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Patients with hematologic malignancies,

including multiple myeloma (MM) and

Waldenstrom macroglobulinemia (WM),

experience worse outcomes in response

to SARS-CoV-2 infection and exhibit sub-

optimal responses to vaccination due to

humoral and cellular immunity defects

and immunosuppressive therapy (Aleman

et al., 2021; Greenberger et al., 2021; Grif-

fiths and Segal, 2021). Multiple myeloma

(MM) is the second most common hema-

tologic malignancy in the United States

and is always preceded by monoclonal

gammopathy of undetermined signifi-

cance (MGUS) and smoldering myeloma

(SMM), two precursor conditions that

affect approximately 3%–5%of the popu-

lation over 50 years of age, with African

Americans carrying three times the risk

(Marinac et al., 2020). More than 10million

individuals in the United States are

estimated to have MGUS, and we have

previously shown that MGUS and SMM

exhibit immune dysregulation (Zavidij

et al., 2020). Therefore, we reason that pa-

tients with precursor plasma cell dyscra-

sias may also be at risk for SARS-CoV-2

infection and suboptimal response to

vaccination.

We launched the IMmune Profiling

with Antibody-based COVID-19 Testing

(IMPACT) national cohort study in

November 2020 to characterize how the

short- and long-term effects of SARS-

CoV-2 vaccination are modified by under-

lying immune dysregulation due to pre-
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cursor plasma cell dyscrasias. The

IMPACT study is a prospective study at

Dana-Farber Cancer Institute (DFCI) that

enrolled participants from three prospec-

tively followed cohorts: the PCROWD

study (NCT02269592), the PROMISE

study (NCT03689595), and the CureCloud

(NCT03657251) collaborative study with

the Multiple Myeloma Research Founda-

tion (MMRF). A questionnaire regarding

prior SARS-CoV-2 infection or vaccina-

tion was sent to all participants.

Between November 2020 and October

2021, 3,005 individuals completed a

questionnaire assessing prior SARS-

CoV-2 infection or vaccination (vaccine

type and dates of administration). Self-

reported data were collected on

demographic variables (age, sex, race),

diagnosis, past medical history of malig-

nancies, and family history of malig-

nancies. Chart review was conducted

to retrieve patient clinical variables,

including diagnosis, prior therapeutic in-

terventions, and clinical laboratory test

results, including monoclonal protein

(M-spike) free light-chain (FLC) ratio, albu-

min, creatinine, hemoglobin, and bone

marrow (BM) plasma cell infiltration per-

centage. A detailed description of the par-

ticipants who answered the questionnaire

is presented in Table S1A.

Most individuals in our cohort received

a full vaccination course (2,771, 92%)

(two doses of BNT162b2 or mRNA-1273

or one dose of Ad26.COV2.S), including
lsevier Inc.
269 individuals (8.9%) who received a

third dose, while 234 individuals (7.8%)

remained unvaccinated. 1,385 (46%)

and 1,090 (36%) participants received

mRNA vaccines (BNT162b2 or mRNA-

1273, respectively), and 145 (4.8%) par-

ticipants received an adenovirus-vector

vaccine (Ad26.COV2.S). SARS-CoV-2

infection was observed in 253 (8.4%) indi-

viduals, including 33 (1.1%) individuals

who experienced a breakthrough infec-

tion after a full vaccination course.

Indeed, out of all 974 patients with precur-

sor diseases, 15 (1.5%) patients experi-

enced a breakthrough infection.

To evaluate the humoral immune

response, we employed one clinically vali-

dated and two research-level SARS-CoV-

2 spike protein-binding IgG antibody

tests. We used a clinical laboratory

improvement amendment (CLIA)-certified

antibody test with results returned to pa-

tients, including a qualitative test (Quest

Diagnostics code #39504), and beginning

in March 2021, a semiquantitative test

(Quest Diagnostics #34499). On the

research level, we used enzyme-linked

immunosorbent assays (ELISA) and

time-resolved Förster resonance energy

transfer (TR-FRET) tests (Supplemental

information).

Results for all three tests were available

on 261 samples.We compared the results

of each assay to the CLIA-certified semi-

quantitative test within its quantitative

range (1–20 index) (n = 22 samples). The
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ELISA results (r = 0.737, p < 0.001), but

not the TR-FRET results (r = 0.159, p =

0.481), were significantly correlated with

the clinical test results (Figure S1A). Since

the TR-FRET assay does not include

washing steps while relying on anti-hu-

man IgG antibodies to detect anti-SARS-

CoV-2 spike protein IgG antibodies, we

hypothesized that the increased IgG

immunoglobulin levels inherent in plasma

cell dyscrasias could interfere with this

assay. Further analysis using samples

spiked with various concentrations of

positive control antibody confirmed that

immunoglobulin interference occurred in

the TR-FRET assay (Figure S1B). Accord-

ingly, we used antibody titers measured

by ELISA for the analysis. We urge pro-

viders to be aware of the potential immu-

noglobulin interferences in immunoas-

says especially when applied to patients

with plasma cell dyscrasias.

We analyzed 1,350 plasma samples

from 628 individuals who had received a

vaccination, including 201 (32%) individ-

uals with MGUS, 221 (35%) with SMM,

40 (6.4%) with smoldering WM (SWM),

66 (10%) with MM, and 100 (16%) healthy

controls (Table S1B). Among them, 547

(87%) individuals submitted at least one

blood sample after full vaccination, and

209 (33%) patients submitted multiple

samples after a full vaccination course,

with a median of 2 (range, 2–6) samples

per patient. Patients with SMMwere strat-

ified by the 2/20/20 progression risk

criteria into low-risk, intermediate-risk,

and high-risk groups (Lakshman et al.,

2018). While the standard of care for pa-

tients with SMM is active monitoring until

progression to overt MM, our cohort

included 41 (6.5%) SMM patients who

have received therapies and 17 (0.3%)

SMM patients who were actively treated

at the time of blood collection (Table S1C).

To determine factors that contributed

to antibody responses to SARS-CoV-2

vaccination, we fit a linear model on anti-

body titers (Figure S1C and Table S1D).

Consistent with previous reports (Bird

et al., 2021; Greenberger et al., 2021;

Stampfer et al., 2021; Van Oekelen et al.,

2021), patients diagnosed with MM were

significantly more likely to show attenu-

ated humoral immune response (b

�0.44, 95% CI: �0.67, �0.21, p <

0.001). Importantly, patients with asymp-

tomatic SMM had significantly attenuated

humoral immune response regardless of
their 2/20/20 risk stage, even with low-

risk SMM (low-risk: b: �0.22, 95% CI:

�0.42, �0.03, p = 0.027; intermediate-

risk: b: �0.40, 95% CI: �0.61, �0.19,

p < 0.001; and high-risk: b: �0.53, 95%

CI: �0.88, �0.18, p = 0.003). A diagnosis

of MGUS (b �0.13, 95% CI: �0.28, 0.03,

p = 0.103) or SWM (b: �0.15, 95% CI:

�0.36, 0.07, p = 0.181) was not signifi-

cantly associated with attenuated anti-

body response. However, the coefficients

were negative, and wemay be underpow-

ered to detect a significant difference for

this effect size. Therefore, this result

should be interpreted with caution. In

addition to disease state, male sex (b:

�0.12, 95% CI: �0.22, �0.02, p <

0.010), elapsed time after vaccination (b:

�0.00, 95% CI: �0.01, �0.00, p <

0.001), and receiving the BNT162b2 vac-

cine (b: �0.38, 95% CI: �0.48, �0.29,

p < 0.001) were also associated with

attenuated antibody response, while

SARS-CoV-2 infection prior to vaccina-

tion was associated with enhanced anti-

body response (b: 0.78, 95% CI: 0.58,

0.98, p < 0.001). Collectively, our results

indicate that the humoral immune

response is attenuated in asymptomatic

SMM patients, even those with low-risk

SMM and low tumor burden. As we do

not screen for SMM, these individuals

are largely undiagnosed and would not

know that they may be at higher risk for

SARS-CoV-2 infection.

Patients with SMM are a heteroge-

neous population, encompassing pa-

tients with indolent MGUS-like disease

and patients who will progress to overt

MM within 5 years of diagnosis. To deter-

mine whether all SMM patients are

equally at risk for attenuated humoral im-

mune response, we fit a linear model

within the sub-cohort of SMM patients

adjusting for clinical variables that are

commonly used to monitor the risk of

progression in patients with SMM

(Figure S1D and Table S1E). We observed

that a higher percentage of BM plasma

cell infiltration (b: �0.20, 95% CI: �0.37,

�0.03, p = 0.018) and a higher FLC ratio

(involved/uninvolved light chain, b:

�0.16, 95% CI: �0.32, 0.01, p = 0.060),

both markers of advanced disease, were

associated with lower antibody titers

post-vaccination. Prior SARS-CoV-2

infection (b: 0.92, 95% CI: 0.57, 1.27,

p < 0.001), receiving the BNT162b2 (b:

�0.38, 95% CI: �0.58, �0.18, p <
0.001), and longer elapsed time (b:

�0.01, 95% CI: �0.01, �0.00, p < 0.001)

after vaccination were again significantly

associated with lower antibody response.

These results indicate that the more

advanced the SMM tumor is, the worse

the patient’s humoral immune response

to SARS-CoV-2 vaccination will be, which

may help inform future vaccination strate-

gies in these patients.

While patients with hematologic malig-

nancies are encouraged to receive a third

dose of vaccination, we do not have evi-

dence that a third dose may indeed over-

come disease-associated immune dysre-

gulation. Therefore, we examined the

effect of a third dose of mRNA vaccination

on antibody titers in 25 patients (6 MGUS,

10 SMM, 2 SWM, and 7 MM) who

received three vaccine doses and submit-

ted blood samples both after the second

dose and after the third dose. In these pa-

tients, we observed a significant increase

in antibody titer after receiving the third

dose (paired t test, p = 0.002)

(Figure S1E). To determine whether these

higher titers could be considered accept-

able, we compared patient antibody titers

post-third dose (13 MGUS, 12 SMM, 2

SWM, and 31 MM) to those of healthy in-

dividuals after the second dose. Since all

available samples after the third dose

were collected within 65 days post-vacci-

nation (median 33; range, 1–65), we

restricted this comparison to samples of

healthy individuals collected within

65 days of the second dose of vaccine

(median 41; range, 2–64). We observed

highly variable antibody titers after the

third dose in patients, but, overall, they

were comparable to titers post-second

dose in healthy individuals (p = 0.833)

(Figure S1F). While we do not know how

antibody titers post-third dose in patients

with plasma cell dyscrasias are compared

to titers post-third dose in healthy individ-

uals, our results indicate that this patient

population may require one dose more

than healthy individuals to reach similar

antibody levels. With longer follow-up,

we will be able to assess the dynamics

of antibody titer waning over time in pa-

tients with precursor plasma cell dyscra-

sias compared to healthy individuals and

determine whether the intervals between

doses should perhaps be shorter for our

patients.

Our model suggested that the humoral

immune response in SMM patients with
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prior treatment history within 2 years of

vaccination was comparable to that of

healthy individuals (b: 0.09, 95% CI:

�0.09, 0.28, p = 0.311), even though hav-

ing SMM was a significant predictor

of attenuated response (Figure S1C).

Indeed, SMM patients with prior treat-

ment history had significantly lower tumor

burden than untreated SMM patients in

terms of M-spike level (p < 0.001) and

BM plasma cell infiltration percentage (p

< 0.001). While early therapy is still under

investigation as a strategy in patients

with high-risk SMM, these encouraging

results suggest that the earlier therapeutic

interventions in high-risk SMM patients

may effectively downstage SMM patients

who may have an improved antibody

response to vaccination. Benefits from

long-term immunomodulation due to

therapy are also possible, but these data

need to be evaluated further. In contrast,

receiving active treatment for SMM while

being vaccinated was near significant as

a predictor of attenuated antibody

response (b: �0.21, 95% CI: �0.44,

0.02, p = 0.078), consistent with prior re-

ports observed in symptomatic MM

(Stampfer et al., 2021; Van Oekelen et

al., 2021) (Figure S1C).

Finally, we identified patients who

experienced a breakthrough infection af-

ter a full vaccination course. Among

them, we obtained blood samples from

seven patients (2 MGUS, 5 SMM). Their

antibody titer after full vaccination, but

before infection, (median 1.78, range

1.30–1.83) was comparable to that

in healthy individuals after vaccination

(p = 0.691). This indicates that factors

beyond humoral immune response may

contribute to breakthrough infections.

We are investigating whether the cellular

immune response should also be consid-

ered to fully define vaccine-induced im-

mune responses in patients with plasma

cell dyscrasias.

In conclusion, our study demonstrates

that the humoral immune response to

SARS-CoV-2 vaccination is suboptimal,

not only in patients with MM and other
8 Cancer Cell 40, January 10, 2022
cancer patients receiving therapy but

also in precursor asymptomatic patients,

including low-risk SMM. Since early

stages of hematologic malignancies

were not screened routinely, many indi-

viduals who are not currently diagnosed

with these precursor conditions may be

at risk for an attenuated response to

SARS-CoV-2 vaccination and may not

be aware of their risk. The third vaccine

dose improved their attenuated humoral

immune response. Future studies exam-

ining whether breakthrough infections

are indeed associated with other precur-

sor conditions need to be explored. Pro-

viders should be aware that a substantial

subset of patients with plasma cell dys-

crasias, even if asymptomatic, may be at

high risk of breakthrough SARS-CoV-2

infections.
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