◦C until being analysed for SMs. For this, 5 g of milled maize was extracted
with 20 mL of an extraction solvent (acetonitrile/water/acetic acid 79/20/1), which was
then followed by a 1 + 1 dilution using the same solvent ratio. The diluted extract (5 µL)
was then directly injected into the sample port for LC-MS/MS analysis.

LC-MS/MS parameters: The analyses and quantification of the SMs were done with
a QTrap 5500 LC-MS/MS System (Applied Biosystems, Foster City, CA, USA) that was
equipped with a TurboIonSpray electrospray ionization (ESI) source and a 1290 Series HPLC
System (Agilent, Waldbronn, Germany). The chromatographic separation was performed
at 25 ◦C on a Gemini® C18-column, 150 × 4.6 mm2 i.d., 5 µm particle size, equipped with a
C18 4 × 3 mm2 i.d. security guard cartridge (all from Phenomenex, Torrance, CA, USA).
The details of the chromatographic method and mass spectrometric parameters have been
detailed previously [18,19].

Both the positive and negative polarity modes were used for ESI-MS/MS in the
time-scheduled multiple reaction monitoring (MRM). These were made in two separate
chromatographic runs per sample by scanning two fragmentation reactions per analyte.
The MRM detection window of each analyte was set to its expected retention time of
±27 and ±48 s in the two polarity modes (positive and negative).

LC-MS/MS parameters for compounds for which no standards were available were re-
trieved by performing Enhance Product Ion scans in culture extracts from the related fungal
producers and verification of the product ions by comparison with literature data [20].

Quantification included the use of external calibration using serial dilutions of a
multi-analyte stock solution. Results were corrected for apparent recoveries determined
during method validation [10]. LOD/LOQ were determined according to the EURACHEM,
involving replicate measurements of samples with a low concentration of analyte and
determination of the standard deviation s0 expressed as concentration units. The LOD and
LOQ are obtained by multiplying s0 with a factor of 3 and 10, respectively. The accuracy of
the method has been verified on a continuous basis by regular participation in proficiency
testing schemes [18–20].

The list of the different SMs examined in this study is presented in Table 1.

Table 1. List of the different secondary metabolites examined in this study where standards
were available.

Group (Number of
Metabolites Studies) Secondary Metabolites

Aflatoxin derivatives and the
metabolites from the aflatoxin

pathway (14)

Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2, Aflatoxin M1, Aflatoxin P1,
Aflatoxicol. Sterigmatocystin, O-Methylsterigmatocystin, Averantin, Averufin, Versicolorin

A, Versicolorin, Nidurufin, Norsolorinic acid

Other metabolites associated with
Aspergillus section Flavi species (5) Kojic acid, 3-Nitropropionic acid, Cyclopiazonic acid, Asperfuran, Aspinolid B

Metabolites from other
Aspergillus species (19)

Aspergillicin Derivate, Aspterric acid, Bis (methylthio)gliotoxin, Butyrolacton III,
Butyrolactone I, Fumigaclavine C, Fumiquinazolin D, Helvolic acid, Phenopyrrozin,

Pyranonigrin, Pseurotin A, Demethylsulochrin, Methylsulochrin, Mevastatin, Viomellein,
Terphenyllin, Terretonin, Dichlordiaportin, Tryprostatin B

Fusarium metabolites (27)

Zearalenone, Fumonisin B1, Fumonisin B2, Fumonisin B3, Fumonisin B4, hydrolysed
Fumonisin B1, Deoxynivalenol, DON-3-glucoside, Nivalenol, 15-Acetyldeoxynivalenol, T-2
toxin, HT-2 toxin, Monoacetoxyscirpenol, Diacetoxyscirpenol, Moniliformin, Beauvericin,

Enniatin B, Enniatin B1, Fusarin C, Epiequisetin, Equisetin, Aurofusarin, Rubrofusarin,
Bikaverin, Culmorin, 15-Hydroxyculmorin Chrysogin
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Table 1. Cont.

Group (Number of
Metabolites Studies) Secondary Metabolites

Penicillium metabolites (58)

Ochratoxin A, Ochratoxin B, Patulin, Citrinin, Citreoviridin, Mycophenolic acid,
Mycophenolic acid IV, Norverrucosidin, Verrucosidin, Desoxyverrucosidin, Verrucofortine,

Xanthomegnin, Viridicatin, Viridicatol, O-Methylviridicatin, Andrastin A, Andrastin B,
Paxillin, Penicillic acid, Penicillin G, Penitrem A, Agroclavine, Chanoclavin, Festuclavine,

Citreohybridinol, Oxaline, Neoxaline, Meleagrin, Pinselin, Puberulin A, Purpuride,
Questiomycin A, Quinolactacin A, Roquefortine C, Roquefortine D, Rugulosin,

Rugulovasine A, Griseofulvin, Griseophenone B, Griseophenone C, Dechlorogriseofulvin,
Dehydrogriseofulvin, Cyclopenin, Cyclopenol, Cyclopeptine, Dehydrocyclopeptine,
Flavoglaucin, Brevicompanine B, Atlantinon A, Aurantiamin A, Aurantine, Anacin,

Berkedrimane B, Communesin B,2-Methylmitorubin, Pestalotin, 7-Hydroxypestalotin,
Scalusamid A

Other fungal metabolites (8) Altersetin, Bassianolide, Ergine, Ergometrine, Ergometrinine, Cladosporin, Gliocladic acid,
Heptelidic acid

Unspecific metabolites (20)

Asperphenamate, Brevianamid F, Chrysophanol, Citreorosein, cyclo(L-Pro-L-Tyr),
cyclo(L-Pro-L-Val), Emodin, Endocrocin, F01 1358-A, Fallacinol, Fellutanine A,

Iso-Rhodoptilometrin, N-Benzoyl-Phenylalanine, Neoechinulin A, Norlichexanthone,
Orsellinic acid, Physcion, Rugulusovin, Skyrin, Tryptophol

2.5. Statistical Analysis

Statistical analysis was performed using the package JMP® Pro 13 (SAS Institute
Inc., 2016. Cary, NC, USA). Datasets were tested for normality and homoscedasticity
using the Shapiro–Wilk and Levene tests, respectively. In all cases, the data sets failed the
normality test, despite attempts busing variable transformation to try to improve normality
or homogenise the variances. The transformed data were not normally distributed, and
therefore, the Wilcoxon or Kruskal–Wallis test by ranks was used for the analysis of the
data. All the treatments had at least three biological replicates. The studies at 20–30 ◦C were
carried out twice with similar types, and quantities of SMs found in the maize samples.

3. Results

Figure 1 shows the isolation of the populations of the predominant fungal genera from
the naturally contaminated maize based on plating on two different media. This shows
that Penicillium and Fusarium species were the main populations isolated, with much lower
levels of the Aspergillus genera, including Aspergillus section Flavi and section Nigri and
the Aspergillus glaucus group. Other genera occasionally were characteristic field fungi,
including Cladosporium, Alternaria and some white and red yeasts.
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Figure 2 shows that number of SMs found in the stored maize grain at different tem-
perature × aw conditions. The total number of SMs present was maximum at 20 and 25 ◦C,
especially with more available water at 0.95 aw. At both 30 and 35 ◦C, fewer SMs were
present and at lower concentrations. There was a significant gradual increase in the number
of SMs, and the numbers present at >500 ng/g as the aw was increased from 0.80–0.85 to
0.95 and all the temperatures were examined. Supplementary Materials Table S1 provides
the statistical analyses of all the SMs and those produced at >500 ng/g in relation to the
temperature and aw conditions tested.
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More detailed analyses were made of the SMs produced by different key groups
of fungi in stored maize. These were predominantly related to species of Aspergillus,
Penicillium and Fusarium genera. Figure 3 shows the numbers of SMs found related to the
Aspergillus genus. There were 38 different SMs detected. About 15 SMs were consistently
produced at ≥0.90 aw at all temperatures. More specific groups of SMs were produced
at higher concentrations in 0.90 and 95 aw at all temperatures studied. Table 2 provides
the detailed list of SMs and the actual concentrations of those found under the different
temperature × aw conditions for the Aspergillus-related species colonizing the maize. The
aflatoxin-related SMs were almost all produced optimally at 30–35 ◦C and 0.95 aw. In
contrast, SMs such as kojic acid and 3-nitropropionic acid were produced over the whole
temperature range, especially at 0.90 and 0.95 aw. At 20 ◦C, no aflatoxin-related metabolites
were produced at all the aw levels examined (except for sterigmatocystin, averufin and
versicolorin C at ≤2.4 µg/kg).

By far, the largest group of SMs was produced in naturally stored maize by species of
the Penicillium genus (up to 58 SMs). Figure 4 shows the relative number of SMs detected
under the different conditions, with the largest number at 20–25 ◦C and 0.95 aw. In contrast,
at 35 ◦C, very few metabolites were produced and at very low concentrations. A detailed
examination of the SMs produced by Penicillium species is shown in Table 3. Generally, most
of the SMs, including mycophenolic acid, were predominantly produced under 20–30 ◦C
and 0.85 and 0.95 aw. SMs such as festuclavin and flavoglaucin were also present. These
can also sometimes also be produced by Aspergillus species.
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3-Nitropropionic acid <LOD <LOD 158.6 499 <LOD <LOD <LOD 264 <LOD 182.9 56.4 13,279.1 118.1 <LOD 30.1 14,677.4 
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By far, the largest group of SMs was produced in naturally stored maize by species 
of the Penicillium genus (up to 58 SMs). Figure 4 shows the relative number of SMs de-
tected under the different conditions, with the largest number at 20–25 °C and 0.95 aw. In 
contrast, at 35 °C, very few metabolites were produced and at very low concentrations. A 
detailed examination of the SMs produced by Penicillium species is shown in Table 3. Gen-

Figure 3. Summary of the predominant secondary metabolites (µg/g) and their concentrations
detected and produced by species of the Aspergillus genus in maize grain stored under different
temperature × water activity conditions; Bars represent the Standard Error of the mean.
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Table 2. Summary of the major secondary metabolites (ng/g) of Aspergillus species present in the maize under different temperature × water activity conditions.
The conditions highlighted in green (low concentrations), yellow (medium concentrations) and red (highest concentrations) were found. LoD: Limit of Detection.

Maize Aspergillus Secondary Metabolites (ng/g)

T (◦C) 20 25 30 35

aw 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

Aflatoxin B1 <LOD <LOD <LOD <LOD <LOD <LOD 30.5 13.5 <LOD 1.7 <LOD 1717.2 19,732.1 <LOD <LOD 559.2
Aflatoxin B2 <LOD <LOD <LOD <LOD <LOD <LOD 1.7 <LOD <LOD <LOD <LOD 48.5 216.9 <LOD <LOD 22.5
Aflatoxin G1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 3.2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Aflatoxin M1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 45.5 80.6 <LOD <LOD 18.3
Aflatoxin P1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.8 <LOD <LOD <LOD
Aflatoxicol <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 143.9 40 <LOD <LOD <LOD

Sterigmatocystin <LOD <LOD <LOD 0.3 <LOD <LOD <LOD 1.1 <LOD 0.7 <LOD 18.4 1.1 <LOD <LOD <LOD
O-Methylsterigmatocystin <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.5 <LOD <LOD <LOD 54.7 5.9 <LOD <LOD <LOD

Averantin <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.2 <LOD 0.2 <LOD 39.3 10.5 <LOD <LOD 27.3
Averufin <LOD <LOD <LOD 1.1 <LOD <LOD <LOD 3.9 <LOD 2.2 <LOD 116 79.2 <LOD <LOD 28.7

Versicolorin A <LOD <LOD <LOD <LOD <LOD <LOD <LOD 4.1 <LOD 2.6 <LOD 108.2 15.1 <LOD <LOD 25.1
Versicolorin C <LOD <LOD <LOD 2.4 <LOD <LOD <LOD 5.7 <LOD 2 <LOD 158.7 277 <LOD <LOD 68.3

Nidurufin <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.3 <LOD 0.3 <LOD 95.8 <LOD <LOD <LOD 47.9
Norsolorinic acid <LOD <LOD <LOD <LOD <LOD <LOD <LOD 3 <LOD 3 <LOD <LOD 61.4 <LOD <LOD <LOD

Kojic acid <LOD <LOD 209.4 199.6 <LOD 19.5 1823.1 142,174.7 608.1 13,536.5 20,854.9 3,057,523 47,332.3 <LOD 25,061.8 3,335,509.7
3-Nitropropionic acid <LOD <LOD 158.6 499 <LOD <LOD <LOD 264 <LOD 182.9 56.4 13,279.1 118.1 <LOD 30.1 14,677.4

Cyclopiazonic <LOD <LOD <LOD <LOD <LOD <LOD <LOD 137.7 552 344.8 <LOD <LOD <LOD <LOD <LOD 9244.8
Asperfuran <LOD <LOD <LOD <LOD <LOD <LOD 152.4 1212.1 <LOD <LOD <LOD <LOD 389.9 <LOD <LOD 70,155.5
Aspinolid B <LOD <LOD 0.5 244.2 <LOD <LOD <LOD 490.2 <LOD 355.7 <LOD <LOD <LOD <LOD <LOD <LOD

Table 3. Detailed list and mean amounts of secondary metabolites (µg/g) found in maize related to colonization by Penicillium species. The conditions highlighted in
green (low concentrations), yellow (medium concentrations) and red (highest concentrations) were found; LOD: Limit of Detection.

Maize Penicillium Secondary Metabolites (ng/g)

T (◦C) 20 25 30 35

aw 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

2-Methylmitorubin <LOD <LOD <LOD 11 <LOD <LOD <LOD 155.1 <LOD 71.1 <LOD 413.2 <LOD <LOD <LOD <LOD
7-Hydroxypestalotin 3.9 4.3 19.3 12.8 3.6 6.8 5 26.7 5.1 16 8.3 <LOD 9.1 2.2 <LOD <LOD

Agroclavine 0.1 1.6 1.2 3.3 5.9 3 12.4 9.6 15.1 18 12.9 <LOD <LOD <LOD <LOD <LOD
Anacin <LOD <LOD <LOD 1176.9 <LOD <LOD <LOD 103.7 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
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Table 3. Cont.

Maize Penicillium Secondary Metabolites (ng/g)

T (◦C) 20 25 30 35

aw 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

Andrastin A <LOD 0.9 1.5 166.6 <LOD 3 2.3 180.1 <LOD 270.4 4.5 1657.7 <LOD <LOD <LOD <LOD
Andrastin B <LOD <LOD <LOD 390 <LOD <LOD <LOD 164.7 <LOD 21.3 <LOD 133.2 <LOD <LOD <LOD <LOD

Atlantinon A <LOD <LOD 7.9 729.7 <LOD <LOD 14.2 223.2 <LOD 414.8 <LOD <LOD <LOD <LOD <LOD <LOD
Aurantiamin A <LOD <LOD <LOD 813.2 <LOD <LOD <LOD 54.4 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

Aurantine <LOD <LOD 2.1 969.8 <LOD <LOD <LOD 475.8 <LOD 1247.7 0.8 559.5 <LOD <LOD <LOD <LOD
Berkedrimane B <LOD <LOD 16.8 1724.1 <LOD <LOD <LOD 7360.5 <LOD 3981.2 6.4 265.4 <LOD <LOD <LOD <LOD

Brevicompanine B <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Chanoclavin 0.3 4.1 5.3 18.6 4.1 5.6 12 17.2 8.7 9.8 6.4 24.6 <LOD <LOD <LOD 29.1

Citreohybridinol <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Citreoviridin <LOD <LOD <LOD 55.7 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

Citrinin <LOD <LOD <LOD <LOD <LOD <LOD <LOD 337.9 <LOD 934.6 <LOD <LOD <LOD <LOD <LOD <LOD
Communesin B <LOD <LOD <LOD 19.1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

Cyclopenin <LOD <LOD <LOD 64.9 <LOD <LOD <LOD 107.8 <LOD 114.9 <LOD 198 <LOD <LOD <LOD <LOD
Cyclopenol <LOD 10.4 6.1 979.8 <LOD <LOD <LOD 1745.5 <LOD 1877.2 3.4 3260.8 5.1 <LOD 5.2 <LOD

Cyclopeptine <LOD <LOD <LOD 84.1 <LOD <LOD <LOD 80.9 <LOD 76.9 <LOD 160.9 <LOD <LOD <LOD <LOD
Dechlorogriseofulvin <LOD <LOD <LOD 77.8 <LOD <LOD <LOD 301.8 <LOD 122.3 <LOD 1992.4 <LOD <LOD <LOD <LOD
Dehydrocyclopeptine <LOD <LOD <LOD 21.2 <LOD <LOD <LOD 19.3 <LOD 19.6 <LOD 90.1 <LOD <LOD <LOD <LOD
Dehydrogriseofulvin <LOD <LOD <LOD 0.7 <LOD <LOD <LOD 2.4 <LOD 0.6 <LOD <LOD <LOD <LOD <LOD <LOD
Desoxyverrucosidin <LOD <LOD <LOD 59.6 <LOD <LOD <LOD 53.5 <LOD 85.4 <LOD 118.5 <LOD <LOD <LOD <LOD

Festuclavine <LOD 0.2 0.6 0.9 0.2 0.3 1.7 1.5 0.5 1.1 1.6 <LOD <LOD <LOD <LOD 9
Flavoglaucin <LOD 7576 118,078 132,976 5186 97,681 144,820 140,188 45,908 140,928 293,943 562,099 219,519 <LOD 216,805 240,027
Griseofulvin <LOD <LOD <LOD 83.6 <LOD <LOD <LOD 225.9 <LOD 139.3 <LOD 1057.6 <LOD <LOD <LOD <LOD

Griseophenone B <LOD <LOD <LOD 380.3 <LOD <LOD <LOD 1881.7 <LOD 644.1 <LOD 3376.9 <LOD <LOD <LOD <LOD
Griseophenone C <LOD <LOD <LOD 28 <LOD <LOD <LOD 126.8 <LOD 55.2 <LOD 279.5 <LOD <LOD <LOD <LOD

Meleagrin <LOD <LOD <LOD 573.9 <LOD <LOD <LOD 118.9 <LOD 68.6 <LOD 30.8 <LOD <LOD <LOD <LOD
Mycophenolic acid 2.3 5.8 82.2 417.6 760 <LOD 58.3 173.2 <LOD <LOD <LOD <LOD 25.7 <LOD 8.6 <LOD

Mycophenolic acid IV <LOD <LOD 2.8 9.5 1.9 <LOD <LOD 4.1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Neoxaline <LOD <LOD <LOD 5.9 <LOD <LOD <LOD 1.7 <LOD 1.6 <LOD <LOD <LOD <LOD <LOD <LOD

Norverrucosidin <LOD <LOD <LOD 146.2 <LOD <LOD 1.1 84.3 <LOD 196.6 <LOD <LOD <LOD <LOD <LOD <LOD
Ochratoxin A <LOD <LOD <LOD <LOD <LOD <LOD <LOD 204.3 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Ochratoxin B <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

O-Methylviridicatin <LOD <LOD <LOD 8.9 <LOD <LOD <LOD 7.9 <LOD 11.1 <LOD <LOD <LOD <LOD <LOD <LOD
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Table 3. Cont.

Maize Penicillium Secondary Metabolites (ng/g)

T (◦C) 20 25 30 35

aw 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

Oxaline <LOD <LOD 0.3 293.7 0.7 <LOD 0.5 221.9 <LOD 302.2 0.1 15.8 <LOD <LOD <LOD <LOD
Patulin <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Paxillin <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

Penicillic acid <LOD <LOD <LOD 29.9 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Penicillin G <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Penitrem A <LOD <LOD <LOD 6.5 <LOD <LOD <LOD 9.1 <LOD 8.5 <LOD <LOD <LOD <LOD <LOD <LOD
Pestalotin 4 <LOD 9.9 6.9 4.5 2.9 4.9 10.2 3.6 7.3 9.5 <LOD 4.7 <LOD 1.8 <LOD
Pinselin <LOD <LOD 43.5 12990.3 15.6 <LOD 37.2 3546.4 <LOD 4112.1 15.2 4634.3 <LOD <LOD <LOD <LOD

Puberulin A <LOD <LOD <LOD 94.9 <LOD <LOD <LOD 12 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Purpuride <LOD <LOD <LOD 1913.2 <LOD <LOD <LOD 3077.1 <LOD 2188.9 9.5 126.7 <LOD <LOD <LOD <LOD

Questiomycin A 13.7 22.5 30.1 31 11.7 14.1 16.5 50.6 15.1 35.9 28.2 <LOD 20 5.9 8.7 <LOD
Quinolactacin A <LOD <LOD <LOD 0.4 <LOD 0.1 <LOD 0.4 <LOD 0.4 51.6 2.6 <LOD <LOD <LOD <LOD
Roquefortine C <LOD <LOD <LOD 30116.3 <LOD <LOD <LOD 48492.9 <LOD 20269 <LOD 130454 <LOD <LOD <LOD <LOD
Roquefortine D <LOD <LOD <LOD 84.5 <LOD <LOD <LOD 132.8 <LOD 89 <LOD 271.9 <LOD <LOD <LOD <LOD

Rugulosin <LOD <LOD <LOD <LOD <LOD <LOD <LOD 160.1 <LOD <LOD <LOD 7212.7 <LOD <LOD <LOD <LOD
Rugulovasine A <LOD <LOD <LOD 28 <LOD <LOD <LOD 225.1 <LOD 38.9 <LOD 509.4 <LOD <LOD <LOD <LOD

Scalusamid A <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 23.2 <LOD <LOD <LOD <LOD <LOD
Verrucofortine <LOD <LOD <LOD 1.2 <LOD <LOD <LOD 0.8 <LOD 0.7 <LOD <LOD <LOD <LOD <LOD <LOD
Verrucosidin <LOD <LOD <LOD 335.2 <LOD <LOD 9.9 245.5 <LOD 535.5 <LOD 125.2 <LOD <LOD <LOD <LOD
Viridicatin <LOD <LOD 19.6 308.5 <LOD <LOD <LOD 138 <LOD 144 <LOD 407.1 <LOD <LOD <LOD <LOD
Viridicatol <LOD <LOD 154.1 3473.6 204.9 <LOD <LOD 1623.4 <LOD 1665.5 <LOD 3445.4 <LOD <LOD <LOD <LOD

Xanthomegnin <LOD <LOD <LOD 1775.7 <LOD <LOD <LOD 2091.7 <LOD 953 <LOD <LOD <LOD <LOD <LOD <LOD
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A total of 27 different SMs of Fusarium species was found in the maize stored under
different temperature × aw conditions. A similar range of metabolites with different con-
centration groups was produced by species of this genus across all temperatures (Figure 5).
The range of SMs produced by Fusarium species and there relative concentrations under
the interacting abiotic factors is shown in Table 4. Of particular interest was the presence
of both free (fumonisins, deoxynivalenol) and bound toxic SMs. Thus, hydrolysed fu-
monisin B1 and deoxynivalenol 3-glucoside were found under different interacting abiotic
conditions. The Fusarium SMs produced optimally changed with temperature and aw con-
ditions, especially for type B trichothecenes, enniatins, 15-hydroyculmorin and chrysogin,
as examples.
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Figure 5. Summary of the predominant secondary metabolites of Fusarium species detected in maize
grain stored under different temperature × water activity conditions. Bars represent the Standard
Error of the mean.

A few other fungal SMs were produced but in very low concentrations, regardless
of the interacting abiotic conditions (Figure 6). These were generally produced in low
concentrations, especially at 20–30 ◦C and 0.90 and 0.95 aw. Other unspecified SMs were
found in the maize varying from 10–20 depending on the temperature and aw conditions.
There was an increasing gradation of these SMs as more water was available in the substrate
and at the temperature conditions examined (Figure 7).
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Table 4. Detailed list of the quantified major secondary metabolites of Fusarium species detected in the maize under different temperature × water activity conditions.
The conditions highlighted in green (low concentrations), yellow (medium concentrations) and red (highest concentrations) were found. LOD: Limit of Detection.

Maize Fusarium Secondary Metabolites (ng/g)

T (◦C) 20 25 30 35

aw 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

Zearalenone 3.3 4.7 20.2 1.9 2.2 2.4 2.2 <LOD 2 1.9 23.1 <LOD 2.8 54.7 24 1303.9
Fumonisin B1 61.7 61.2 65.3 56.7 363.3 13,771.9 59.7 91,682.8 58.6 397.5 165.6 21451.5 85.9 37.1 105.5 <LOD
Fumonisin B2 19 10.5 9.7 14.7 48.3 2597.1 10.1 22,186.5 <LOD 176.2 56.4 4225.5 17.1 16.1 17.2 <LOD
Fumonisin B3 8.1 31.8 <LOD <LOD 82.2 1011 <LOD 16,173.3 <LOD 330.9 <LOD 7480.1 31.8 <LOD <LOD <LOD
Fumonisin B4 <LOD <LOD <LOD <LOD 96.1 1468.2 <LOD 248.2 <LOD 248.2 <LOD 5294.8 <LOD <LOD <LOD <LOD

hydrolysed Fumonisin B1 <LOD <LOD <LOD <LOD <LOD 3 <LOD 78.9 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Deoxynivalenol 339.1 1285.6 405.9 328.2 772.7 436.5 320.3 223.5 150.8 40.3 1282.6 3419.1 330.3 3213.5 537.5 6303.6

DON-3-glucoside <LOD 82.9 16.4 <LOD <LOD <LOD 21.1 30.5 <LOD <LOD <LOD <LOD <LOD <LOD 52.7 <LOD
Nivalenol <LOD 43.6 122.1 405.9 15.9 78.6 62.2 58.9 107.6 <LOD 14.4 <LOD 161.7 51.1 1002 <LOD

15-Acetyldeoxynivalenol 135.4 162.4 222 81.4 94.9 188.6 111.5 <LOD 109.4 105.9 77.6 <LOD 233.5 <LOD 271.3 <LOD
T-2 toxin <LOD <LOD 3.9 <LOD <LOD <LOD 3.7 <LOD <LOD <LOD <LOD <LOD 22.2 <LOD <LOD <LOD

HT-2 toxin <LOD <LOD 30.3 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 163.5 <LOD <LOD <LOD
Monoacetoxyscirpenol <LOD <LOD <LOD 79.1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 92.6 <LOD

Diacetoxyscirpenol <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 27.1 <LOD
Moniliformin 27.2 25.1 57.3 4116.3 179.7 91 26.4 2535.2 22.1 1048.2 42.1 13,282.9 19.8 24.6 447 1449
Beauvericin 72.8 5.8 5.8 5.1 7.2 26.8 4.7 75.9 9.7 73.6 6 171.6 5.7 7.9 9.4 10.1
Enniatin B 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 <LOD <LOD <LOD <LOD 0.3 0.2 0.8 <LOD

Enniatin B1 0.6 0.6 0.7 0.7 0.6 0.5 0.5 0.6 <LOD <LOD <LOD <LOD 0.6 0.5 0.7 <LOD
Fusarin C <LOD <LOD <LOD <LOD <LOD <LOD <LOD 5424.2 <LOD 721.2 <LOD 15468 <LOD <LOD <LOD <LOD

Epiequisetin <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 204.6 <LOD
Equisetin <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 3049.1 <LOD

Aurofusarin 29.7 478.9 94.8 107.1 45.8 55.8 60.5 118.8 114.4 66.2 219.3 262.1 70.4 7673.5 481.4 1929.9
Rubrofusarin <LOD <LOD <LOD 111.7 <LOD <LOD <LOD 225.5 <LOD 225.5 <LOD <LOD <LOD <LOD <LOD <LOD

Bikaverin <LOD <LOD 33.1 <LOD 120 158.1 7.5 730.4 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
Culmorin 380.8 2072.3 845.5 446.3 333 419.2 299.1 58.6 121 131.6 1794.4 4599.4 50.1 <LOD 503 <LOD

15-Hydroxyculmorin <LOD 1156.1 481.9 199 472.1 205.6 89 402.1 335.7 <LOD 276.2 <LOD 723.8 12,356.5 363.5 7503.1
Chrysogin <LOD <LOD <LOD 3.1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 8.7 <LOD
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4. Discussion

This study was focused on the metabolite profiles produced by different fungal genera
as well as other unknown SMs. The use of different interacting storage interacting abiotic
factors has shown that this can have a significant impact on the range of SMs produced and
their relative concentrations. In addition, the temperature and available water influenced
the predominant SMs found when this heterogeneous grain substrate and changed with
different stress conditions. Indeed, the SMs produced by Aspergillus species was predomi-
nantly produced at >25 ◦C and >0.85 aw. In contrast, more Penicillium SMs were found in
the maize, especially at 20–30 ◦C over a range of water stress conditions. Fusarium species,
usually colonise such cereal substrates optimally under wetter conditions of >0.98 aw and
25–30 ◦C. However, even at 0.90 and 0.95 aw water stresses, there was a range of SMs
produced, including both free and bound related compounds, such as the hydrolysed
fumonisins and deoxynivalenol glucoside.

In relation to the discovery of novel SMs, often screening programmes have often used
single temperatures on liquid/solid defined media without any modification of abiotic
factors. This may limit the range of types of SMs isolated. In addition, the conditions
used are unrelated to the ecological niches from which the microorganisms have been
isolated. It may be more important to consider the environmental conditions which are
optimum for growth vs those optimum for SM production. These are often not the same.
This has been shown for the growth and production of toxic SMs such as aflatoxins,
ochratoxin A and fumonisins, as well as for pharma-based products such as squalastatins
and taxol [21,22]. Thus imposing duel abiotic stress factors such as temperature and water
have been demonstrated to have a significant impact on the range and concentrations of
SMs found in such natural heterogeneous matrices.

The SMs screened in this study and found in the maize were predominantly related to
three genera which have very different resilience to temperature × water stress conditions.
Aspergillus species are known to be xerophilic and able to grow and produce SMs over the
widest water availability range. Penicillium species are considered to be xerotolerant or
xerophilic and grow well, often under intermediate water stress and cooler temperatures.
In contrast, Fusarium species are often mesophilic and are less tolerant of water stress, and
often do not grow effectively at <0.85 aw [23].
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Studies with naturally contaminated stored wheat grain showed that 24 different
Fusarium metabolites were present that could be quantified [9]. This previous study found
the dominant metabolites in the wheat grain to be DON and nivalenol (NIV), then a range
of enniatins (A, A1, B, B1), apicidin and Deoxynivalenol-3-glucoside at the cool temperature
of 10 ◦C. However, increasing the temperature stimulated the biosynthesis of other SMs,
including aurofusarin, moniliformin, zearalenone (ZEN) and their derivatives. When this
naturally contaminated wheat was inoculated with F. graminearum spores, there was a
significant increase in the number of SMs produced (ChisSq., p < 0.001). Interestingly,
the relative ratios of certain groups of SMs also changed under interacting abiotic stress
conditions. This approach, thus, provides different ecological niches in which different
fungal species may predominate and influence the production of the suites of SMs found.

Maize represents a very nutritional sugar and lipid-rich heterogeneous matrix that can
be effectively exploited by colonizing fungi producing a wide range of hydrolytic enzymes.
This can be subsequently used in secondary metabolite gene clusters responsible for the
key biosynthetic pathways for SM production. In general, most fungal SM compounds
synthesized fall into four key chemical classes: polyketides, terpenoids, shikimic acid-
derived compounds and non-ribosomal peptides [24]. Often, additional hybrid metabolites
containing moieties from the different classes are produced, such as the meroterpenoids,
fusions between terpenes and polyketides. The colonisation of cereals is predominantly by
ascomycetes. These fungal genera often have an abundance of gene clusters of secondary
metabolism than other fungal groups, including basidiomycetes, archeo-ascomycetes and
chytridiomycetes. In contrast, hemi-ascomycetes and zygomycetes have none [25]. The
range and types of SMs found in the maize stored under different steady-state interacting
conditions influenced the predominant SMs found. Indeed, the high concentrations of SMs
found (50–500 ng/g) related to Aspergillus (>25 SMs), Penicillium (>40 SMs), and Fusarium
(10–15 SMs) genera show that physiological biosynthesis is related to enzyme groups
including a range polyketide synthases (PKS), non-ribosomal protein synthases (NRPS),
tryptophan synthetases (TS) and dimethylallyl tryptophan synthetases (DMATS). These
are all considered to be important for the biosynthesis of SMs.

Interactions between the different species of the predominant genera inevitably occur,
depending on the ecological conditions. Some of the SMs present may well be related
to such interactions to provide a competitive edge in primary or secondary resource
capture [26]. In contrast, there would be practically little interaction between these fungi
and bacteria because the latter do not generally grow at <0.95 aw [23]. Some studies have
examined the effect of light, pH and temperature on Thus the type of interactions that occur
will be predominantly between those fungal species which are able to grow ecologically as
saprophytes or pathogens and utilize the biosynthesis of SMs for competitive advantage.
It has been suggested that communication between Aspergillus species and bacteria can
occur via the biosynthesis of suites of SMs, especially mycotoxins [27]. However, they
neglected the critical role of water availability in durable commodities and the interaction
with other abiotic factors which influences SM production. In most cases, the majority of
bacteria are only able to grow when water is freely available (>0.99 aw). The complexity of
interactions between Aspergillus species and the role of toxic SMs has been suggested to be
very complex and determine the niches which these species fill from an ecological network
point of view [28]. Indeed, maize and other heterogeneous durable commodities can be
considered a man-made ecological niche in which complex interactions can occur between
genera, species and the presence/absence of different pests [29].

An extensive study by Adentunji et al. [30] of maize samples from different climatic
regions of Nigeria quantified the presence of up to 60 fungal targeted SM compounds. This
showed that while aflatoxins and fumonisins, DON and its derivatives were dominant,
Alternaria SMs and a range of unrelated fungal compounds were also present. The maize
samples analysed were from diverse sources and not from a specifically designed study of
interacting abiotic stresses on maize SMs. However, fluxes in temperature and moisture
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content of the maize will have influenced the rate of fungal colonization and the suites of
SMs and their concentrations found.

While the importance of simulating natural ecological niches by using solid substrate
systems has often been lacking, this was pointed out as being important for significantly
improving the tires of different SM groups [6,7]. In addition, it was recently pointed out
that many microbial biosynthetic pathways remain silent when grown on standard defined
laboratory conditions and often do not result in inducing signalling and the production
of potentially defence compounds [31]. Indeed they suggested that co-culture of different
microbial species on solid substrates or by mixed fermentation can result in the activation of
cryptic gene clusters for the induction of novel natural products. However, in such studies,
no account was taken of interacting abiotic stresses and how natural colonization by mixed
populations of microorganisms could influence the suites of SMs produced [32]. This also
applies to microreactors which were considered an effective tool for screening and the
discovery of new bioactives [33]. However, these did not try to simulate natural ecosystems.
The use of solid substrate fermentation systems with heterogeneous matrices may be an
effective method for the development of such screening systems, provided that the systems
can remain aerobic and temperature can be effectively controlled [34]. Certainly, the use of
liquid fermentation systems, especially using immobilized systems and including abiotic
stresses on the functioning of gene clusters involved in SM or enzyme biosynthesis been
shown to significantly increase phenotypic production [35–37].

5. Conclusions

Certainly, this type of study demonstrates the importance of considering different
ecological niches and interacting abiotic stresses to simulate fluxes that occur in the en-
vironment, which will all influence the synthesis of individual and groups of SMs. The
discovery of novel lead compounds should include this more ecosystem-based approach
and include more heterogeneous matrices for broadening the range of SMs that may be
present and enhance the opportunity for the discovery of more novel natural products.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/microorganisms10050853/s1, Table S1: Statistical anal-
yses of the effect of interacting abiotic factors on total secondary metabolites of the three genera found
in the maize and the significance of those metabolites produced at >500 ng/g.
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