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Purpose: We determine the intersession repeatability of cone measurements via
flood-illuminated adaptive optics (AO) imaging in patients with retinitis pigmentosa
(RP), to better differentiate variation due to imaging inaccuracies versus pathology-
driven change.

Methods: A total of 25 48 3 48 AO images were acquired three times on the same day
in 10 subjects with RP, registered in i2K Retina, and cones were identified using a
custom-built MATLAB algorithm. Nine equally spaced regions of interest were
selected for each imaging set. A subset of subjectively ‘‘poor’’ and ‘‘good’’ quality
images was selected by three independent graders, analyzed using cone density, cone
location similarity (CLS) and cone spacing, and compared to age-matched normals.

Results: The coefficient of variation (CoV), repeatability, and percent repeatability of
automated cone density were slightly higher in patients with RP compared to age-
matched normals, but showed no statistically significant difference. The standard
deviation of CLS and cone spacing of nearest-neighbor distance demonstrated a
statistically significant difference between good- and poor-quality images.

Conclusions: Repeatability of automated cone density measurements in patients with
RP is comparable to normals. Misidentification of cones due to image quality variability
is a major limitation of automated cone counting algorithms in patients with RP. Our
study suggests that CLS and cone spacing metrics could be used to help define image
quality and, thus, increase confidence in automated cone counts in patients with RP.

Translational Relevance: The novel AO image quality assessment metrics described
in our study could help to improve patient image interpretation, prognosis, and
longitudinal care.

Introduction

Flood-illuminated adaptive optics (AO) is a high-
resolution retinal imaging technique that uses a flash
infrared imaging light source and finely tuned deform-
able mirrors to continuously sample imaging wave-
form distortions to reduce the inherent optical
aberrations of the human eye. Flood-illuminated AO
has been used to study the cone mosaic in numerous
retinal conditions, including acquired and inherited
retinal disorders, and color deficiencies.1–7 However,
the majority of these studies assess a single imaging
session for each subject and, thus, do not provide data
about the intersession repeatability of cone identifica-

tion via AO imaging. Intersession repeatability of cone
density via flood-illuminated AO has been shown to be
reliable in healthy subjects8 and, while this provides an
important reference database, it does not describe the
repeatability of AO imaging for individuals with
retinitis pigmentosa (RP). Qualitative patterns and
findings on flood-illuminated AO imaging have been
described in subjects with RP,9 but there have not been
any intersession quantitative studies to date. Recently,
there have been studies investigating the repeatability
of cone photoreceptor imaging via adaptive optics
scanning laser ophthalmoscopes (AO-SLO) in subjects
with no pathology as well as various retinal genetic
diseases.10–15 AO-SLO images are created by scanning
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a small point source of light in a raster fashion; when
combined with a pinhole filter, this technique leads to
improved axial and lateral resolution compared to
flood-illuminated AO. Unfortunately, these devices
remain relatively expensive compared to flood-illumi-
nated AO cameras and require substantial infrastruc-
ture and expertise to operate. Given that repeatability
studies have yet to be performed via flood-illuminated
AO in subjects with RP, establishing the repeatability
in this population may help to improve clinical
management throughmore accurate prognosis, disease
monitoring and assessment of future therapeutic
interventions. As AO technology improves, it may
provide the ability to track not only global trends in
retinal degeneration, but also monitor the health of
individual cones in a longitudinal manner. Therefore,
the initial goal of our study was to evaluate the
repeatability of flood-illuminated AO images obtained
in patients with RP via intersession cone analysis.
However when reviewing the data, it became apparent
that the heterogeneous image quality in our study
population made automated cone identification unre-
liable. This problem is not new with cone identification
algorithms, but one that tends to be exacerbated in
subjects with abnormal retinal architecture secondary
to a pathologic process. Through studying repeatabil-
ity in these patients, we developed two newmetrics that
might allow for more objective image qualification,
and, thus, increased confidence in the validity of
automated cone identification for a given image.

Methods

Patients

This study adhered to the tenets of the Declaration
of Helsinki and was approved by the Oregon Health

& Science University IRB. Before enrollment, all
patients signed an informed consent after the nature
and possible consequences of the study were ex-
plained. Ten patients with a clinical diagnosis of RP
(age range, 22–57 year; mean, 36.9 6 11.7) were
recruited for this study (Table 1, Supplementary File
S1) and were compared to 11 normal patients from a
previous study8 with similar characteristics. Exclusion
criteria included patients with significant opacifica-
tion of the ocular media, subjects with uncontrolled
nystagmus, head movement that prevented target
fixation, visual acuity of ,20/50, history of cataract
surgery, visual field of ,308 (Octopus Perimetry;
Haag-Streit Diagnostics, Koniz, Switzerland) or
cystoid macular edema detected via OCT imaging
(Spectralis OCT, Heidelberg Engineering, Heidelberg,
Germany). In summary, we selected for patients with
good fixation, media clarity, visual acuity, and diverse
genetic mutations.

Image Acquisition

Both eyes were dilated with 1% phenylephrine and
2.5% tropicamide before each imaging session. For
each session, a series of 25 overlapping 48 3 48 images
was acquired using the rtx1 flood-illuminated AO
camera (Imagine Eyes, Orsay, France) covering a 128

3 128 field of the central macula in both eyes (Fig.
1A). Three imaging sessions were performed on each
patient on the same clinic visit day between 9:00 AM
and 3:00 PM. Retinal eccentricities were determined
based on distance from the fovea (Fig. 1B). After
image acquisition, each set of three images at each
corresponding location were registered with an affine
transformation in i2K Retina (DualAlign LLC,
Clifton Park, NY) to create a stack (Fig. 1C). Images
were subsequently prefiltered, and cone photorecep-
tors were identified using a custom-built MATLAB

Table 1. RP Subject Characteristics

Age (years) Sex Axial Length OD (mm) BCVA OD BCVA OS Genetic Testing

22 F 25.41 20/30 20/40 Unsolved
31 F 22.88 20/30 20/30 None
56 M 23.12 20/20 20/20 SEMA4A þ CRB1
40 F 25.09 20/20 20/20 PRPH2
24 F 23.39 20/20 20/20 Unsolved
57 F 25.01 20/20 20/30 RHO
35 F 22.23 20/20 20/20 Unsolved
34 F 25.36 20/20 20/30 Unsolved
38 M 23.84 20/20 20/20 USH2A
32 F 24.23 20/15 20/15 RHO
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cone counting algorithm (MathWorks, Natick, MA)

as described previously.8 In short, prefiltering was

accomplished by background subtraction using a

moving 11311 moving average filter, and subsequent

cone detection through local maxima intensity thresh-

olding. Binary cone detection maps were generated

for each image and used to create Voronoi diagrams

representing cone density maps. The RP subjects were

compared against age-matched normal subjects ob-
tained from a prior AO repeatability study.8

Regions of interest (ROIs) were used to determine
cone density variation in images across the three
sessions for each fixation point. A grid of nine 100 3

100 lm ROIs was selected for each imaging set, with
the central ROI positioned at the center of the padded
stack overlay and the ROIs equally spaced 0.58 from

Figure 1. Image location, registration, and ROI selection. (A) Fundus photo OD with overlaid AO imaging region. (B) Macular AO
imaging area with representative imaging locations (green-outlined boxes), the five different foveal eccentricities (white arrows), and ROIs
at each imaging location (green-shaded squares). (C) Representation of full overlay across each imaging session capturing all ROIs (green
boxes). (D) Representative incomplete overlay between images, causing exclusion of certain ROIs (red boxes).

3 TVST j 2019 j Vol. 8 j No. 3 j Article 17

Gale et al.



each other (Fig. 1C). ROIs that did not completely lie
within the boundary of the three registered images
were excluded from analysis (Fig. 1D). There were
4500 total ROIs (10 subjects, 25 image stacks per eye,
nine ROIs per location), of which 33 ROIs were
excluded, all from the same subject. After registration
using the Voronoi density plots, the preferred retinal
locus, which for the purposes of our study we equated
to the foveal center based on a prior study,16 was
manually selected at the center of fixation when the
fixation target was located at [08, 08]. For data
analysis, ROIs were grouped based on the distance
from the fovea of the central ROI at each imaging
location. This created five different foveal eccentricity
groups, as shown in Figure 1B. In a prior AO study of
healthy subjects,8 images within 1.58 of the fovea were
excluded from analysis due to the inability to reliably
resolve cones secondary to condensed foveal photo-
receptor packing. In patients with RP, it usually is
possible to visualize cones throughout the fovea due
to photoreceptor loss and increased cone spacing.2,9

Therefore, we decided to include all retinal eccentric-
ities for analysis in this study to avoid introducing
subjective assessment of each subject imaged.

A subset of ROIs ranging from 28 to 48 retinal
eccentricity were evaluated for further subgroup
analysis based on subjective image quality, which
was determined by the ability to clearly visualize a
hexagonal cone mosaic. These ROIs avoided regions
with major blood vessels, but there were no other
exclusion criteria. Three independent graders re-
viewed a set of training images to establish ‘‘good,’’
‘‘intermediate,’’ and ‘‘poor’’ image quality. Following
training, each grader independently reviewed the
images and assigned one of the three grades. Images
for which there was consensus of ‘‘good’’ and ‘‘poor’’
were included for analysis. When there was disagree-
ment on an image grade, the graders collectively
reviewed the image and a group decision was reached.
Due to a low number of images graded as ‘‘interme-
diate’’ and a wide variation in image appearance
resulting in reduced intergrader agreement, this group
was not included in the final analysis.

Cone Density Statistical Methods

From each ROI that was included in analysis,
average cone density, coefficient of variation (CoV),
coefficient of repeatability, and repeatability were
calculated. Cone densities for each ROI across all
three sessions were found from the corresponding
Voronoi maps and used to calculate average cone
density. Coefficient of repeatability was found using

an adaptation of the method described by Garrioch et
al.15 Within-subject standard deviation (SD) of cone
density across all sessions for a given ROI was found
and converted to coefficient of repeatability using
SD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n m� 1ð Þ

p
, where SD ¼ SD, n ¼ number of

subjects, and m ¼ number of observations for each
subject. Using the previous measurements, repeat-
ability was computed as coefficient of repeatability

average cone density . Repeat-
ability explains the variability in cone density
attributable to the methods involved in image
acquisition, which is independent of axial length as
this is a metric of intersession measurements from
individual subjects. Here, it is reported in terms of its
raw value as well as a percentage of the mean cone
density in the given region. In addition, 95%
confidence intervals (CIs) are reported for average
cone density, CoV, coefficient of repeatability,
repeatability, and percent repeatability. For all
statistical analyses we considered P , 0.01 to be
statistically significant. One-way analysis of variance
(ANOVA) statistical analysis was used to compare
mean SD of cone spacing between subgroups with F,
Fcrit and P values reported. The F value represents the
ratio of the variance calculated between the means to
the variance within the samples of each group, while
the Fcrit is the minimum ratio required to demonstrate
a statistically significant difference.

Cone Location Similarity

To our knowledge, cone location similarity (CLS)
is a novel metric that attempts to determine ‘‘shared’’
cones over repeated imaging session at the same
location using the spatial information as pixel
coordinates. With our imaging system, average cone
diameter varies from 4 to 6 pixels (3.13–4.69 lm);
therefore, if any three identified cone locations were
within 5 pixels (3.91 lm) of each other across all three
aligned imaging sessions, we considered this to be a
shared cone location. A visual representation of this
process is shown in Figure 2. In the case that multiple
cones exist within five pixels from a repeat session, the
cone that minimizes the mean distance between the
three identified cones is selected. CLS is reported as a
percentage cone countshared

1
N

PN

i¼1 cone counti
3 100, where N¼ number of

imaging sessions. We considered adjusting for axial
length, as this can affect the imaged cone density, and
theoretically cone size. However, given the inherent
heterogeneity in cone luminance and reflectivity,
which can cause notable variation in imaged cone
size, we found that axial length adjustments did not
impact our CLS measurements. Furthermore, as the
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algorithm seeks to detect shared cones across repeated

sessions of one individual, axial length can be

assumed constant in the individual and, therefore,

not required for this task. In the final analysis,

absolute number of cones and percent shared cones

were used to evaluate image reliability between the

‘‘poor’’ and ‘‘good’’ quality image sets.

Cone Spacing

Cone spacing metrics were performed using the

binary cone identification maps from the ‘‘poor’’ and

‘‘good’’ image sets. Cone spacing was analyzed using

nearest-neighbor distance (NND) based on center-to-

center spacing of adjacent cones, which is one of the

techniques that has been explored and validated by

prior studies.4,10,17–18 We also explored the SD and

CoV of NND across these ‘‘poor’’ and ‘‘good’’ 100 3

100 lm ROIs as a method to evaluate and compare

cone mosaic uniformity. Individual t-tests with a

Bonferroni correction were used to evaluate statistical
differences between sub-analysis groups.

Results

The intersession repeatability of adaptive optics
images in patients with RP were evaluated using three
main metrics: cone density, CLS, and cone spacing.

Cone Density

The average cone density, average CoV of cone
density, repeatability, and percent repeatability are
reported in Table 2. Average CoV between imaging
sessions in subjects with RP range from 3.93% to
4.25%, which is slightly larger than findings in normal
subjects (1.19%–4.14%),8 but shows no substantial
difference. Repeatability ranges from 2464 to 3593
cones/mm2 and percent repeatability ranges from
14.74% to 16.38% at varying eccentricities, which is at
the higher end of the range observed in normal

Figure 2. Images from set (A) display analysis from one region of an adaptive optics image with good quality. Images from set (B) are
from a region of lesser quality. For both sets (A) and (B), subset images 1 to 3 display a cropped view (100 lm2) from each of the three
sessions. Subsets 4 to 6 show the presumptive cones detected by automated cone counting from each session, with the absolute
number in the upper right corner. Subset 7 shows an overlay of identified cones from all three sessions, with the larger gray circles
representing shared cones detected in all three sessions with nearest Euclidean distances �5 pixels. Subset 8 displays the final shared
cones across all three sessions, with the absolute number in the upper right corner.
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subjects (6.5%–15.0%),8 but is not substantially
different.

Cone Location Similarity

The CLS (CLS) between imaging sessions varied
greatly across subanalysis groups (Table 3). Average
CLS was 80.54% in normal ‘‘good’’ subjects and
40.47% in normal ‘‘poor’’ subjects, while it was
76.85% in RP ‘‘good’’ subjects and 39.57% in RP
‘‘poor’’ subjects. There was a statistically significant
difference between the average CLS percentage of the
‘‘good’’-quality versus the ‘‘poor’’-quality groups (P
, 0.01).

Cone Spacing

The average SD and CoV of cone spacing values
for each subanalysis group were 1.02 lm and 11.73%
for normal ‘‘good’’ images, 1.45 lm and 16.55% for
normal ‘‘poor’’ images, 0.87 lm and 10.53% for RP
‘‘good’’ and 1.52 lm and 17.89% for RP ‘‘poor’’
(Table 3, Fig. 3). When comparing subanalysis groups
via 1-way ANOVA, there was a statistically signifi-
cant difference between the means (F¼ 31.04, Fcrit¼

2.79, P , 0.001). When analyzing subgroups via
individual t-tests with a Bonferroni correction, all
groups had a statistically significant difference except
for normal ‘‘poor’’ versus RP ‘‘poor’’ and normal
‘‘good’’ versus RP ‘‘good’’ (Table 4).

Discussion

Accurate quantitative analysis of cone changes in
patients with RP may prove to be a valuable tool by
helping to augment the qualitative interpretation of
disease progression in clinical patients and therapeutic
trials. However, this is a difficult task, as the
repeatability of flood-illuminated AO imaging in this
patient population is limited by a variety of con-
founding factors. Our study attempted to quantify the
changes in cone density across multiple imaging
sessions to better delineate between random varia-
tions and true pathology-driven loss of cone photo-
receptors. Additionally, while studying repeatability,
we developed cone spacing and CLS image analysis
techniques to use as objective metrics for image
quality assessment.

Table 2. Cone Density of RP Subjects

Foveal
Distance,
deg

Average Cone
Density (CI),
cones/mm2

Average
CoV (CI),

cones/mm2
Repeatability (CI),

cones/mm2

Percent
Repeatability in
RP Subjects (CI)

Percent
Repeatability
in Normalsa

0 16,784 (6 533) 566 (650) 3593 (6533) 15.42% (63.58) –
2 15,987 (6256) 597 (633) 3514 (6256) 16.38% (62.26) 10.50%
2.8 14,713 (6230) 530 (629) 3154 (6230) 15.91% (64.60) 8.25%
4 13,402 (6201) 522 (625) 2764 (6201) 15.71% (65.59) 6.50%
4.47 13,278 (6134) 526 (618) 2573 (6134) 14.74% (64.28) 11.75%
5.66 12,895 (6181) 547 (625) 2464 (6181) 15.66% (63.61) 15.0%

RP patient average cone density, average CoV, repeatability, and percent repeatability with corresponding CIs, as a
function of foveal distance. N for each foveal distance: 0¼ 174, 2 ¼ 722, 2.8 ¼ 720, 4 ¼ 720, 4.47 ¼ 1415, 5.66 ¼ 708.

a Normals data in column 6 obtained from a prior study by Feng et al.8

Table 3. Summary of Cone Spacing and CLS Statistics

Subject Group
Average Cone
Spacing, mm

Average SD of
Cone Spacing, mm

CoV of
Cone Spacing Average CLS % (SD)

Normals good 5.73 1.02 11.73% 79.49 (7.21)
Normals poor 5.67 1.45 16.55% 41.07 (3.97)
RP good 5.27 0.87 10.53% 75.15 (9.98)
RP poor 5.64 1.52 17.89% 39.32 (11.18)

Average SD of cone spacing, CoV of cone spacing, and cone similarity percentage, across all four subanalysis groups. SD
and CoV of cone spacing values were statistically significant between subgroups (Table 4). Average cone similarity
percentages showed a statistically significant difference between the ‘‘good’’ and ‘‘poor’’ quality groups (P , 0.01).
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A major challenge in AO imaging is determining
objective image quality. Good-quality images with a
clearly visible, uniform hexagonal cone mosaic are
fairly easy to identify. However, when an image shows
blurred or hazy photoreceptors, it often is very
difficult to determine whether impaired cone visual-
ization is due to retinal disease affecting reflectance,
camera imaging artifact, or some combination there-
of. An experienced AO image grader usually can
provide accurate and repeatable interpretations of
image quality, but this requires a significant amount
of subjective interpretation and contextual awareness.
Automated cone detection algorithms have been

shown to perform very well in high quality images,
but they can often misidentify retinal debris and noise
as photoreceptors.19 Because automated cone detec-
tion is necessary for practical applications of flood-
illuminated AO imaging systems, it is crucial to be
able to differentiate between a good-quality and a
poor-quality image to achieve confidence in the
validity of identified cones. While there have been
recent advances in cone detection algorithms and
improvements on traditional techniques,20–22 this
remains an area that requires significant attention.

Cone Density

As expected, average cone density was reduced in a
topographic fashion in patients with RP when
compared to healthy subjects.8 Our automated cone
density profiles and values are similar to those
reported in prior studies evaluating scanning laser
ophthalmoscope (SLO) and flood-illuminated adap-
tive optics images in subjects with RP.23–25 The
automated cone density repeatability metrics, such
as CoV, repeatability, and percent repeatability were
slightly higher in patients with RP compared to
normal subjects,8 but still within a similar range.
These findings make intuitive sense given the patho-
physiologic disruption of the outer retina caused by
RP. However, these findings must be interpreted with
caution. The similar repeatability metrics in RP

Table 4. t-Test Comparisons Across Subanalysis
Groups

t-Test P Value

Normals good versus normals poor ,0.01
Normals good versus RP good 0.06
Normals good versus RP poor ,0.01
Normals poor versus RP good ,0.01
Normals poor versus RP poor 0.52
RP good versus RP poor ,0.01

Individual t-tests with a Bonferroni correction were run
between each subanalysis group for SD of cone spacing. All
comparisons demonstrated a statistically significant
difference, except for NP versus RPP.

Figure 3. Boxplots showing the SD of cone spacing across all four subanalysis groups. Individual t-tests with a Bonferroni correction
were run for every group combination, showing a statistically significant difference between all group pairings (P , 0.05), except for
normals poor versus RP poor (P ¼ 0.52) and Normals good versys RP good (P ¼ 0.06, see Table 4).
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patients compared to normal subjects, especially in
areas of disease with poor image quality, likely results
from inherent inaccuracies in the automated cone-
identification algorithm. Automated algorithms, at
times, identify cellular debris and noise as photore-
ceptors in an inaccurate manner with regard to
location, but a consistent manner with regard to
average density over a given retinal area. This can
create a false sense of confidence in cone density
measurements, and, thus, repeatability measurements,
especially over larger imaging areas in which disease is
present. Due to the nonspecificity of cone density
detection algorithms in differentiating between true
and false cones, we decided to evaluate two additional
photoreceptor imaging metrics in an attempt to
improve the validity of cone identification.

Cone Location Similarity

In the highly organized, wave-guiding structure of
a healthy cone photoreceptor mosaic, the location of
identified cones should not change from one imaging
session to the next. Many prior studies have
demonstrated that cones may vary in degree of
reflectivity signal due to a variety of factors.
Physiologic diurnal variations and outer-segment
renewal have been shown to affect cone reflectiv-
ity.26–29 The Stiles-Crawford effect and cone align-
ment changes can alter incident light angles and create
heterogeneity in cone imaging.30–33 Although the cone
reflectivity profiles are influenced by these factors, the
retinal location and spatial orientation has been
shown to remain constant.34–35 However, there often
is more reflectivity variability and artifact in the
diseased or dying retina.19 This can result in similar
intersession cone density values via misidentification
of noise as cones, but the specific cone locations
themselves are inconsistent.

While there are some promising novel methods for
cone identification,21–22 these techniques are not able
to take image quality into consideration when
performing cone counting, which generates uncer-
tainty in the validity of the identified cones. We
subjectively judged a subset of images as ‘‘good’’ or
‘‘poor,’’ and then decided to create and investigate a
metric of spatial organization repeatability, called
CLS, to assess how this spatial repeatability correlates
with image quality. Figure 2 illustrates that interses-
sion CLS is notably higher in ‘‘good’’ quality
compared to ‘‘poor’’ quality images. Given these
findings, CLS may be a very specific quantitative
metric for grading image quality. It would help to
differentiate between true photoreceptor signals and

imaging noise when using an automated cone-
identification algorithm, while also making image
quality assessment entirely grader independent.

Cone Spacing

Another potential AO image analysis metric is the
SD of cone spacing via NND. In a healthy cone
mosaic, the photoreceptors are arranged in a hexag-
onal matrix for optimal packing efficiency. This
creates theoretically uniform cone spacing at a given
foveal eccentricity, with increasing inter-photorecep-
tor distances as foveal eccentricity increases. There-
fore, in a healthy photoreceptor mosaic, the SD and
CoV of cone spacing values should approach zero at a
given eccentricity. Additionally, prior studies have
shown that AO image cone spacing metrics can be
used to differentiate healthy retina from retinal
pathology at a given foveal eccentricity, based on an
increase in the distance between neighboring cones
due to photoreceptor loss as a result of the disease
process.4,10 However, these studies only evaluated
relatively high-quality images with a clearly visible
cone mosaic. In a poor-quality image with artifact
and noise, the absolute number of cones identified
may remain constant across imaging sessions, but the
cone location distribution, and, thus, inter-cone
spacing, often is nonuniform. As shown in Table 3,
even though the average distance between cones may
be similar between good and poor-quality images, the
SD and CoV of cone spacing values can help to
further determine image quality. Good-quality images
with a clearly visualized cone mosaic have a
significantly lower SD and CoV of cone spacing
when compared to poor-quality images. We believe
that SD and CoV of cone spacing are essentially
surrogate measurements for uniform hexagonality,
which likely correlate with higher image quality.
Therefore, this may be another useful quantitative
metric for determining image quality. To our knowl-
edge, this is the first time that subjective image quality
has been correlated to SD and CoV of cone spacing
values.

Limitations/Future Work

Primary limitations to this study are the manner in
which we selected patients and the relatively small
number of patients imaged. Selective criteria were
used to screen for patients with mild-to-moderate RP,
so no cases of severe or advanced RP were included.
However, there was no post-imaging exclusion of
patients with lower quality images, so our findings
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portray an accurate representation of the recruited
patient population. Future studies should investigate
the feasibility and repeatability of flood-illuminated
AO imaging in patients with advanced RP and other
retinal diseases. Another methodologic limitation was
that we used the preferred retinal locus as a surrogate
for foveal center based on a prior study.16 However,
an anatomic correlation with OCT would have been a
more accurate method for determining the true foveal
center. Additionally, further investigation into SD of
cone spacing and CLS as metrics for determining
image quality and differentiating healthy retina from
areas of pathology is warranted. After adjustment for
normal changes in cone density and spacing at various
foveal eccentricities, it may be possible to discriminate
between organized, healthy cone mosaics and the
altered reflectivity patterns and spacing seen in
diseased retina. This could also help to provide more
information about regional changes throughout the
retina and better delineate areas of pathologic
progression. Furthermore, it may lead to the devel-
opment of an objective algorithm for assessing image
quality and automated cone identification reliability
without the need for subjective assessment by an
experienced grader. However, the CLS analysis
technique is limited in that it requires repeated
imaging at the same retinal location, which often is
not feasible in the clinical setting.

Conclusions

We found that automated cone density repeatabil-
ity metrics are similar for subjects with RP compared
to normal subjects. However, our confidence in the
validity of these cone counts depends on image
quality, which is highly variable when imaging the
diseased retina via flood-illuminated adaptive optics.
While human graders can easily determine image
quality via subjective assessment, there is not cur-
rently a reliable automated computer algorithm for
judging AO image quality. We investigated two novel
quantitative metrics as a way to objectively determine
image quality: intersession CLS and CoV of nearest
neighbor distance. We first selected subsets of
subjectively good- and poor-quality images, then
identified patterns of CLS and cone spacing that
were associated with each image type. Future studies
could investigate the ability of these metrics to
perform image quality grading, and evaluate if these
grades correlate with subjective human assessment.
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