
Ecology and Evolution. 2021;11:12035–12050.     |  12035www.ecolevol.org

 

Received: 17 April 2021  |  Revised: 14 July 2021  |  Accepted: 17 July 2021

DOI: 10.1002/ece3.7969  

O R I G I N A L  R E S E A R C H

Environmental controls on butterfly occurrence and species 
richness in Israel: The importance of temperature over rainfall

Orr Comay1,2,3  |   Oz Ben Yehuda4 |   Racheli Schwartz- Tzachor5 |   Dubi Benyamini6 |   
Israel Pe'er7 |   Inbar Ktalav8 |   Guy Pe'er1,2

This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Department of Ecosystem Services, 
UFZ Helmholtz Centre for Environmental 
Research, Leipzig, Germany
2German Centre for Integrative Biodiversity 
Research (iDiv) Halle- Jena- Leipzig, Leipzig, 
Germany
3School of Zoology and the Steinhardt 
Museum of Natural History, Tel Aviv 
University, Tel Aviv, Israel
4Achva Academic College, Arugot, Israel
5Ramat Hanadiv, Zikhron Ya'akov, Israel
6Israeli Lepidopterists Society, Bet Arye, 
Israel
7GlueCAD- Biodiversity IT, BMS- IL Web- 
portal, Haifa, Israel
8Department of Archaeology, Laboratory of 
Archaeozoology, University of Haifa, Haifa, 
Israel

Correspondence
Orr Comay, Department of Ecosystem 
Services, UFZ Helmholtz Centre for 
Environmental Research, Permoserstr. 15, 
04318 Leipzig, Germany.
Email: orrcomay@tauex.tau.ac.il

Funding information
O.C. was funded by the Israeli Lepidopterists 
Society and The Steinhardt Museum 
of Natural History. G.P. gratefully 
acknowledges the support of iDiv funded 
by the German Research Foundation (DFG–  
FZT 118, 202548816). I.K. was funded by 
The Israeli Lepidopterists Society.

Abstract
Butterflies are considered important indicators representing the state of biodiver-
sity and key ecosystem functions, but their use as bioindicators requires a better 
understanding of how their observed response is linked to environmental factors. 
Moreover, better understanding how butterfly faunas vary with climate and land 
cover may be useful to estimate the potential impacts of various drivers, including 
climate change, botanical succession, grazing, and afforestation. It is particularly im-
portant to establish which species of butterflies are sensitive to each environmental 
driver.

The study took place in Israel, including the West Bank and Golan Heights.
To develop a robust and systematic approach for identifying how butterfly fau-

nas vary with the environment, we analyzed the occurrence of 73 species and the 
abundance of 24 species from Israeli Butterfly Monitoring Scheme (BMS- IL) data. 
We used regional generalized additive models to quantify butterfly abundance, and 
generalized linear latent variable models and generalized linear models to quantify 
the impact of temperature, rainfall, soil type, and habitat on individual species and on 
the species community.

Species richness was higher for cooler transects, and also for hilly and mountain-
ous transects in the Mediterranean region (rendzina and Terra rossa soils) compared 
with the coastal plain (Hamra soil) and semiarid northern Jordan Vale (loessial siero-
zem soil). Species occurrence was better explained by temperature (negative correla-
tion) than precipitation, while for abundance the opposite pattern was found. Soil 
type and habitat were insignificant drivers of occurrence and abundance.

Butterfly faunas responded very strongly to temperature, even when accounting 
for other environmental factors. We expect that some butterfly species will disap-
pear from marginal sites with global warming, and a large proportion will become 
rarer as the region becomes increasingly arid.
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1  | INTRODUC TION

Rapid climate and land- use changes drive strong responses of spe-
cies (abundance, distributions), communities (richness, species 
composition), and ecosystems (functions, services). Owing to their 
exceptional diversity and contribution to key ecosystem functions 
and services (IPBES, 2016), recent studies have focused on the de-
cline of insects (Hallmann et al., 2017; Rada et al., 2019; Van Klink 
et al., 2020). Long- term systematic monitoring is critical for assess-
ing trends and informing policymakers (Didham et al., 2020).

Assessing trends in a rich and varied group such as insects can 
be facilitated by focusing on particular taxa as bioindicators. Criteria 
to define good bioindicators are a tractable taxonomy, sensitivity to 
environmental changes, rapid and observable response (hopefully 
faster than other groups), sufficient ecological knowledge to allow 
inferring from responses to causes, and a potential to inform also 
on the status and trends of other groups that are not monitored 
(Syaripuddin et al., 2015).

Butterflies are considered as important climate and habitat bio-
indicators (Parmesan, 2003; Pe'er & Settele, 2008 and references 
therein). They are diverse, easily detectable, their biology and ecol-
ogy were well studied, and they have been recorded intensively 
enough by experts and volunteers to establish a strong knowledge- 
base to start with. Accordingly, they have been among the first taxa 
to demonstrate phonological and distributed changes in response 
to climate, which was also found to be consistent with other tax-
onomic groups (Parmesan et al., 1999 and references therein, 
Parmesan, 2006). More recently, Høye et al. (2014) found that 
butterfly flight season advances with earlier snowmelt and higher 
temperatures in Greenland. Butterfly faunas changed faster than 
birds with rising temperatures in Europe (Devictor et al., 2012), and 
Herrando et al. (2016) found that butterflies abundance responded 
faster than birds to land abandonment in Iberia. Comparing four 
taxonomic groups in Malaysia, Syaripuddin et al. (2015) found but-
terflies to be the most promising group as bioindicators. Inference 
potential was demonstrated for example by Roy et al. (2001): When 
training models correlating weather and butterfly abundance in the 
20th century, they could successfully reproduce patterns of change 
in butterfly abundance back to the 19th century. Oostermeijer and 
van Swaay (1998) demonstrated also that butterfly community also 
responds to soil conditions. It is likely due to their short life cycles 
that they demonstrate rapid response to environmental change, 
whereas their variable levels of dependency on specific host plants 
leads to relatively strong response to local environmental condi-
tions. More specifically, some species feed as larvae on a wide range 
of host plants (e.g., Vanessa cardui), while others are highly specific 
to a single plant, habitat, and/or ant species. Their climatic response 

likely emerges from the plasticity of some species in terms of flight 
period phenology (e.g., Anthocharis cardamines flies in May– July in 
Britain (Courtney & Duggan, 1983), compared with February– March 
in Israel (Benyamini, 2010)).

However, there are limitations to the use of any single tax-
onomic group as bioindicators, and these must be assessed and 
critically evaluated— especially for insects given their stochastic 
population dynamics (Gerlach et al., 2013). For instance, Pellissier 
et al. (2020) found stronger signals of abundance response of birds 
to Natura- 2000 cover in Europe, compared with butterflies (albeit, 
potentially resulting from both difference in habitat affiliation and 
scale of response); and Maleque et al. (2009) proposed that different 
taxa should be used complementarily, to address different contexts 
and responses.

Efficient use of butterflies as bioindicators, in the right contexts 
and manner, requires deeper understanding of the environmental 
drivers of their occurrence and abundance, at both the species and 
community levels (Fleishman & Murphy, 2009); and evaluating the 
strengths, weaknesses, limitations and potential realms of applicabil-
ity in different contexts. This was not frequently done. Several stud-
ies have considered biogeographical patterns in butterfly faunas on 
regional scales and studied the impacts of climate and latitude; how-
ever, far fewer studies have examined the impacts of local conditions 
(e.g., land cover; Dapporto et al., 2017; Hawkins, 2010; Stefanescu 
et al., 2004). Some studies have focused on local impacts in addition 
to climate, but only on the local scale (Checa et al., 2014; Gutiérrez 
Illán et al., 2010; Horner- Devine et al., 2003). Others have studied 
the impacts of both climate and habitat on butterfly occurrence and 
species richness, but not on abundance and community composition 
(Kivinen et al., 2007; Newbold et al., 2009). Furthermore, beyond the 
initial indication that soils may shape butterfly faunas (Oostermeijer 
& van Swaay, 1998), this area remains understudied. Finally, to the 
best of our knowledge, no study has explored the impacts of both 
climatic gradients and local environment (habitat and soil) on butter-
flies on a national scale.

To advance the knowledge regarding the environmental factors 
affecting butterflies, in this study, we aimed to characterize Israel's 
butterfly fauna (species and communities) in terms of biogeography, 
occurrence, abundance, and habitat affiliation. We identified the 
main environmental drivers behind observed patterns, using data 
collected by participants of the Israeli Butterfly Monitoring Scheme 
(BMS- IL). This study was motivated by Israel's high climatic hetero-
geneity and absence of systematic butterfly habitat affiliation anal-
ysis. We particularly wanted to assess whether species occurrence 
and abundance are driven more by climate (temperature, rainfall) or 
by land use (habitat, soil type). Therefore, we considered to what 
extent butterflies can be used as climate or habitat indicators.

K E Y W O R D S

biogeography, bioindicators, butterflies, citizen science, community ecology, generalized linear 
latent variable model



     |  12037COMAY et Al.

2  | METHODS

2.1 | Study area

The study area covered Israel, including the West Bank and Golan 
Heights (Figure 1a). The climate is largely Mediterranean, with most 
precipitation occurring in winter; there is a sharp north– south arid-
ity gradient (Israel Meteorological Service, 2020), with ~900 mm/
annum in the northern mountains and <30 mm/annum in the south-
ern Wadi Araba. We thus divided the study area into four ecoregions: 
desert (<200 mm rain/yr), semidesert (200– 350 mm), low- lying 
Mediterranean (>350 mm rainfall/yr, <700 m above sea level [a.s.l.]), 
and high Mediterranean (>350 mm rainfall/yr, 700– 1,300 m a.s.l.). 
Mt. Hermon (1,300– 2,224 m a.s.l) was excluded as it contains no 
BMS- IL transects. For a map of the study area, climatic conditions, 
and transect distribution, see Appendix S1, Figure S1.1 and Table S1.

2.2 | Soil types

Soil types in the study area are detailed in Singer (2007) and are 
summarized in Table S1.2 Appendix S1. Soil maps are only avail-
able as ‘soil associations’, which include several intermingled soil 
types (Table 9.4- 1 in Singer, 2007). Note that while soil types are 
dependent on climate, they are also heavily dependent on other 
factors— particularly geology and topography, as well as vegetation 
(Singer, 2007).

2.3 | Environmental data

We extracted mean annual temperature and mean annual rainfall 
for each transect from Geographic Information System (GIS) ras-
ter layers with a cell edge size of 30 arcseconds (~924 by ~796 m 
in the study area), downloaded from WorldClim version 2 (Fick & 
Hijmans, 2017). We extracted soil type per transect from a polygo-
nal GIS layer of soils obtained from the Israeli Ministry of Agriculture 
and Rural Development, which we converted to a raster layer with a 
cell edge size of 30 arcseconds. We assigned each transect the soil 
type of the start of its first section.

We used the main categories of the European Nature Information 
System (EUNIS, 2020) to classify habitats: (E) grasslands and lands dom-
inated by forbs, mosses, or lichens (hereafter ‘grassland’); (F) heathlands, 
scrub, and tundra (hereafter ‘scrubland’); (G) woodland, forest, and other 
wooded land (hereafter ‘forest’); and (I) regularly or recently cultivated 
agricultural, horticultural, and domestic habitats (hereafter ‘garden’, as 
no transects were located in agricultural habitats).

For each 50- m section, we defined the habitat category based 
on satellite images and maps. Where possible, we also used ground- 
truthing through personal familiarity with the sites, a visual inspec-
tion of aerial photographs, and through communication with transect 
volunteers where need be. We then defined the overall habitat 
of each transect according to the frequency of habitat classes in 

its sections. In cases where at least 75% of the sections fell under 
one habitat class, the entire transect was attributed to that class. 
Otherwise, transects were regarded as having mixed habitats, based 
on the two dominant classes. No transect required an assignment of 
more than two habitat classes (i.e., together covering less than 67%).

2.4 | Butterfly data

The dataset used for our analyses originates from the Israeli Butterfly 
Monitoring Scheme (BMS- IL). Founded by the Israeli Lepidopterist 
Society in 2009, BMS- IL follows the same principles as other 
schemes, focusing on Pollard- walk transects (Pollard, 1977; Taron 
& Ries, 2015; van Swaay et al., 2015). Transects in BMS- IL are 300– 
600 m long, subdivided into 50- m sections. While they usually cover 
a single habitat type, some heterogeneity is unavoidable. Volunteers 
visit transects in dry weather with gentle or no winds, and when 
temperatures are above 17℃ (or above 13℃ with direct sunshine). 
Observers register the number of adult individuals of all species ob-
served (sometimes only genus/family) in an imaginary 5 × 5 × 5 m 
cube (van Swaay et al., 2015). If no butterflies are observed in a given 
visit, observers report ‘none seen’. BMS- IL requests that volunteers 
perform observations twice per month year- round, with an optional 
break in July– September (see Schmucki et al., 2016 for justification 
of visitation frequency). For a detailed description of BMS- IL, see 
Comay et al. (2020).

2.5 | Analysis of species occurrence and richness

Volunteers joined BMS- IL at different times, and hence, some have 
recorded more species than others. To rectify for potential biases due 
to such differences in sampling efforts, we first examined 14 tran-
sects that were monitored for at least 10 years. We compared the 
proportion of species accumulated every year with the final species 
richness after 10 years; from this, we identified the number of moni-
toring years needed to obtain a representative species list per tran-
sect. After 5 years of monitoring, 75% of the transects recorded more 
than 80% of the species that were eventually recorded in 10 years, 
half recorded more than 90% of the final species richness, and 
none had less than 75% of their final species richness (Appendix S1, 
Figure S1.2). Moreover, inter- transect variation in the percentage of 
species observed in each transect, compared with the total species list 
after 10 years of monitoring, diminished quickly with time, likely due 
to increasing volunteer experience. Thus, to analyze species' occur-
rence, we generated species lists using the first 5 years of data from all 
transects that allowed it. Transects with <5 years of monitoring were 
excluded. This procedure generated a list of 73 species from 47 tran-
sects. To avoid overfitting models to very rare species, we included 
only species that occurred along at least four transects. This procedure 
generated a list of 49 species for statistical analysis (Table 1). To assess 
species' occurrence and richness per ecoregion (without statistical 
testing), we included all 73 species.
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2.6 | Analyzing species abundance

To estimate butterfly abundances despite differences in monitoring 
intensities and dates, we derived an abundance index which assesses 
the total number of adults that would have been recorded in each 
transect if it was visited weekly. However, since the BMS- IL proto-
col suggests counting only twice per month, we used a phenological 
model to estimate how many butterflies would have been recorded 
in weeks when no counts were conducted. The abundance index is 
the sum of actual and imputed (modeled) counts. For more details, 
see Comay et al. (2020).

We used a regional generalized linear model (Regional GAM; 
Schmucki et al., 2016) to impute missing weekly counts using R ver-
sion 3.6.2 (R Core Team, 2020), R Studio version 1.1.453 (RStudio 
Team, 2016), and rbms version 0.1.1 (Schmucki et al., 2019), with 
slightly modified functions (Appendix S2).

Regional GAM assumes each species flight season is identical in 
all input transects within a region. Many butterfly species have com-
plex seasonal activity cycles, including multivoltine, aestivating, and 
migratory species (Comay et al., 2020). To derive reliable abundance 
estimates, we determined a minimum threshold of 100 visits for uni-
voltine species with a single activity peak, and at least 200 visits 
for species with complex phenologies (for justification see Comay 
et al., 2020). We applied the threshold to all transects where rele-
vant species occur. To limit reliance on imputed counts, we removed 
sites that were not visited during species' peak months. This pro-
cedure limited the analysis of species abundances to the low- lying 
Mediterranean ecoregion, because other regions had too few data.

For the current analysis, we used abundance indices calculated 
based on sites that were visited at least six times during 2019 and at 
least six times between October 2018 and September 2019. In 2019, 
successful recruiting of volunteers enabled many new transects; 
therefore, we only analyzed the abundance of species we consider 
to be easily recognized by beginners. In sum, we retained a final spe-
cies list comprising 24 species (Table 1) from 65 transects. After ac-
counting for overlap with the 47 transects analyzed for occurrence, 
we analyzed a total of 88 transects (Appendix S1, Figure S1.1).

2.7 | Species richness per ecoregion

We identified species found in each ecoregion and calculated their 
species richness. We compared the species list with a checklist of 
European butterfly species (Wiemers et al., 2018) to calculate the 
extent to which Israeli butterfly fauna is Palearctic in origin and to 
identify species that reach their global southern distribution edge in 

Israel. In addition, we compared species observed in BMS- IL tran-
sects with those known from the entire study area (Israel Butterfly 
Monitoring Scheme, 2020), to identify how many species were ex-
pected in the study area but not found, and how their omission might 
influence the results.

2.8 | Statistical analyses

We conducted analyses on the transect level (species list, richness, 
and abundance per transect) and on the species level, identifying 
the predictors that best explain species occurrence and abundance. 
We used negative binomial generalized linear models (function glm.
nb in R package ‘MASS’; Venables & Ripley, 2002) to test how tem-
perature, rainfall, soil, and vegetation affect species richness and 
total butterfly abundance (sum of all species' abundance indices) per 
transect. We selected the negative binomial distribution over the 
Poisson distribution because in both cases the variance was much 
higher than the mean. We selected models according to Akaike in-
formation criterion (AIC; Akaike, 1974) and Bayesian information cri-
terion (BIC; Schwarz, 1978).

To analyze environmental affects, we fitted generalized linear 
latent variable models (GLLVM) to species occurrence (assuming a 
binomial distribution) and abundance (assuming a negative binomial 
distribution) data, using the R package ‘gllvm’ (Niku et al., 2019; Niku 
et al., 2020). Latent variables account for species covariances that 
are not accounted for by a model's predictors, such as interspecific 
interactions (e.g., competition, facilitation) or missing environmental 
predictors. When used without any predictors, latent variables de-
scribe the general species covariance pattern (i.e., species tending 
to occur at the same sites), regardless of the environment. Following 
the package authors' recommendations (Niku et al., 2019), we first 
assessed how the inclusion of one to five latent variables impacted 
the AIC, without any environmental predictors.

Next, we fitted a model with two latent variables and no explan-
atory variables, as a null model to compare the usefulness of adding 
covariates, as well as to draw an ordination plot of species and tran-
sects. In community ecology, an ordination plot depicts the similarity 
of two taxa or sites according to their distance. The closer the taxa 
are, the more likely they are to co- occur; the closer the sites are, the 
more similar their faunas are. When the two are plotted together, 
the closer the taxon is to a site, the more likely it is to occur there. 
To plot the ordinations, we used two GLLVM models with two latent 
variables, one for occurrence and one for abundance. We plotted 
the 24 most indicative species (i.e., species differing the most be-
tween transects) according to the GLLVM in the species- occurrence 

F I G U R E  1   Maps of Israeli butterfly species richness (a) and total butterfly abundance (b) per transect, and ordinations of transects and 
species by occurrence (c) and abundance (d). Transects are numbered from south to north, once for occurrence and once for abundance. 
Ordination axes are latent variables, and similarity in species occurrence/abundance decreases with distance (e.g., transects with more 
similar species are drawn closer together). Species tending to co- occur (or reaching relatively high abundances) in the same transects 
are drawn closer together. Shading denotes (a) species richness, (b) total butterfly abundance, and (c and d) mean annual temperature. 
Background color in (a) and (b) is the mean annual temperature. Point shape depicts habitat (vegetation type)
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TA B L E  1   Israeli butterfly species analyzed for occurrence and abundance

Speciesa 
Occur. 
transectsb 

Abund.c  (mean 
% ± SD where it 
occurs)

No. of occurrence transectsd 

Europe (Wiemers 
et al., 2018)

Wadi 
Araba Semi- desert Low Med. High Med.

All transects 47 65 3 3 36 5 NA

Total species 73 24 18 (25%) 32 (44%) 56 (77%) 57 (78%) 58 (79%)

Unique species NA NA 2 1 6 11 NA

Mean annual rainfall (mm) NA NA 15 277 585 589 NA

Mean annual temperature 
(°C)

NA NA 22.8 19.2 19.0 16.6 NA

Family: Papilionidae (4 species) 0 (0%) 2 (50%) 3 (75%) 3 (75%) 3 (75%)

Papilio machaon 39 716 (3% ± 3%) – 3 31 5 Occurs

Allancastria 
cerisyi

7 Not analyzed – – 7 – Occurs

Allancastria 
deyrollei

1 Not analyzed – – – 1 – 

Archon apollinus 27 Not analyzed – 1 25 1 Occurs

Family: Pieridae (16 species) 7 (47%) 9 (60%) 13 (87%) 13 (87%) 12 (75%)

Aporia crataegi 2 Not analyzed – – 1 1 Occurs

Pieris brassicae 41 2,698 
(12% ± 12%)

– 2 34 5 Occurs

Pieris rapae 42 2,365 (11% ± 14) 1 3 33 5 Occurs

Pontia daplidice 39 2,130 (5% ± 6%) – 3 31 5 Occurs

Pontia glauconome 5 Not analyzed 3 – 2 – – 

Colotis fausta 44 3,402 
(18% ± 24%)

2 1 36 5 – 

Colotis phisadia 3 Not analyzed 3 – – – – 

Anaphaeis aurota 33 Not analyzed 2 2 27 3 – 

Euchloe ausonia 19 Not analyzed – 1 16 1 Occurs

Euchloe belemia 28 Not analyzed – 3 22 3 Occurs

Anthocharis cardamines 30 275 (2% ± 5%) – – 26 4 Occurs

Anthocharis damone 1 Not analyzed – – – 1 Occurs

Colias crocea 41 537 (2% ± 2%) – 3 33 5 Occurs

Gonepteryx cleopatra 30 495 (3% ± 3%) – – 25 5 Occurs

Euchloe charlonia 4 Not analyzed 1 2 – 1 Occurs

Catopsilia florella 10 Not analyzed 2 – 8 – Occurs

Family: Nymphalidae (19 species) 2 (11%) 6 (32%) 15 (79%) 18 (95%) 15 (79%)

Danaus chrysippus 16 85 (2% ± 2%) 2 1 13 – Occurs

Charaxes jasius 2 Not analyzed – – 1 1 Occurs

Limenitis reducta 10 Not analyzed – – 7 3 Occurs

Vanessa atalanta 31 128 (2% ± 5%) – 3 23 5 Occurs

Vanessa cardui 45 30,916 
(65% ± 27%)

3 3 34 5 Occurs

Polygonia egea 2 Not analyzed – – – 2 Occurs

Melitaea ornata 8 Not analyzed – 1 6 1 Occurs

Melitaea collina 1 Not analyzed – – – 1 – 

Melitaea trivia 18 Not analyzed – 1 15 3 Occurs

Melitaea deserticola 3 Not analyzed – 1 1 1 – 

(Continues)
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Speciesa 
Occur. 
transectsb 

Abund.c  (mean 
% ± SD where it 
occurs)

No. of occurrence transectsd 

Europe (Wiemers 
et al., 2018)

Wadi 
Araba Semi- desert Low Med. High Med.

Melanargia titea 26 453 (6% ± 6%) – – 20 5 – 

Ypthima asterope 11 108 (2% ± 2%) – – 9 2 Occurs

Hipparchia fatua 11 196 (3% ± 4%) – – 9 1 Occurs

Hipparchia pisidice 3 Not analyzed – – 2 1 – 

Maniola telmessia 28 919 (6% ± 10%) – – 23 5 Occurs

Hyponephele lupina 1 Not analyzed – – – 1 Occurs

Lasiommata megera 8 Not analyzed – – 5 3 Occurs

Lasiommata maera 18 109 (1% ± 2%) – – 14 5 Occurs

Kirinia roxelana 2 Not analyzed – – – 2 Occurs

Family: Lycaenidae (23 species) 9 (39%) 11 (48%) 16 (70%) 18 (78%) 17 (74%)

Satyrium spini 11 Not analyzed – – 9 2 Occurs

Satyrium ilicis 1 Not analyzed – – – 1 Occurs

Tomares nesimachus 2 Not analyzed – – 2 – – 

Deudorix livia 13 Not analyzed 3 2 4 4 – 

Iolaus glaucus 2 Not analyzed 2 – – – – 

Apharitis acamas 13 169 (2% ± 1%) – – 12 1 Occurs

Apharitis cilissa 1 Not analyzed – – – 1 – 

Lycaena phlaeas 14 99 (2% ± 2%) – – 9 5 Occurs

Lycaena thersamon 36 930 (4% ± 8%) – 3 28 5 Occurs

Lampides boeticus 30 Not analyzed 2 2 21 5 Occurs

Leptotes pirithous 30 Not analyzed 1 2 22 5 Occurs

Tarucus balkanicus 6 Not analyzed – 2 3 1 Occurs

Tarucus rosaceus 3 Not analyzed 2 1 – – – 

Azanus jesous 15 2,708 
(14% ± 28%)

2 3 8 2 Occurs

Azanus ubaldus 3 Not analyzed 2 1 – – Occurs

Chilades galba 4 Not analyzed 1 1 2 – – 

Chilades trochylus 23 874 (8% ± 12%) – 1 18 4 Occurs

Aricia agestis 10 Not analyzed – – 5 5 Occurs

Cyaniris semiargus 1 Not analyzed – – – 1 Occurs

Polyommatus icarus 28 916 (5% ± 6%) – – 23 5 Occurs

Pseudophilotes vicrama 23 Not analyzed – – 20 3 Occurs

Glaucopsyche alexis 1 Not analyzed – – – 1 Occurs

Zizeeria karsandra 18 1,164 
(12% ± 29%)

3 1 13 2 Occurs

Family: Hesperiidae (11 species) 0 (0%) 4 (36%) 9 (82%) 5 (45%) 11 (100%)

Carcharodus alceae 33 320 (2% ± 3%) – 1 27 5 Occurs

Carcharodus orientalis 1 Not analyzed – – 1 – Occurs

Carcharodus stauderi 2 Not analyzed – 1 1 – Occurs

Spialia orbifer 7 Not analyzed – – 6 1 Occurs

Muschampia proteides 
stepporum

1 Not analyzed – 1 – – Different 
subspecies

Syrichtus tessellum 1 Not analyzed – – – 1 Occurs

Thymelicus acteon 4 Not analyzed – – 4 – Occurs

TA B L E  1   (Continued)

(Continues)
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ordination and all 24 species in the species abundance ordination. 
We also used these GLLVM models to indicate species correlations 
following Niku et al. (2019). We plotted the correlation matrices 
using the R package ‘corrplot’ (Wei & Simko, 2017), and grouped 
species into four clusters for occurrence and four clusters for abun-
dance using hierarchical clustering with complete linkages.

In addition, we used GLLVM to examine the statistical signifi-
cance of the impact of four environmental variables (mean annual 
temperature and rainfall, habitat, and soil) on species' occurrence 
and abundance. We chose best- fitting models according to AIC. 
Once models were selected, we plotted the statistically significant 
(α = 5%) species- specific coefficients of their environmental predic-
tors. We scaled the continuous predictors before fitting the models; 
therefore, coefficients were comparable in size. Notably, some soil 
and habitat types were found only in one or two transects; these 
were not included in the coefficient plot. We retained these tran-
sects in the GLLVM models, and their climatic data were included in 
the analysis.

3  | RESULTS

3.1 | Species richness per ecoregion

Table 1 details total species richness, number of unique species per 
ecoregion, species studied by taxonomic order, details of their oc-
currence in the four ecoregions and in Europe (Wiemers et al., 2018), 
and the total abundance index for all low- lying Mediterranean sites. 
Species lists and abundance per transect, as well as the full GLLVM 
model results, are available in Dryad Digital Repository: https://doi.
org/10.5061/dryad.2bvq8 3bqm.

Of 116 known species in the study area (Israel Butterfly 
Monitoring Scheme , 2020), 73 butterfly species were reported 
along the studied transects. Of the 43 missing species, two are 
new invasive alien species (Chilades pandava and Cacyreus marshalli) 

currently known from very restricted ranges, leaving 41 native ‘miss-
ing species’.

By and large, the Israeli butterfly fauna is Eurasian; 58 of 
the 73 (79%) species also occur in Europe (Wiemers et al., 2018; 
Table 1). Of the remaining 15 species, eight (53%) are restricted to 
the Middle East, six (40%) are distributed in Africa and southwest 
Asia, and one species (7%), Melitaea deserticola, is Saharo- Arabian 
(Benyamini, 2010). A total of 36 Eurasian and Middle Eastern species 
reach their global southern edge of distribution in our study area, 
while only three African species reach their global northern edge of 
distribution therein.

On the country scale, Israeli butterfly fauna varies greatly 
with climate. Species richness decreases dramatically with aridity 
(Table 1). While 68 of the 73 species studied occur in Mediterranean 
ecoregions, only 29 reach the semidesert, and only 12 reach Wadi 
Araba. Wadi Araba has just 18 species, of which only two (Colotis 
phisadia and Iolaus glaucus) are unique. The semidesert ecoregion is 
also species poor (32 of 73), harboring a single unique subspecies 
(Muschampia proteides stepporum).

The inclusion of the ‘missing species’ (i.e., those that should occur 
in transects based on their distribution range) would strengthen the 
observed pattern: of the 43 ‘missing species’, 11 (26%) occur only 
in the High Mediterranean ecoregion, 2 (5%) are unique to the low- 
lying Mediterranean ecoregion, 2 (5%) have been observed only 
along Wadi Araba and the Dead Sea, and none are expected to be 
unique to the semidesert ecoregion.

3.2 | Common species

Vanessa cardui, Colotis fausta, Pieris rapae, and Pieris brassicae were 
the most widespread species in terms of occurrence, occurring in 
41– 45 out of the 47 transects studied (Table 1). Some species were 
abundant, but occurred in relatively few transects (e.g., Zizeeria 
karsandra, Azanus jesous). Others occurred in many transects but 

Speciesa 
Occur. 
transectsb 

Abund.c  (mean 
% ± SD where it 
occurs)

No. of occurrence transectsd 

Europe (Wiemers 
et al., 2018)

Wadi 
Araba Semi- desert Low Med. High Med.

Thymelicus sylvestris 3 Not analyzed – – 3 – Occurs

Thymelicus hyrax 7 Not analyzed – – 6 1 Occurs

Pelopidas thrax 11 Not analyzed – – 11 – Occurs

Gegenes pumilio 11 Not analyzed – 1 8 2 Occurs

aTotal species: total number of species found per ecoregion. Unique species: total number of species found in this ecoregion but not in others. Mean 
annual rainfall/temperatures: as calculated for the transects per ecoregion and not averaged over the entire ecoregion. NA: Not Applicable.
bOccur. transects: number of transects in which the species occurred at least once in 5 years of monitoring (the environmental impacts on occurrence 
were not analyzed for species with fewer than four sites).
cAbund.: total expected number of observations in adult butterflies in 2019 in all transects in the low Mediterranean ecoregion of Israel, if each 
transect was monitored once per week. SD: standard deviation.
dOccurrence Transects: total number of transects analyzed for occurrence per ecoregion. High Mediterranean: >350 mm rainfall/annum, 700– 
1,300 m above sea level. Low Mediterranean: >350 mm rainfall/annum, <700 m above sea level. Semi- desert: 200– 350 mm rainfall/annum. Wadi 
Araba: 3 southernmost transects (Figure 1a); hyper- arid (<50 mm rainfall per annum).

TA B L E  1   (Continued)
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had medium or low abundance (e.g., Colias crocea, Papilio machaon, 
Vanessa atalanta, and Carcharodus alceae). V. cardui was the most 
abundant species; the next species in order of abundance, albeit 
an order of magnitude less abundant than V. cardui, were C. fausta, 
P. brassicae, and P. rapae.

3.3 | Species richness and total butterfly abundance 
per transect

Figure 1a depicts species richness per transect, while Table S1.3 in 
Appendix S1 compares AIC and BIC between the generalized linear 
models of species richness and total butterfly abundance per tran-
sect. In the best- fitting model, soil type, habitat (vegetation struc-
ture), and mean annual temperature significantly impacted species 
richness (Figure 2).

Species richness was higher for cooler transects. Transects on 
Hamra soils had fewer species than those on gromosols, basaltic 
soils, Terra rossa, rendzines, and lithosols. In addition, transects on 
loessial sierozem had fewer species than those on Terra rossas and 
pale rendzines. Fewer species were found in forest- scrubland mix-
tures and in gardens (panel (a) in Figure 2) compared with forest- only 
transects (panel (b) in Figure 2). Grasslands, scrubland, and grass-
lands mixed with other habitats were ranked A and B (i.e., between 
the two levels) but also had notably higher variance compared with 
forest transects.

Figure 1b depicts total butterfly abundance per transect. In the 
low- lying Mediterranean region, rainfall was the only predictor in the 
best- fitting model (i.e., lowest AIC and BIC; Appendix S1 Table S1.3), 
with a marginally insignificant (p- value = .071) positive impact (i.e., 
more butterflies along transects with higher precipitation). Although 
a total abundance model using only temperature had similar AIC and 
BIC values (Table S5), a likelihood ratio test comparing it with a model 
using only rainfall found a significant difference (p- value < 10– 3), in-
dicating that the rainfall- only model had a better fit.

3.4 | Community composition

Figure 1c depicts the ordination of both transects and species by 
occurrence compared with the geographic locality of transects 
(Figure 1a); axes are the latent variables of the GLLVM model fitted 
without any predictors (e.g., temperature, habitat), and hence, they 
represent overall trends in the data (i.e., similarity and dissimilarity 
between transects or species in terms of occurrence) in two dimen-
sions. Figure 1d repeats the results for abundance. Figure 3 depicts 
correlations among species (i.e., how much they overlap with each 
other regardless of environmental predictors) based on occurrence 
(Figure 3a) in the entire study area and abundance in the low- lying 
Mediterranean ecoregion (Figure 3b).

The three hottest transects (red numbers), located in Wadi 
Araba, can be seen on the left side of Figure 1c, while all cool tran-
sects (light blue) are on the right. When examining occurrence, 

only one species out of 24, Euchloe charlonia, had negative cor-
relations with many other species, and especially with Satyrium 
spini (Figure 3a). This strong negative correlation is in accordance 
with the species' distinct Saharan distribution covering the east-
ern and southern parts of the study area (Benyamini, 2010), over-
lapping that of most other species only around Jerusalem. Most 
grassland transects are on the lower part of the ordination plot 
(i.e., negative values in the second latent variable), while most 
scrubland and forest transects are on the upper part (i.e., positive 
values in the second latent variables). In the upper right quarter 
of Figure 1c, a cluster of species (Satyrium spini, Anthocharis car-
damines, Hipparchia fatua, Gonepteryx cleopatra, Maniola telmes-
sia, and Thymelicus hyrax) are all positively correlated with each 
other (Figure 3a). In the lower right quarter, Polyommatus icarus, 
Lasiommata megera, Yphtima asterope, Lycaena phlaeas, Colias 
crocea, and Pseudophilotes vicrama cluster together and often 
co- occur (Figure 3a). Another cluster, lower in the same quarter, 
comprises Papilio machaon, Pontia daplidice, Lycaena thersamon, 
Chilades trochylus, and Aricia agestis. These species all occur in 
Mediterranean Israel and some in its semidesert ecoregion, but 
not in the hottest and arid areas (i.e., Wadi Araba; Table 1). Close 
to this cluster are Vanessa cardui and Carcharodus alcaea (both 
generalists and widespread throughout the country).

The ordination of the transects and butterfly fauna in terms of 
species abundances (Figure 1d) shows that Hipparchia fatua (a forest 
species) stands out from the other species (and has negative correla-
tions with many species; Figure 3b), while M. telmessia, A. cardamines, 
P. brassicae, G. cleopatra, and V. atalanta cluster in the lower right 
quarter and are all positively correlated to one another (Figure 3b). 
These species can be characterized by a Mediterranean distribution 
and an affiliation to heterogeneous habitats (mix of trees, scrub, and 
grass; see also Schultz et al., 2017). In the upper right corner, the 
cluster of Zizeeria karsandra, Chilades trochylus, Lycaena phlaeas, and 
L. thersamon represents species often occurring in disturbed habi-
tats. Members of each of these clusters have very weak correlations 
with members of the other cluster (Figure 3b), indicating clusters' 
independence from one another. Several migratory species (V. car-
dui, C. fausta, Danaus chrysippus, and A. jesous) are in the upper left 
part of the ordination, but do not form a clear cluster. Moreover, 
other migrant species occur elsewhere in the ordination (V. atalanta, 
P. daplidice, and C. crocea), but are positively correlated with many 
other species (Figure 3b).

3.5 | Factors shaping species occurrence and  
abundance

Figure 4 depicts the significant coefficients of occurrence (Figure 4a, 
in the entire study area) and abundance (Figure 4b, only within 
the low- lying Mediterranean region). The best- fitting (lowest AIC) 
GLLVM models of both occurrence and abundance had significant 
coefficients for temperature and rainfall, but not for habitat or soil 
type. The latter are therefore not depicted in Figure 4.
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Temperature had either a negative or an insignificant impact on 
species occurrence (i.e., species were either less likely to occur along 
warmer transects, or were unaffected by temperature; Figure 4a). 
However, within the low- lying Mediterranean region (Figure 4b), 
temperature had a significant impact on the abundance of just three 
species, two negatively (Lasiommata maera, Polyommatus icarus) 
and one positively (A. jesous), confirming the latter as a warmth- 
tolerant species in accordance with its Afrotropical distribution 

(Benyamini, 2010). Rainfall was found to significantly explain the 
occurrence of six species (four negatively, two positively), but had a 
significant impact on abundance for ten species (all positively). The 
interaction between temperature and rainfall was found to be signif-
icant for seven species. Only two species that had significant predic-
tors of abundance were not affected by rainfall or by its interaction 
with temperature (L. maera and P. icarus); both were less abundant 
along warmer transects.

F I G U R E  2   Coefficients of predictors of butterfly species richness for the entire study area (Israel, including the West Bank and Golan 
Heights) and total butterfly abundance in the low- lying Mediterranean ecoregion, based on best- fitting models (Appendix S1, Table S1.3). 
Higher coefficients indicate greater species richness, and vice versa. Overlapping confidence intervals (error bars) indicate nonsignificant 
differences. Categorical predictors (habitat and soil type, ordered from lowest to highest mean coefficient) sharing a letter label are not 
statistically significant
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4  | DISCUSSION

Overall, we observed a clear trend of decreasing species richness 
from cooler to warmer ecoregions, with fewer Palearctic species oc-
curring under increasingly arid conditions; this is consistent with pre-
vious studies (e.g., Benyamini, 2010; Pe'er et al., 2011). In contrast, 
based on an extensive review, Hawkins et al. (2003) concluded that 
water availability should be the strongest predictor of species rich-
ness (in general and specifically for butterflies) south of ~45°N. In 
other words, our results deviate from the general pattern of species 
richness drivers at ~30°N because temperature was the strongest 
predictor of species richness.

The observed decrease in species richness with temperature 
(Table 1) also contradicts a global trend of increasing butterfly 
species richness at lower latitudes (Hawkins, 2010). Nevertheless, 
closer examination of global and European patterns reveals higher 
butterfly species richness in mountainous areas (Hawkins, 2010). In 
other words, the pattern observed in our data is similar to the gen-
eral trend observed in southern Europe, with higher species richness 
in mountainous (and thus cooler) areas. These results reflect the fact 
that there are far fewer species of African origin, and hence, their 
presence in the warmer south does not compensate (in terms of spe-
cies richness) for the loss of Palearctic species.

In addition to the effect of temperature, we found that habitat 
and soil also affect butterfly species richness (Figure 2), while rain-
fall by itself is insignificant. However, total butterfly abundance was 
impacted only by rainfall (Figure 2), with a positive correlation for 
most species (Figure 4b). As soil and vegetation depend on climate, it 
is likely that plant community composition, rather than habitat archi-
tecture, might be the mechanism driving butterfly species richness. 

Vegetation, described here using general categories, is in fact more 
accurately described by soil type; that is, under similar climate con-
ditions, different floras will develop in the poor coastal soils (Hamra 
and sand dunes; Singer, 2007) and in rendzinas and Terra rossas 
(Dan, 1991). Moreover, Schwartz- Tzachor (2007) found a significant 
correlation between nectar plant species richness and butterfly spe-
cies richness in Israel. Therefore, butterfly species richness can vary 
spatially according to micro- environmental conditions.

Our results (that climate has a stronger impact on butterfly bio-
diversity than land cover) are in line with the patterns observed else-
where. Kivinen et al. (2007) found that in Finland, climate explains 
overall butterfly species richness better than land cover. In Egypt, 
both climate and habitat significantly affected butterfly species rich-
ness (Newbold et al., 2009). Likewise, Gutiérrez Illán et al. (2010) 
found that topoclimatic models better explain patterns than do 
land- cover models. Stefanescu et al. (2004) found a strong climatic 
impact on butterfly species richness compared with a weak impact 
of vegetation structure.

Temperature is the dominant factor dictating occurrence, with 
many species associated with cooler climates (Figure 4a). The lack of 
species that are clearly associated with warmer temperatures may 
indicate that species that appear to be warmth- oriented are rather 
robust to heat, that is, occur both in cooler and warmer climates. 
Alternatively, this could be an artifact of the low number of tran-
sects in the hyper- arid Wadi Araba and semidesert, where typical 
Saharan or sub- Saharan species occur. Nevertheless, we did identify 
four species with higher occurrence in arid areas (Figure 4a), and one 
showing significantly higher abundance at higher temperature (A. je-
sous). Benyamini and Müller (2020) suggested that climate change 
will increase the frequency of cyclones and of the African easterly 

F I G U R E  3   Interspecific correlations based on Israeli butterfly species occurrence in the entire study area (a) and abundance in the low- 
lying Mediterranean ecoregion alone (b). Red ellipses are negative correlations and blue ellipses are positive correlations. Correlations were 
extracted from generalized linear latent variable models without using any predictors (see Methods for details). Black squares denote the 
four species clusters created by the hierarchical clustering algorithm with complete linkages
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jet, which in turn will facilitate the introduction and establishment of 
Afrotropical butterflies in the Middle East. If these introductions of 
Afrotropical species continue, it could enrich the species- poor fauna 
of Wadi Araba.

Rainfall was a good predictor of total butterfly abundance, while 
temperature was not (Figure 2). Therefore, our results offer a more 
refined picture of the potentially divergent impacts of changes in 
temperature versus precipitation under climate change. Our biogeo-
graphical evaluation indicates more losers than winners from increased 
temperature. This is in line with the high species diversity at high al-
titudes (Table 1), making Israel's mountains, as with other mountain 
regions of the world (Spehn et al., 2010), biodiversity hotspots. The 
projections and risks to species needing to ascend in altitude have also 
been shown elsewhere (Freeman et al., 2018). Under the projected 
shift to shorter, warmer winters and higher frequency drought condi-
tions (Hochman et al., 2018), one may anticipate not only poleward and 
upward shifts in distributions, but also an overall fall in abundance. In 
the context of insect decline, this portrays climate change as a signifi-
cant source of pressure on butterfly fauna in the region.

4.1 | Butterflies as bioindicators in Israel

We found that vegetation and soil were not good predictors of oc-
currence or abundance (Figure 2), at least on the scale and resolution 
used in this study. In contrast, climate, and especially tempera-
ture, had a strong impact on butterfly fauna; furthermore, butter-
flies respond more rapidly to climate change than birds (Devictor 
et al., 2012). This confirms that butterflies could be used as bioindi-
cators for climate change impact on fauna.

While butterflies could also potentially serve as habitat bioindica-
tors in Israel, our results do not offer conclusive affiliations of species 
with habitats per se. Based on our results alongside expert knowledge 
and other studies (e.g., Pe'er et al., 2011; Schultz et al., 2017; Schwartz- 
Tzachor, 2007), we propose the potential for five climate and habitat 
indicator types (Table 2): (a) warmth- intolerant, (b) warmth- tolerant, and 
species occurring in (c) Mediterranean natural habitats, (d) disturbed 
Mediterranean habitats, and (e) on the coastal plain, including African 
migrants not reaching higher altitudes or latitudes. The latter two 
groups require further research. See Appendix S3 for further discussion.

F I G U R E  4   Coefficients of significant predictors of butterfly species occurrence for the entire study area (Israel, including the West Bank 
and Golan Heights); (a) and abundance within the low Mediterranean region (b). Species with no significant predictors are not depicted. 
Positive coefficients indicate species that tend to occur (or be more abundant) when the value of the predictor is higher (e.g., warmer 
temperature or more rainfall) or when a particular category of the predictor (e.g., soil type) is present, and vice versa. Shading depicts the 
strength of deviation (blue = positive, red = negative), assigning colors only to significant results. In (b), insignificant predictors are given in 
brackets and are not colored; they should be used to interpret the interaction term
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TA B L E  2   Bioindication potential of butterfly species in Israela

Group Species References

Warmth- intolerant (cool microclimate indicators) Papilio machaon Figure 4

Lasiommata maera

Lycaena thersamon

Lycaena phlaeas

Aricia agestis

Polyommatus icarus

Warmth- tolerant (warm microclimate indicators) Azanus jesous Figure 3a and Figure 4b

Deudorix livia

Tarucus balkanicus

Zizeeria karsandra

Euchloe charlonia

Anaphaeis aurota

Mediterranean natural habitats (scrublands, maquis, and forests) Archon apollinus Figure 3a, Schultz 
et al. (2017)Allancastria cerisyi

Pieris brassicae

Colotis fausta

Anthocharis cardamines

Gonepteryx cleopatra

Hipparchia fatua

Lasiommata maera

Limenitis reducta

Melitaea ornata

Maniola telmessia

Melanargia titea

Pelopidas thrax

Satyrium spini

Thymelicus acteon

Thymelicus hyrax

Species occurring in Mediterranean disturbed habitats, including agricultural 
and fallow fields, roads, archaeological sites, or gardens. Including species with 
agricultural, cultivated, or nitrophilous host plants

Apharitis acamas Figure 3a, Schwartz- 
Tzachor (2007), 
Schultz et al. (2017), 
expert knowledge

Aricia agestis

Carcharodus alceae

Colias crocea

Chilades trochylus

Euchloe ausonia

Euchloe belemia

Gegenes pumilio

Lampides boeticus

Lasiommata megera

Lycaena phlaeas

Leptotes pirithous

Lycaena thersamon

Melitaea trivia

Pontia daplidice

(Continues)
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4.2 | Limitations and outlook

The uneven distribution of active transects generates a biased 
representation of biogeographical regions and habitats (Figure 1a, 
Table 1), with better coverage of the low- lying Mediterranean re-
gion. This is the only region where data were sufficient to reliably as-
sess both occurrence and abundance (Comay et al., 2020). Transects 
are rare in desert and semiarid parts of the country, together cover-
ing 58% of the study area. The arid but cool Negev Mountains, as 
well as the alpine Mt. Hermon, are currently not covered by any tran-
sects (Figure 1a). Efforts are underway to expand butterfly monitor-
ing into these regions.

This uneven transect distribution is a limiting factor in the anal-
ysis of species' habitat affiliations. Notably, bias in terms of habi-
tats is also due to volunteers' preference of natural and seminatural 
habitats, or nearby sites such as parks. Transects are completely 
missing on agricultural land. While targeted recruitment of volun-
teers would help to address such biases, the use of paid observers 
for targeted regions and habitats may be inevitable for closing key 
gaps. In addition, the highly variable total abundances within nearby 
transects (Figure 1b) and the significant impacts of habitat or soil 
type (Figure 2) suggest that more transects are needed to under-
stand local drivers of butterfly biodiversity.

Another limitation is our reliance on single- year (2019) abun-
dance data, rather than a summary (e.g., mean or median) of several 
years. This was done in order to include as many transects as pos-
sible and to better represent climatic and habitat variability within 
the low- lying Mediterranean ecoregion. In addition, BMS- IL has 
grown rapidly in recent years (Comay et al., 2020); thus, 2019 rep-
resents both the most recent data and also the year with the best 
geographical representation of the country. Future data, especially 
after one or more drought years, could result in considerably differ-
ent abundance data, such as fewer V. cardui butterflies, which domi-
nated all transects in 2019 (Table 1). Nevertheless, given the overall 
agreement between prior expert assessments of species abundance 

(Benyamini, 2010) and our own results, it is unlikely that the gen-
eral relationships among environmental variables, abundance, and 
occurrence will change dramatically.

A final limitation of our study is the reliance on exactly five years 
of data for compiling species lists. Some of the species described as 
missing from biogeographical regions (Table 1) would be included 
if a larger number of years were analyzed. This stresses the impor-
tance of preserving numerous transects for long periods, in order to 
ensure representative species lists over a large geographical extent.
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Group Species References

Polyommatus icarus

Papilio machaon

Pieris rapae

Pseudophilotes vicrama

Spialia orbifer

Vanessa atalanta

Vanessa cardui

Ypthima asterope

Coastal plain species, including African migrants not reaching higher altitudes 
or latitudes

Catopsilia florella Figure 3a, expert 
knowledgeChilades galba

Danaus chrysippus

Pontia glauconome

aNote that some species (Papilio machaon, Lycaena thersamon, L. phlaeas, and Polyommatus icarus) appear in more than one group.
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