organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Hydroxypyridinium hydrogen sulfate

Li-Hua Huo,^a Ying-Ming Xu,^a Shan Gao^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 November 2009; accepted 15 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.098; data-to-parameter ratio = 12.6.

The crystal structure of the title salt, $C_5H_6NO^+ \cdot HSO_4^-$, consists of planar(r.m.s. deviation = 0.001 Å) 4-hydroxypyridinium cations and hydrogen sulfate anions which are hydrogen bonded into a layer motif. In the anion, the S-O bond [1.551 (2) Å] involving the O atom bearing the acid H atom is longer than the other three S–O bonds, which range from 1.437 (1) to 1.454 (1) Å.

Related literature

For the crystal structures of bis(4-hydroxypyridinium) sulfate monohydrate and tris(4-hydroxypyridinium) hydrogen disulfate monohydrate, see: Xu et al. (2009a,b).

Experimental

Crystal data C5H6NO+ HSO4- $M_r = 193.18$ Monoclinic, $P2_1/c$ a = 10.4541 (7) Å b = 10.7017 (6) Å c = 6.8397 (4) Å $\beta = 96.503 \ (2)^{\circ}$

V = 760.28 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 293 K0.27 \times 0.21 \times 0.15 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.898, T_{\max} = 0.941$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	7 restraints
$wR(F^2) = 0.098$	All H-atom parameters refined
S = 1.03	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
1729 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$
137 parameters	

7273 measured reflections

 $R_{\rm int} = 0.017$

1729 independent reflections

1612 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

\$1_01	1 445 (1)	\$1_03	1 437 (1)
S1-01 S1-02	1.551 (2)	S1-05 S1-04	1.454 (1)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···O4 ⁱ	0.85(1)	1.77 (1)	2.603 (2)	168 (3)
$O5-H5\cdots O1$	0.85 (1)	1.77 (1)	2.6166 (19)	175 (3)
$N1 - H1 \cdots O3^{ii}$	0.84 (1)	2.04 (1)	2.8529 (19)	163 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2677).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Xu, Y.-M., Gao, S. & Ng, S. W. (2009a). Acta Cryst. E65, 03146.

Xu, Y.-M., Gao, S. & Ng, S. W. (2009b). Acta Cryst. E65, 03147.

supplementary materials

Acta Cryst. (2009). E65, o3148 [doi:10.1107/S1600536809048533]

4-Hydroxypyridinium hydrogen sulfate

L.-H. Huo, Y.-M. Xu, S. Gao and S. W. Ng

Experimental

The compound is a side product that was obtained when commercially available 4-hydroxypyridine-3-sulfonic acid was recrystallized from water. Its crystals were obtained from a water solution.

Refinement

Carbon-bound H-atoms refined with a C–H distance restraint of 0.95 ± 0.01 Å; their temperature factors were refined. The nitrogen- and oxygen-bound H-atoms were refined with a distance restraint of N–H = O–H = 0.85 ± 0.01 Å; their temperature factors were refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $[C_5H_6NO]^+$ [HSO₄]⁻ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-Hydroxypyridinium hydrogen sulfate

Crystal data

$C_5H_6N_1O_1^+ \cdot HSO_4^-$	$F_{000} = 400$
$M_r = 193.18$	$D_{\rm x} = 1.688 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6627 reflections
a = 10.4541 (7) Å	$\theta = 3.6 - 27.4^{\circ}$
<i>b</i> = 10.7017 (6) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 6.8397 (4) Å	T = 293 K
$\beta = 96.503 \ (2)^{\circ}$	Prism, colorless
$V = 760.28 (8) \text{ Å}^3$	$0.27\times0.21\times0.15~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID IP diffractometer Radiation source: fine-focus sealed tube Monochromator: graphite 1729 independent reflections 1612 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$

supplementary materials

T = 293 K	$\theta_{max} = 27.4^{\circ}$
ω scan	$\theta_{\min} = 3.6^{\circ}$
Absorption correction: Multi-scan (ABSCOR; Higashi, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.898, T_{\max} = 0.941$	$k = -13 \rightarrow 13$
7273 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	All H-atom parameters refined
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.3712P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
1729 reflections	$\Delta \rho_{max} = 0.52 \text{ e} \text{ Å}^{-3}$
137 parameters	$\Delta \rho_{\rm min} = -0.39 \ e \ {\rm \AA}^{-3}$
7 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.15352 (4)	0.36664 (3)	0.22053 (6)	0.02984 (15)
O1	0.28767 (13)	0.37320 (14)	0.2986 (3)	0.0580 (4)
O2	0.1438 (2)	0.41518 (14)	0.0056 (2)	0.0657 (5)
O3	0.07735 (11)	0.45271 (12)	0.3196 (2)	0.0423 (3)
O4	0.10415 (14)	0.23950 (12)	0.21136 (18)	0.0430 (3)
O5	0.46894 (12)	0.20467 (13)	0.2977 (2)	0.0486 (4)
N1	0.82340 (14)	0.36324 (15)	0.3509 (2)	0.0416 (4)
C1	0.72047 (18)	0.43863 (17)	0.3364 (3)	0.0388 (4)
C2	0.59869 (16)	0.39037 (16)	0.3180 (3)	0.0351 (4)
C3	0.58308 (15)	0.26042 (15)	0.3148 (2)	0.0320 (3)
C4	0.69235 (16)	0.18433 (16)	0.3312 (3)	0.0359 (4)
C5	0.81115 (16)	0.23848 (19)	0.3484 (3)	0.0410 (4)
H1	0.8975 (14)	0.395 (2)	0.366 (4)	0.063 (7)*
H2	0.134 (3)	0.357 (2)	-0.078 (4)	0.079 (9)*
Н5	0.412 (2)	0.2615 (19)	0.293 (4)	0.063 (7)*
H1A	0.735 (2)	0.5257 (10)	0.338 (3)	0.044 (6)*
H2A	0.5283 (16)	0.4452 (18)	0.302 (3)	0.049 (6)*
H4	0.6824 (19)	0.0967 (9)	0.330 (3)	0.040 (5)*
H5A	0.8881 (16)	0.191 (2)	0.356 (4)	0.061 (7)*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
S1	0.0273 (2)	0.0272 (2)	0.0352 (2)	-0.00275 (13)	0.00428 (15)	-0.00138 (13)	
01	0.0264 (7)	0.0495 (9)	0.0963 (12)	0.0041 (5)	-0.0012 (7)	-0.0159 (8)	
02	0.1253 (16)	0.0347 (7)	0.0384 (7)	-0.0135 (9)	0.0154 (8)	0.0017 (6)	
03	0.0312 (6)	0.0428 (7)	0.0538 (8)	0.0005 (5)	0.0090 (5)	-0.0101 (6)	
O4	0.0581 (8)	0.0317 (6)	0.0391 (6)	-0.0130 (5)	0.0045 (5)	0.0004 (5)	
05	0.0254 (6)	0.0346 (7)	0.0852 (11)	-0.0021 (5)	0.0041 (6)	-0.0049 (6)	
N1	0.0289 (7)	0.0507 (9)	0.0457 (8)	-0.0105 (6)	0.0064 (6)	-0.0084 (7)	
C1	0.0439 (9)	0.0337 (8)	0.0397 (9)	-0.0068 (7)	0.0086 (7)	-0.0045 (7)	
C2	0.0329 (8)	0.0303 (8)	0.0424 (9)	0.0037 (6)	0.0052 (7)	-0.0022 (6)	
C3	0.0268 (7)	0.0316 (8)	0.0376 (8)	-0.0003 (6)	0.0037 (6)	-0.0026 (6)	
C4	0.0315 (8)	0.0308 (8)	0.0454 (9)	0.0034 (6)	0.0037 (7)	-0.0031 (7)	
C5	0.0279 (8)	0.0485 (10)	0.0466 (9)	0.0043 (7)	0.0040 (7)	-0.0058 (8)	
Geometric paran	neters (Å, °)						
S1—O1		1.445(1)	N1—I	-11	0.84	41 (10)	
S1—O2		1.551 (2)	C1—0	22	1.366 (2)		
S1—O3		1.437 (1)	C1—H	H1A	0.945 (10)		
S1—O4		1.454 (1)	C2—C	23	1.40	1.400 (2)	
S1—O2		1.5514 (15)	C2—H2A		0.93	0.938 (10)	
O2—H2		0.848 (10)	C3—C4		1.39	1.397 (2)	
O5—C3		1.3273 (19)	C4—0	25	1.36	63 (2)	
O5—H5		0.849 (10)	C4—H	14	0.94	43 (9)	
N1-C1		1.340 (2)	C5—H	15A	0.94	47 (10)	
N1—C5		1.341 (3)					
O3—S1—O1		111.16 (8)	C2—C	C1—H1A	121	.6 (13)	
O3—S1—O4		114.04 (8)	C1—0	С2—С3	118	.86 (16)	
01—S1—O4		112.73 (9)	C1—0	C2—H2A	119	.0 (14)	
O3—S1—O2		104.60 (9)	C3—C	С2—Н2А	122	.1 (14)	
O1—S1—O2		106.91 (11)	05—0	С3—С4	117	.63 (15)	
O4—S1—O2		106.71 (8)	05—0	С3—С2	123	.36 (15)	
S1—O2—H2		113 (2)	C4—0	С3—С2	119	.01 (15)	
С3—О5—Н5		107.5 (19)	C5—C	С4—С3	119.20 (16)		
C1—N1—C5		121.59 (15)	C5—C	С4—Н4	121.5 (12)		
C1—N1—H1		119.2 (19)	C3—C	C4—H4	119	.3 (12)	
C5—N1—H1		119 (2)	N1—0	С5—С4	120	.59 (16)	
N1—C1—C2		120.75 (16)	N1—0	С5—Н5А	116	.9 (16)	
N1—C1—H1A		117.6 (13)	C4—C	С5—Н5А	122	.5 (16)	
C5—N1—C1—C	2	-0.1 (3)	05—0	C3—C4—C5	179	.79 (17)	
N1—C1—C2—C	3	0.1 (3)	C2—0	C3—C4—C5	-0.4	4 (3)	
C1—C2—C3—O	5	179.94 (17)	C1—N	M1—C5—C4	-0.1	1 (3)	
C1—C2—C3—C	4	0.2 (2)	С3—С	C4—C5—N1	0.4	(3)	

Atomic displacement parameters $(Å^2)$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···O4 ⁱ	0.85 (1)	1.77 (1)	2.603 (2)	168 (3)
O5—H5…O1	0.85 (1)	1.77 (1)	2.6166 (19)	175 (3)
N1—H1···O3 ⁱⁱ	0.84 (1)	2.04 (1)	2.8529 (19)	163 (2)

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x+1, y, z.

Fig. 1