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Abstract: Sterigmatocystin (STC) and 5-methoxysterigmatocystin (5-M-STC) are mycotoxins produced
by common damp indoor Aspergilli series Versicolores. Since both STC and 5-M-STC were found in
the dust of indoor occupational and living areas, their occupants may be exposed to these mycotoxins,
primarily by inhalation. Thus, STC and 5-M-STC were intratracheally instilled in male Wistar
rats using doses (0.3 mg STC/kg of lung weight (l.w.); 3.6 mg 5-M-STC/kg l.w.; toxin combination
0.3 + 3.6 mg/kg l.w.) that corresponded to concentrations detected in the dust of damp indoor
areas in order to explore cytotoxicity, vascular permeability, immunomodulation and genotoxicity.
Single mycotoxins and their combinations insignificantly altered lactate-dehydrogenase activity,
albumin, interleukin-6, tumor necrosis factor-α and chemokine macrophage inflammatory protein-1α
concentrations, as measured by ELISA in bronchioalveolar lavage fluid upon 24 h of treatment. In an
alkaline comet assay, both mycotoxins provoked a similar intensity of DNA damage in rat lungs,
while in a neutral comet assay, only 5-M-STC evoked significant DNA damage. Hence, naturally
occurring concentrations of individual STC may induce DNA damage in rat lungs, in which single
DNA strand breaks prevail, while 5-M-STC was more responsible for double-strand breaks. In both
versions of the comet assay treatment with STC + 5-M-STC, less DNA damage intensity occurred
compared to single mycotoxin treatment, suggesting an antagonistic genotoxic action.

Keywords: Aspergilli series Versicolores; sterigmatocystin; 5-methoxysterigmatocystin; intratarcheal
instillation; genotoxicity; pro-inflammatory cytokines

Key Contribution: STC and 5-M-STC alone and their combination, applied in naturally occurring
concentrations detected in the dust of damp indoor areas, induced significant DNA damage in the
lungs of Wistar rats.

1. Introduction

Sterigmatocystin (STC) is one of the most commonly occurring polyketide mycotoxins in damp
occupational and indoor living areas [1–3], principally produced by Aspergillus section Nidulantes series
Versicolores that can be found in indoor damp occupational and living environments [4]. Recent studies
have shown that among Aspergilli series Versicolores, the most frequent contributors of STC in dust of
occupational and/or residential environments were the species A. jensenii and A. creber, followed by
A. protuberus, A. puulaauensis, A. tennesseensis, A. venenatus, A. amoenus, A. griseoaurantiacus, A. fructus
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and A. pepii [5–7]. 5-Methoxysterigmatocystin (5-M-STC) is produced in association with STC by some
Aspergilli series Versicolores, sometimes at higher levels than STC [8].

STC is a precursor in aflatoxin biosynthesis and is therefore structurally related to aflatoxins [9].
Similarly to aflatoxin, STC is activated by the liver cytochrome P450 (CYP450) system with reactive
epoxide that forms DNA adducts with guanine, and this is considered the underlying mechanism of
STC genotoxicity [9]. STC-induced tumors, including hepatocellular carcinomas, hemangiosarcomas
of the liver and pulmonary adenomas, resulted in its classification as a 2B carcinogen (possible human
carcinogen) by the International Agency for Research on Cancer (IARC) [9,10]. STC induces lung
adenocarcinoma in mice, genotoxicity and G2 cell cycle arrest in human immortalized bronchial
epithelial BEAS-2B cells, human lung adenocarcinoma A549 cells and human esophageal epithelial
Het-1A cells, and it is more cytotoxic than aflatoxin to A549 cells [11–13]. Intratracheally instilled
STC in white Swiss Webster mice modulated inflammation-associated genes after 4 h of treatment,
while after 12 h of instillation, mucus production and inflammation of the bronchiolar and alveolar
epithelium and alveolar edema appeared [14].

The toxic properties of 5-M-STC have been poorly investigated to date. In terms of toxicity,
a TA100 Salmonella typhimurium mutagenicity assay showed that 5-M-STC is mutagenic in the presence
of metabolic activation [15] and is cytotoxic and genotoxic to A549 cells [16,17]. Both STC and 5-M-STC
are detoxified through conjugation in primary tracheal epithelial cells. While STC is activated by CYP
enzymes producing reactive epoxide, no such metabolite was detected with 5-M-STC [8,18].

In our recent study [6] in damp dwellings, 75 fungal metabolites were detected in dust samples
and STC and 5-M-STC were among the dominant mycotoxins. The highest concentration of STC was
0.59 µg/g, while 5-MET-STC was recovered at a maximum level of 7.70 µg/g. Considering the reported
frequent occurrence of STC- and 5-M-STC-producing Aspergilli series Versicolores [2,7,19], these two
mycotoxins could be frequently expected in indoor damp occupational and living environments.
Taking into account the maximal concentrations of STC (0.59 µg/g) and 5-M-STC (7.70 µg/g) found in
dust, exploring the cytotoxic, inflammatory and genotoxic effects of STC and 5-M-STC alone, as well as
their combination, in the lungs of male Wistar rats upon a single intratracheal instillation of mycotoxins
was justified. Concentrations used for animal treatment were calculated according to following data
related to human respiratory exposure to particulate matter (PM2.5): (i) average daily inhalation of
adults is 10–12 m3 and the average concentration of PM2.5 could be up to 54 µg/m3 [20,21]; (ii) by
multiplying these values, we can assume that the average daily inhaled PM2.5 could be up to 648 µg;
(iii) thus, the daily inhaled STC and 5-M-STC would be 0.4 µg and 5 µg, respectively. These levels of
STC and 5-M-STC were used in the experiment.

2. Results

Bronchioalveolar lavage fluid (BALF) was used as a sample for measuring (ELISA) lactate
dehydrogenase (LDH) activity as an indicator of cytotoxicity, albumin as an indicator of vascular
permeability and the cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and chemokine
macrophage inflammatory protein-1 (MIP-1α) as indicators of inflammation. Homogenized rat lungs
were used as samples for measuring the levels of DNA damage by alkaline and neutral comet assays.

2.1. LDH Activity

Cytotoxicity expressed as LDH activity levels measured in BALF upon 24 h of intratracheal
instillation of mycotoxins is presented in Figure 1. STC and 5-M-STC alone and their combinations
increased LDH activity in treated rats at similar levels, but without significant differences compared to
control rats (p > 0.05).
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Figure 1. Lactate dehydrogenase (LDH) activity in bronchioalveolar lavage fluid (BALF) of Wistar 
rats upon 24 h of intratracheal instillation of mycotoxins. Each experimental group comprised six 
animals. Bar height reflects mean LDH activity of each group in nmol/mL/min (mU/mL), error bars 
present upper and lower limit of 95% confidence interval (CI). Abbreviations: STC—sterigmatocystin, 
5-M-STC—5-metoxysterigmatocysin. Control rats were treated with 0.3% DMSO. 

2.2. Albumin 

Albumin concentration in BALF was measured as a nonspecific indicator of vascular 
permeability. The increase in albumin concentration was detected in rats instilled with 5-M-STC and 
the combination STC + 5-M-STC, but these changes were not associated with a significant difference 
with respect to albumin concentration in control animals (p > 0.05) (Figure 2). 

 
Figure 2. Albumin concentrations in BALF of Wistar rats upon 24 h of intratracheal instillation of 
mycotoxins. Each experimental group comprised six animals. Bar height reflects mean albumin 
concentration of each group in µg/mL, error bars present upper and lower limit of 95% confidence 
interval (CI). Abbreviations: STC—sterigmatocystin, 5-M-STC—5-metoxysterigmatocysin. Control 
rats were treated with 0.3% DMSO. 

2.3. Pro-Inflammatory Cytokines and Chemokine 

The concentrations of pro-inflammatory cytokines TNF-α and IL-6 as well as the chemokine 
MIP-1α are presented in Figure 3. Single mycotoxins insignificantly decreased TNF-α and IL-6 with 

Figure 1. Lactate dehydrogenase (LDH) activity in bronchioalveolar lavage fluid (BALF) of Wistar
rats upon 24 h of intratracheal instillation of mycotoxins. Each experimental group comprised six
animals. Bar height reflects mean LDH activity of each group in nmol/mL/min (mU/mL), error bars
present upper and lower limit of 95% confidence interval (CI). Abbreviations: STC—sterigmatocystin,
5-M-STC—5-metoxysterigmatocysin. Control rats were treated with 0.3% DMSO.

2.2. Albumin

Albumin concentration in BALF was measured as a nonspecific indicator of vascular permeability.
The increase in albumin concentration was detected in rats instilled with 5-M-STC and the combination
STC + 5-M-STC, but these changes were not associated with a significant difference with respect to
albumin concentration in control animals (p > 0.05) (Figure 2).
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Figure 2. Albumin concentrations in BALF of Wistar rats upon 24 h of intratracheal instillation of
mycotoxins. Each experimental group comprised six animals. Bar height reflects mean albumin
concentration of each group in µg/mL, error bars present upper and lower limit of 95% confidence
interval (CI). Abbreviations: STC—sterigmatocystin, 5-M-STC—5-metoxysterigmatocysin. Control rats
were treated with 0.3% DMSO.

2.3. Pro-Inflammatory Cytokines and Chemokine

The concentrations of pro-inflammatory cytokines TNF-α and IL-6 as well as the chemokine
MIP-1α are presented in Figure 3. Single mycotoxins insignificantly decreased TNF-α and IL-6 with
respect to the control (p > 0.05), while the combination of STC and 5-M-STC returned the concentrations
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of cytokines to control values. Opposite to cytokines, MIP-1α was more decreased in rats treated with
the mycotoxin combination (p > 0.05), while in rats instilled with single toxins, the levels of MIP-1α
were more similar to control values.
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Figure 3. Cytokines (TNF-α and IL-6) and chemokine (MIP-1α) concentration in BALF of Wistar rats
upon 24 h of intratracheal instillation of mycotoxins. Each experimental group comprised six animals.
Mean concentrations in pg/mL of cytokines (A) TNF-α, (B) IL-6 and chemokine (C) MIP-1α are presented
with bar height. Error bars present 95% confidence interval (CI). Abbreviations: STC—sterigmatocystin,
5-M-STC—5-metoxysterigmatocysin. Control rats were treated with 0.3% DMSO.

2.4. DNA Damage Measured by Alkaline and Neutral Comet Assays

The results of the genotoxic effects of STC and 5-M-STC measured by alkaline and neutral comet
tests are shown as tail length (TL) and tail intensity (TI) in Figures 4 and 5.
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Figure 4. Genotoxic effects obtained by alkaline comet assay in the lungs of Wistar rats following 24 h of
intratracheal instillation of mycotoxins. Each experimental group comprised six animals. (A) Mean TLs
in µm measured in the alkaline comet assay are presented with bar heights, while error bars reflect
upper and lower limits of the 95% confidence interval (CI). (B) Mean Tis in percentage units measured
in the alkaline comet assay are presented with bar heights, while error bars reflect upper and lower
limits of the 95% confidence interval (CI). Statistically significant differences between the groups below
at the ends of each line are emphasized with asterisks encoding p values: *** < 0.001 ≤ ** < 0.01 ≤.
Abbreviations: STC—sterigmatocystin, 5-M-STC—5-metoxysterigmatocysin. Control rats were treated
with 0.3% DMSO.
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Figure 5. Genotoxic effects obtained by neutral comet assay in the lungs of Wistar rats following 24 h of
intratracheal instillation of mycotoxins. Each experimental group comprised six animals. (A) Mean TLs
in µm measured in the neutral comet assay are presented with bar heights, while error bars reflect
upper and lower limits of the 95% confidence interval (CI). (B) Mean TIs in percentage units measured
in the neutral comet assay are presented with bar heights, while error bars reflect upper and lower
limits of the 95% confidence interval (CI). Statistically significant differences between the groups
below at the ends of each line are emphasized with asterisks encoding p value * <0.05. Abbreviations:
STC—sterigmatocystin, 5-M-STC—5-metoxysterigmatocysin.

Both versions of the comet assay revealed no significant increase in TL (Figures 4A and 5A)
in the treatment groups compared to the control. However, the alkaline comet assay showed
that the levels of DNA damage, represented by TI, were significantly higher in rats instilled with
individual mycotoxins and their combination than in control rats (p < 0.001 and p < 0.01, respectively).
The two-toxin combination provoked lower TI than the individual toxins, but the difference was not
statistically significant.

In the neutral comet assay (Figure 5B), a significant increase in TI was observed upon treatment
with 5-M-STC alone compared to the control (p < 0.05). Although STC and the combination of STC
+ 5-M-STC caused slightly greater DNA damage compared to the control, the TI increase was not
statistically significant. Treatment of animals with STC and the combination of STC + 5-M-STC evoked
a lower TI compared to 5-M-STC administered alone, but also did not show a significant difference.

3. Discussion

Our recent unpublished results revealed that STC (85%), along with its derivative 5-M-STC (70%),
was among the dominant fungal metabolites in the dust of damp dwellings during a post-flood period,
linked to the presence of Aspergilli series Versicolores, capable of producing both mycotoxins in vitro.
That study revealed that the majority of indoor airborne and dustborne isolates of A. jensenii, A. creber,
A. puulaauensis, A. tennesseensis and A. venenatus were capable of producing both STC and its derivative
5-M-STC; the isolates produced two to five times more 5-M-STC than STC. Data on 5-M-STC-producing
Aspergilli, as well as the occurrence of this mycotoxin in dust samples of occupational and indoor
living areas are scarce. Very few studies reported the occurrence of 5-M-STC in indoor environments
in relation to materials contaminated by A. versicolor [22,23] but, more recently, the presence of both
5-M-STC and STC in library dust was primarily attributed to A. jensenii and A. creber [19], which was
supported by our results. In library dust, both STC and 5-M-STC were present at similar mean
concentrations, ranging from 2.1 to 17.4 µg/kg and 4.8 and 27 µg/kg, respectively [19]. In our study [6],
the average concentration of 5-M-STC (215 µg/kg) in indoor dust was eight times higher than the
concentration of STC (28 µg/kg), suggesting that Aspergilli could produce significantly larger amounts
of 5-M-STC than STC when higher water activity is available in the substrate, which is in line with
limited reports in artificially inoculated materials [8,23]. Furthermore, in occupational environments,
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such as a grain mill, relatively high STC levels (0.06–2.35 µg/g) were detected in dust [7], suggesting that
its derivative 5-M-STC might also be present in large amounts. Thus, occupants in specific working
environments heavily contaminated with organic dust (e.g., grain storage, grain elevators and mills)
may be exposed to high levels of both STC and 5-M-STC, primarily via inhalation.

Having in mind the maximum concentrations of mycotoxins detected in the dust of damp indoor
areas in post-flood periods, one single dose per lung weight (l.w.) of STC (0.3 mg/kg l.w.) and 5-M-STC
(3.6 mg/kg l.w.), as well as their combination (0.3 + 3.6 mg/kg l.w.), were intratracheally instilled in male
Wistar rats. Several toxicity studies in rodents, including mice and rats, available in the literature were
done with STC alone [9,12,24], while there are limited results on 5-M-STC in vitro [16,17,25] and no data
on its toxicity in vivo. This study shows that naturally occurring concentrations of STC and 5-M-STC
alone, as well as their combination, insignificantly increase LDH activity and vascular permeability in
rat lungs and we can only speculate that an increase in the dose would produce significant alterations.

As is well known, TNF-α and IL-6 are pro-inflammatory cytokines produced by lymphocytes,
monocytes and epithelial cells [26]. TNF-α is an endogenous pyrogen and immunoregulatory cytokine
responsible for the production of interleukins, including IL-6, which leads to the activation of T cells
and the differentiation of B cells, as well as immunoglobulin secretion [27,28]. The chemokine MIP-1α
plays an important role in the inflammatory process by promoting the recruitment of neutrophils,
macrophages and lymphocytes to the site of inflammation [29]. Both TNF-α and IL-6 were insignificantly
decreased by STC and 5-M-STC alone in the BALF of rat lungs, and returned to control values following
treatment with their combination. In mice, an interperitoneal injection of a 10 times higher dose
of STC (3 mg/kg) significantly downregulated the expression of TNF-α and IL-6 in intraperitoneal
macrophages, together with a decrease in both cytokines in serum [30]. On the other hand, in mice
intratracheally instilled with STC, at half the dose (0.138 mg/kg l.w.) in the present study, it provoked
significant inflammation, observed as the infiltration of leukocytes in bronchi, swollen macrophages in
alveolar spaces and the upregulated expression of TNF-α and the chemokine MIP-2 [14]. Altogether,
this suggests that: (i) STC immunomodulatory effects depend on the applied dose; (ii) in naturally
occurring concentrations detected in damp dwellings, STC and 5-M-STC, as structurally similar toxins,
may have negative immunomodulatory effects when present alone; (iii) since treatment with STC +

5-M-STC returned pro-inflammatory cytokines and chemokine to control values, an immunomodulatory
antagonism within a toxin combination may be expected. Additionally, STC induced an insignificant
increase in TNF-α in human THP-1-like macrophages, while co-exposure with β-glucan resulted
in a synergistically increased expression of several inflammation-related genes [31], suggesting that
mycotoxins may exhibit pro-inflammatory synergistic action with structures of the fungal cell wall that
are expected in dust of occupational and indoor living areas.

Although the STC and 5-M-STC doses used in the present study did not exert significant cytotoxicity
and immunomodulation in rat lungs, significant genotoxic action was obtained by two types of comet
assay. The principle of the comet assay is based on DNA damage, such as strand breaks, resulting in the
extension of DNA loops from lysed nuclei, which form comet-like tails; after alkaline electrophoresis,
single-strand breaks dominate, but double-strand breaks are also detected in tails, while neutral
electrophoresis indicates the domination of double-strand breaks [32]. Relative TI is the most useful
parameter of the comet assay because the tail increases in intensity, but not in length, as DNA damage
increases, while TL increases only when tails first become established at a relatively low damage
level [33]. Looking at TI, in the alkaline comet assay, both STC and 5-M-STC provoked a similar intensity
of DNA damage, although STC was applied at an approximately 10 times lower dose than 5-M-STC,
while in the neutral comet assay version, only 5-M-STC evoked significant DNA damage. These results
suggest that naturally occurring concentrations of STC alone may induce DNA damage in rat lungs,
in which single DNA strand breaks prevail, while 5-M-STC is more responsible for double-strand
breaks. In both versions of the comet assay, treatment with the toxin combination resulted in lower
TI compared to single mycotoxin treatment, suggesting the antagonistic genotoxic action of STC and
5-M-STC. The present study is the first to report on the genotoxic action of 5-M-STC in vivo, as well as
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the genotoxic action of the STC + 5-M-STC combination. The nature of DNA strand breaks induced by
STC has not been elucidated yet. In porcine primary tracheal epithelial cells treated with STC (50 µM),
CYP enzymes produced a reactive STC metabolite [18], which may interact with DNA, leading to DNA
single-strand breaks. On the other hand, a recent study revealed that STC at concentrations between
5 and 10 µM possesses unique aggregation properties in water, yielding a strong and specific circular
dichroism spectrum [34]. Data showed that STC non-covalently interacts with DNA, most probably by
intercalation between base pairs, which may result in DNA double-strand breaks [34]. We can only
speculate whether both mechanisms may be in action, depending on the bioavailable concentration
of STC and CYP activity. In porcine primary tracheal epithelial cells, 5-M-STC applied at 1 µM was
unable to produce CYP-related reactive metabolites [8]. Taking into account the neutral comet assay
results obtained in the present study, as well as the structural similarities of 5-M-STC and STC, we may
speculate that the intercalation of 5-M-STC yielded a significant amount of DNA double-strand breaks.
This hypothesis should be further explored. In human adenocarcinoma A549 cells, both mycotoxins in
single treatments at sub-cytotoxic concentrations induced significant reversible and irreversible DNA
damage, as measured by comet and micronucleus tests [16]. The mechanism of STC genotoxicity in
pulmonary cell lines (A549 and BEAS-2B cells) has been linked to cell cycle arrest in G2/S and G2/M,
in which STC altered the expression of the regulatory protein cyclin and cyclin-dependent kinases [35].
This mechanism of DNA damage might be worth exploring in vivo by applying naturally occurring
concentrations of STC and 5-M-STC, as well as their combinations.

In conclusion, STC and 5-M-STC alone and their combination, applied at naturally occurring
concentrations detected in damp indoor areas, evoked significant DNA damage, but insignificant
cytotoxicity, alterations in vascular permeability and immunomodulation in the lungs of Wistar rats.
Changes in the measured parameters after treatment with the STC and 5-M-STC combination suggest
their antagonistic interaction. The underlying mechanisms of genotoxicity of single and combined
STC and 5-M-STC should be further explored.

4. Materials and Methods

4.1. Experimental Design and BALF Sampling

Adult male Wistar rats (12 weeks old, 300–400 g of body weight (b.w.), mean = 343; mean of
lung weight (l.w.) = 1.382 g) were kept in macrolon cages at a controlled room temperature and
day/night cycles (22 ◦C, 12 h, respectively). Before and during the experiment, animals had free
access to standard pelleted food (4RF21 from Mucedola, Settimo Milanese, Italy) and tap water.
The experiment was approved by the Ethics Committee of the Institute for Medical Research and
Occupational Health in accordance with the European Communities Council Directive of 22 September
2010 (2010/63/EU). Animals (N = 24) were randomly divided into four groups (N = 6 in each group)
as follows: control (DMSO + PBS); STC; 5-M-STC; and STC + 5-M-STC. Stock solutions of toxins were
prepared in DMSO and then diluted to working solutions with PBS. Animals were treated with a
single dose of STC (0.4 µg) and 5-M-STC (5 µg), as well as their combination (0.4 + 5 µg) in DMSO/PBS
(V = 300 µL), by intratracheal instillation of 300 µL between 8 a.m. and 9 a.m. According to the mean
lung weight (l.w.) of rats (1.382 g), doses of toxins were 0.3 mg STC/kg l.w. and 3.6 mg 5-M-STC/kg
l.w. Before instillation, animals were lightly anesthetized with isoflurane (Piramal Enterprises LTD,
Mumbai, India). Animals were held by hand in the upright position after instillation until awakening,
before being placed back in their cages. Animals were sacrificed after 24 h under general anesthesia by
Narketan (80 mg/kg body mass (b.m.) and Xylapan (12 mg/kg b.m., i.p.). Lungs were lavaged with
ice-cold PBS in 2 × 5 mL and BALF was pulled and centrifuged at 650 G and 4 ◦C for 10 min. BALF and
lungs were frozen at −80 ◦C until analysis.
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4.2. LDH Activity Analysis

The measurement of LDH activity in BALF was performed in 96-wellplates using an LDH Assay
Kit (Abcam, Cambridge, UK) on a Tecan Infinite M200PRO plate reader (Tecan Austria GmbH, Grodig,
Austria). LDH reduces NAD to NADH, which interacts with a specific probe to produce a color.
A standard calibration curve was prepared using NADH standard concentrations of 0–12.5 nmol/well.
According to the LDH Assay Kit to 50 µL of standard or sample, 50 µL of reaction mix were added,
mixed, incubated for three hours and measured in kinetic mode at 450 nm, every 2–3 min for 60 min at
37 ◦C, protected from light. Absorbance was corrected by subtracting the mean absorbance of the blank
from all standards and sample readings. LDH activity was calculated as a concentration of NADH
generated by LDH during the reaction time in the volume added to the reaction well.

4.3. Albumin Analysis

The measurement of albumin in BALF was performed in 96-well plates using an Abcam Albumin
Assay Kit (Abcam, Cambridge, UK) on the Tecan Infinite M200PRO plate reader (Tecan Austria GmbH,
Grodig, Austria). The assay is based on the selective interaction between bromcresol green (BCG) and
albumin, forming a chromophore that can be detected spectrophotometrically. The signal is directly
proportional to the amount present in the serum. A standard calibration curve was prepared using
bovine serum albumin (BSA) standard concentrations of 0–75 µg/well. All samples were measured
in duplicate. To 50 µL of undiluted serum, 100 µL of diluted BCG were added and plates were
incubated at 25 ◦C for 20 min, protected from light. Absorbance was measured at 620 nm. The mean
value of the absorbance of the blank was subtracted from all standards, samples and control readings.
The concentration of albumin, in µg/mL, was calculated from the calibration curve of standards.

4.4. Cytokines and Chemokine Analysis

An enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels (pg/mL) of
the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well
as a chemotactic cytokine, MIP-1α, in BALF. The assays were performed using Rat SimpleStep ELISA®

kits for IL-6 (ab234570, Abcam, Cambridge, UK), TNF-α (ab46070, Abcam, Cambridge, UK) and
MIP-1α (ab213916, Abcam, Cambridge, UK), following the instructions provided by the manufacturer.
To optimize the dilutions of BALF, pilot runs were conducted and a 1:1 dilution was used in all
assays. Concentrations of the target proteins IL-6, TNF-α and MIP-1α in the samples were calculated
from a standard curve created by plotting the average blank control-subtracted absorbance value for
each standard concentration (y-axis) against the target protein concentration (x-axis) of the standard.
Concentrations of the standards ranged from 62.5–4000 pg/mL for IL-6, 15.625–500 pg/mL for TNF-α
and 7.8–500 pg/mL for MIP-1α. To optimize the dilutions of BALF, pilot runs were conducted and
a 1:1 dilution was used in all assays. The samples and standards were processed in duplicate and
absorbanceswere measured at a 450 nm wavelength using a microplate reader (PerkinElmer VictorX3,
Waltham, MA, USA).

4.5. Alkaline and Neutral Comet Assay

Comet assays were performed on the lung samples in accordance with previous protocols [36–38].
All of the chemicals used in both comet assays were obtained from Sigma Chemical Company
(Sigma-Aldrich, Munich, Germany). Normal melting point (NMP) agarose 0.6% was layered on slides
precoated with 1% NMP agarose. Suspensions of lung cells (V = 10 µL per slide) were mixed with 0.5%
low-melting point (LMP) agarose, placed on slides and covered with a top layer of 0.5% LMP agarose.
After solidification, microgels were immersed in a freshly prepared lysis solution (pH 10.0; 100 mmol/L
Na2EDTA, 2.5 mol/L NaCl, 1% Na lauroylsarcosinate, 10 mmol/L Tris-HCl, 10% DMSO and 1% Triton
X-100) and stored overnight at 4 ◦C. Upon incubation, in the alkaline version of the comet assay,
slides were subjected to 15 min of denaturation (1.5 mol/L NaCl, 1 mmol/L Na2EDTA, pH 12.1),
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followed by 20 min of electrophoresis using the same buffer composition at 0.7 V/cm, 300 mA. In the
neutral comet assay, slides were denatured in buffer (300 mmol/L Na-acetate, 100 mmol/L Tris-HCl,
pH 8.5) for 1 h at 4–8 ◦C, followed by 1 h of electrophoresis using the same buffer composition at
4–8 ◦C, 0.5 V/cm and 10–11 mA. Then, the microgels were neutralized with three changes of 0.4 mol/L
Tris-HCl buffer (pH 7.5) at 5 min intervals and stained with ethidium bromide (20 µg/mL). The level of
DNA damage in individual cells was assessed with an image analysis system (Comet Assay IVTM,
Instem-Perceptive Instruments Ltd., Suffolk, Halstead, UK) using an epifluorescence microscope
(Olympus BX50, Tokyo, Japan) under 200×magnification. A total of 100 comets per rat were scored.
Tail length (TL) and tail intensity (TI) (i.e., DNA % in tail) were chosen as indicators of DNA damage.

4.6. Statistical Analysis

LDH activity, albumin, cytokines, chemokines and comet assay tail length and tail intensity were
analyzed using general linear models. The LDH activity model had activity as a dependent variable and
group (with levels: control (CTL), sterigmatocystin (STC), 5-metoxysterigamotcystin (5-M-STC) and the
combination of sterigamtocystin and 5-metoxysterigmatocystin (STC + 5-M-STC)) as an independent
variable. The albumin model had the log10-transformed concentration as a dependent variable and
group as an independent variable. Cytokines (TNF-α and IL-6) and the chemokine MIP-1α had the
log10-transformed concentration as a dependent variable, group as a fixed factor and rat identifier as
a random factor (to account for dependencies between repeated measures) [39]. For the dependent
variable, tail intensity and tail length (for both comet assays) models had log10-transformed values.
Since some values of tail intensity were equal to zero, 1% was added to all tail intensity values prior to
transformation. Within independent variables, group was defined as a fixed factor, and rat identifier
and slide identifier (nested within rat identifier) were random factors.

For all analyzed variables, after fitting models, a t-test as a post hoc test was applied on the
group factor to assess the differences between each level and control, along with comparisons of the
combination of mycotoxins with each mycotoxin [40]. The false discovery rate was controlled with
the Bonferroni method. The level of statistical significance was set to 0.05. The results were plotted
using ggplot2 package version 3.3.0 (5 March 2020) [41]. All statistical analyses were performed in R
software version 3.6.3 (29 February 2020) for statistical computing [42].
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5. Jakšić Despot, D.; Kocsubé, S.; Bencsik, O.; Kecskeméti, A.; Szekeres, A.; Vágvölgyi, C.; Varga, J.;
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