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Viruses are a serious threat for humans worldwide because there
are in their ranks many causative agents of potentially fatal infec-
tions and cancers [1,2]. Despite this, emerging or re-emerging viral
infections recurrently demonstrate the absence of efficient antivirals
for their prevention, control and cure. This has been successively
exemplified in the 21st century by the shortage of antiviral thera-
pies for SARS-CoV (severe acute respiratory syndrome coronavirus),
MERS-CoV (Middle East respiratory syndrome coronavirus),
Chikungunya virus, Ebola virus and Zika virus [3,4]. In addition, we
are insufficiently powerful against some older viral foes. For in-
stance, although the success of drugs discovered for human
immunodeficiency virus (HIV), one of ‘the big three’ worldwide
killers, and hepatitis B virus is beyond doubt, these compounds can
only control replication, not cure people of these viral infections [5,6].
Thus, overall, the paths towards efficient antiviral therapies have
been far less fruitful than for bacteria. Certainly, particular fea-
tures of the virus lifestyle, among which are intracellular replication,
association with the cell machinery, high replication and muta-
tion rates, integration into the host DNA and limited drug access
to reservoirs, may explain this difference [7–9]. However, if we think
more broadly, we can observe that drug discovery has followed dif-
ferent routes for bacteria and viruses.

With regard to bacteria, it appeared from the serendipitous dis-
covery in 1928 of penicillin secreted by a fungus [10] that using the
armamentarium developed by microbes to fight each other was a
valuable strategy. Thus, most of the modern antibiotic classes have
emerged between the 1940s and 1970s through screening and then
modifying molecules originating from bacteria such as Streptomy-
ces and related actinomycetes, or fungi such as Penicillium,
Cephalosporium, Saccharomyces and Aspergillus [11]. Despite its tre-
mendous contribution, this strategy did not cross the border between
disciplines in infectious diseases to be applied to viruses. This likely
relates partly to the fact that studies of microbes and viruses have
been partitioned for a long time. Thus, from the very onset of the
history of virology in the 1890s, viruses were understood as dif-
fering from microbes owing to their ultrafilterability and their
invisibility under a light microscope [12,13]. Then, the concept of
virus was eventually defined during the 1950s with criteria that de-
finitively separated viruses from microbes [12,14]. Since then,
bacteriology and virology increasingly became two different fields

explored by different biologists and researchers. Hence, the cross-
over of knowledge and transversality of approaches have been
considerably hampered. Even now, with the advent of metagenomics,
the microbiota and the virome are usually studied separately and
by different teams. For instance, among publications retrieved from
the ISI Web of Science using virus or bacteria independently as
keywords, only ca. 3–4% are still found when using both terms
concurrently.

Three recent articles in 2016 have described that compounds of
bacterial origin could inhibit the replication of viruses in vitro [15–17]
(Table 1).Wang et al and Zhou et al observed that teicoplanin, a semi-
synthetic glycopeptide used in the clinic for its activity against Gram-
positive bacteria, could inhibit Ebola envelope pseudotyped viruses
[15,16]. Teicoplanin is a complex of fermentation products origi-
nating from Actinoplanes teichomyceticus, an Actinobacteriamember,
and exerts its bactericidal effect through inhibition of bacterial cell
wall biosynthesis. In their work, Wang et al used pseudotyped Ebola
viruses containing a luciferase reporter gene to screen 1280 U.S. Food
and Drug Administration (FDA)-approved compounds [15]. They de-
tected that teicoplanin significantly inhibited Vero cell infection by
pseudotyped Ebola viruses. Wang et al noted that teicoplanin had
already been reported as active against other enveloped viruses [15].
They further observed that this drug was inactive against three pi-
cornaviruses, which are non-enveloped viruses, and that it did not
inhibit the pseudotyped Ebola virus when tested after viral adsorp-
tion to the cell surface. Taken together, these data suggested that
teicoplanin blocks the viral entry step. In a second study, Zhou et al
tested 1600 FDA-approved drugs and also observed that teicoplanin
inhibited HEK293T cell infection by pseudotyped Ebola viruses [16].
This team further found evidence that the teicoplanin target was
located on the host cells and was cathepsin L, which performs gly-
coprotein proteolysis required for membrane fusion during the entry
step of Ebola viruses and SARS-CoV. Finally, other teicoplanin and
glycopeptide antibiotics, including dalbavancin, oritavancin and
telavancin, but not vancomycin, were found to inhibit the entry of
Ebola virus, SARS-CoV andMERS-CoV transcription- and replication-
competent virus-like particles. In a third study, Varghese et al
identified that ivermectin and abamectin were active on
Chikungunya virus [17]. Both drugs derive from avermectin, which
is produced by the bacterium Streptomyces avermitilis and whose
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Table 1
Main findings of recent studies on the antiviral activity of teicoplanin and ivermectin.

References Targeted virus No. of compounds tested Compound with antiviral
activity

System used for antiviral
activity screening

50% Effective concentration
(EC50)a

Activity on other viruses

[15] Ebola virus 1280 (FDA-approved drugs) Teicoplanin Ebola virus glycoprotein/HIV core
pseudovirus replication on Vero cells

2.38 μM Human respiratory syncytial virus

[16] Ebola virus 1600 (FDA-approved drugs) Teicoplanin Envelope pseudotyped virus replication on
HEK293T cells; viral entry inhibition on
primary human umbilical vein endothelial
cells, A549 cells and HeLa cells

0.34 μM Middle East respiratory syndrome
coronavirus (MERS-CoV), severe
acute respiratory syndrome
coronavirus (SARS-CoV)

[18] Flaviviruses: dengue virus,
yellow fever virus, tick-borne
encephalitis virus, Japanese
encephalitis virus, murine
flavivirus Modoc virus

1 Aglycone analogue of
teicoplanin

Cytopathic effect reduction assay on Vero-B
or BHK-21 cells; BHK-21 cells harbouring
the subgenomic dengue virus replicon
system

Between 0.3 ± 0.2 μM and
13 ± 4.9 μM

–

[19] Coronaviruses: SARS-CoV
and feline infectious
peritonitis virus (FIPV)

ca. 180 Modified glycopeptide
derivatives including
teicoplanin derivatives

Vero E6 (SARS-CoV) and CRFK (FIPV) cells Between 5.4 ± 3.1 μM and
64 ± 10 μM for SARS-CoV and
1.6 ± 0.3 μM and 62 ± 29 μM for
FIPV

HIV-1 (T lymphoblastoid cell line
CEM)

[20] Influenza virus 18 Teicoplanin aglycone
derivatives

Influenza A/H1N1, A/H3N2 and B virus
strains on MDCK cells (cytopathic effect)

Between 0.15 μM and 100 μM –

[21] Influenza virus 13 Saccharide-based versatile
lipophilic derivatisation of
teicoplanin pseudoaglycone

Influenza A/H1N1 and A/H3N2 virus
strains on MDCK cells (cytopathic effect)

Between 0.8 μM and 2.3 μM –

[22] Influenza virus 11 Teicoplanin pseudoaglycone
derivatives

Influenza A/H1N1, A/H3N2 and B virus
strains on MDCK cells (cytopathic effect)

Between 0.54 μM and 23 μM Herpes simplex virus 1 and 2,
vaccinia virus, vesicular stomatitis
virus

[23] HIV – Teicoplanin aglycone
derivatives

HIV-1 and HIV-2 on various cell lines Between 2.8 μM and 17 μM –

[24] HIV types 1 and 2;
Moloney murine sarcoma
virus (MSV)

59 Teicoplanin-type aglycones
and their derivatives

Cytopathic effect of HIV-1/2 on T
lymphoblastoid cell line CEM; transforming
effect of MSV on murine C3H/3T3 embryo
fibroblast cell cultures

Between 0.75 ± 0.07 μM and
80 ± 28 μM for HIV-1; between
3.0 ± 1.4 μM and 190 ± 84 μM for
HIV-2; between 2.0 ± 1.2 μM and
82 ± 26 μM for MSV

–

[25] Hepatitis C virus (HCV) – Teicoplanin Case report: 1600mg intravenously 2–3
times a week for a total of 10 weeks
(trough level, 9.2–19.9 mg/L)

– –

[26] Hepatitis C virus (HCV) ca. 7000 small molecules
containing semisynthetic
derivatives of teicoplanin,
eremomycin and vancomycin

Teicoplanin aglycone
derivatives

Subgenomic HCV replicons Between 2.9 ± 0.7 μM and
54 ± 12 μM

–

[17] Chikungunya virus 2933 (clinically approved and
non-approved drugs)

Ivermectin Chikungunya virus-replicon BHK-21 cell
line-based assay; inhibition assays with
BHK-21 and Huh-7.5 cells

Between 0.6 ± 0.1 μM and
1.9 ± 0.8 μM in BHK-21 and Huh-7.5
cells, respectively

Other alphaviruses: yellow fever
virus, Semliki Forest virus, Sindbis
virus

[27] Yellow fever virus (YFV) 1 Ivermectin Virus yield reduction assays on Vero-B
(YFV, DENV) or Vero E6 cells (JEV, TBEV);
in vitro helicase/enzymatic assays

Between 0.0031 μM and 0.006 μM
(YFV); 0.7 μM (DENV); ca. 0.2 μM
(TBEV); 0.3 μM (JEV); 4 μM (WNV)

Dengue fever virus (DENV),
tick-borne encephalitis virus
(TBEV), Japanese encephalitis virus
(JEV), West Nile virus (WNV)

[28] Porcine reproductive and
respiratory syndrome
virus (PRRSV)

1 Ivermectin Replication on porcine alveolar
macrophages transfected with
CD163 cDNA

6.7 μM; >5 log reduction of the
PRRSV titre with 15 μM ivermectin

–

[29] Dengue virus (DENV) 1 (ivermectin loaded or not in
liposomal systems)

Ivermectin Replication of DENV type 1, 2 and
mouse-adapted type 2 strains on Huh-7
cells

Between 2.6 μM and 3.7 μM for
ivermectin and between 0.3 μM
and 2.7 μM for ivermectin-loaded
liposomal formulations

–

FDA, US Food and Drug Administration; HIV, human immunodeficiency virus; HEK, human embryonic kidney; BHK, baby hamster kidney; MDCK, Madin–Darby canine kidney; Huh, human hepatocellular.
a EC50 values shown are those found as associated with antiviral activity.
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discovery was awarded the Nobel Prize in Medicine in 2015 [30].
Ivermectin and abamectin are macrocyclic lactones with a well-
known broad activity spectrum against parasites. Ivermectin is widely
used in human and veterinary medicine, whereas abamectin is used
on agricultural crops. Varghese et al used a fully automated
chikungunya-replicon cell line-based assay to screen a panel of 2933
compounds, which included clinically approved drugs as well as
drugs in clinical trials [17]. They found that ivermectin and abamectin
inhibited chikungunya virus replication in a dose-dependentmanner
and decreased the synthesis of genomic RNA, antigenomic RNA and
proteins from this virus. In addition, these drugs were also effi-
cient against Semliki Forest virus and Sindbis virus, two other
alphaviruses, and on yellow fever virus, a flavivirus, suggesting broad
antiviral activity. These three articles are the most recent ex-
amples of reports on the antiviral activity of drugs of bacterial origin.
Previously, teicoplanin had already been reported as active against
HIV, hepatitis C virus, flaviviruses, coronaviruses, respiratory syn-
cytial virus and influenza virus [15]. In addition, ivermectin had been
previously shown to inhibit the NS3 helicase of three flaviviruses,
namely yellow fever virus, dengue virus and West Nile virus [27]
(Table 1). Among other examples of drugs of bacterial origin that
are active against viruses, previous works showed the activity of val-
inomycin, a cyclododecadepsipeptide produced by Streptomyces,
against the SARS-CoV [31], and of a bacteriocin produced by En-
terococcus faecium against herpes simplex virus [32].

These findings make biological sense. Viruses are currently con-
sidered to be the most abundant biological entities on Earth and
are estimated to outnumber bacteria and eukaryotes by 1–2 log10,
respectively, and viral diversity appears to be tremendous and still
largely untapped [33]. Moreover, recent technological advances that
include high-throughput sequencing, metagenomics and culturomics
have emphasised the concurrent presence in environmental samples,
as well as in humans, of viruses, bacteria, archaea and eukaryotes
[34–38]. This indicates that bacteria may not only compete and fight
among each other, but also with multiple viruses. Among viruses
there are well-known bacteria killers, bacteriophages, which have
a major impact on environmental bacterial communities [39] and
have been proposed for treating bacterial infections in humans [40].
Conversely, during the past decade, CRISPR have been discovered
in bacteria as an amazing mechanism of adaptive immunity against
invading viruses, demonstrating that the war is bilateral [41]. There-
fore, it can be hypothesised that bacteria could have developed,
concurrently with antibiotics, antivirals. Nonetheless, whilst the fact
that microbes interact and fight among each other has been in the
forefront for decades in bacteriology, their capability to threaten viral
replication has been widely overlooked [9].

The studies byWang et al [15], Zhou et al [16] and Varghese et al
[17] are only the first steps towards a possible use of antibiotics and
antiparasitic drugs derived from bacteria as antivirals, which may
represent another example of the benefits of drug repurposing
[42,43]. Their results have to be confirmed, and it has to be deter-
mined whether concentrations within the therapeutic range can be
achieved to target viruses. Nonetheless, these studies highlight that
the potential antiviral activity of antimicrobials may be untapped.
Another lesson from these articles regards the strategy chosen to
discover drugs with an antiviral effect. Indeed, no hypothesis, pre-
diction or modelling has been made. In contrast, the strategy was
straightforward and consisted of massive high-throughput screen-
ing of hundreds or thousands of available drugs, regardless of their
known activity spectrum and target or their approved indication.
This is a different approach than specifically targeting stages of the
virus replication cycle through blocking proteins involved in their
progress [44]. In addition, aside from the great interest in ap-
proved drugs for the potential treatment of viral infections for
which we currently lack antivirals, we usually have, as is the
case here for teicoplanin and ivermectin, considerable experience

with their use in humans, which could accelerate their access to
the clinic.

In summary, these recent findings open wide a new field in the
fight against viral infections. They highlight the fact that research
in bacteriology and virology should not be tightly compartmentalised,
and they show that, as has been done for antibiotics and in various
other fields [4,45,46], mimicking the living is probably a valuable
strategy in improving and expanding our antiviral armamentarium.
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