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Alcoholism is a debilitating disorder that can take a significant toll on health and profes-
sional and personal relationships. Excessive alcohol consumption can have a serious 
impact on both drinkers and developing fetuses, leading to long-term learning impair-
ments. Decades of research in laboratory animals and humans have demonstrated the 
value of eyeblink classical conditioning (EBC) as a well-characterized model system to 
study the neural mechanisms underlying associative learning. Behavioral EBC studies in 
adults with alcohol use disorders and in children with fetal alcohol spectrum disorders 
report a clear learning deficit in these two patient populations, suggesting alcohol-related 
damage to the cerebellum and associated structures. Insight into the neural mecha-
nisms underlying these learning impairments has largely stemmed from laboratory 
animal studies. In this mini-review, we present and discuss exemplary animal findings 
and data from patient and neuroimaging studies. An improved understanding of the 
neural mechanisms underlying learning deficits in EBC related to alcoholism and prenatal 
alcohol exposure has the potential to advance the diagnoses, treatment, and prevention 
of these and other pediatric and adult disorders.

Keywords: alcoholism, ethanol, cerebellum, fetal alcohol spectrum disorders, eyeblink classical conditioning, 
associative learning

inTRODUCTiOn

Alcohol is one of the most widely abused substances in the world (1) and can have a major impact 
on health and professional and personal relationships. One reason for this negative societal impact 
is that excessive alcohol consumption often leads to long-term learning and memory impairments. 
In this mini-review, we will outline exemplary animal and human findings that guide our current 
understanding of how chronic alcohol exposure alters neural structure and function underlying a 
fundamental form of learning, eyeblink classical conditioning (EBC). Specifically, this mini-review 
will focus on alcohol use disorders (AUD) in adults and fetal alcohol spectrum disorders (FASD) in 
children.

One area of the brain that is targeted in AUD and FASD is the cerebellum (2, 3). Although exces-
sive alcohol consumption affects many other brain regions (4–6), this mini-review will focus on 
the cerebellum due to its critical involvement in EBC (7) and the particular vulnerability of the 
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cerebellum to alcohol exposure (8, 9). This line of research has 
produced overwhelming evidence that the cerebellum and asso-
ciated structures are critically important for EBC. Specifically, 
contributions from the cerebellar cortex, particularly in lateral 
lobule VI (10, 11), and cerebellar deep nuclei (12, 13) have been 
documented in both animals and humans. Figure 1 depicts this 
well-documented circuitry.

Eyeblink classical conditioning involves the pairing of a neu-
tral conditioned stimulus (CS; e.g., a tone) and an unconditioned 
stimulus (US; e.g., a corneal airpuff). The US is often a biologically 
salient stimulus sufficient to elicit an unconditioned response (UR; 
e.g., a blink). Following multiple CS–US pairings, an organism 
learns to produce a conditioned response (CR) in anticipation of 
the US presentation, suggesting that an association between the 
CS and US has been learned. EBC is a simple, yet elegant model 
of learning, which can already be assessed in humans by 5 months 
of age (14) and represents a foundation on which more complex 
learning is built (15, 16). Understanding the etiology of funda-
mental learning impairments that accompany alcohol-related 
disorders may have potential to foster new approaches to early 
diagnoses, intervention, and effective treatments and presents a 
model for studying effects of other pediatric and adult disorders 
as well as effects of other drugs or environmental contaminants.

LABORATORY AniMAL wORK

Structural Alterations (Mature Cerebellum)
There is extensive laboratory animal evidence showing that  
chronic intake of alcohol is associated with neuroanatomical 
changes in the cerebellum (17). A common observation is shrinkage 

of the cerebellum. In the adult rat, these volumetric reductions 
may be due to death and atrophy of cells in the Purkinje, granular, 
and molecular layers of the cerebellar cortex (18–21). In addition 
to degenerative changes in cell bodies, morphological changes to 
dendrites and axons have also been reported (22–24). Combined 
treatments of thiamine deficiency and alcohol exposure have 
led to axon terminal degeneration in the deep cerebellar nuclei, 
the sole output region for the cerebellum (25). Fewer synapses 
between parallel fibers and Purkinje cells (26) and a significant 
decrease in the number of dendritic microtubules have been 
found in alcohol-fed adult rats (27). At the molecular and cellular 
level, γ-aminobutyric acidA (GABAA) is altered by chronic alcohol 
consumption (28), whereas there is an overexpression of gluta-
mate and a prolonged opening of mitochondrial permeability in 
the cerebellum following alcohol withdrawal (29).

Structural Alterations  
(Developing Cerebellum)
Cerebellar structural abnormalities also appear in the develop-
ing cerebellum as a result of excessive early alcohol exposure. 
This damaging effect appears to be sensitive to time of alcohol 
exposure as rats receiving alcohol on postnatal day 4 suffered up 
to 50% Purkinje cell loss, whereas later exposure (postnatal days 
8/9) resulted in less severe (15%) cell loss (30, 31). Alcohol-related 
damage in granule cells has also been investigated and cell vulner-
ability again appears to be greatest early in development (post-
natal days 4/5) (32, 33). The structural integrity of the cerebellar 
deep nuclei, a region believed to be crucially important for EBC 
memory formation and storage (7), has been shown to be suscep-
tible to chronic alcohol consumption. Binge-like and moderate 

FiGURe 1 | essential neural circuitry of eyeblink conditioning. Blue lines indicate the conditioned stimulus pathway. Green lines indicate the unconditioned 
stimulus pathway. Red lines indicate the conditioned response pathway. Excitatory and inhibitory synapses are represented by + and −, respectively.
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neonatal exposure to alcohol was sufficient to produce behavioral 
deficits in EBC associated with significant deep nuclear cell loss in 
adult rats (34, 35). During development, even a single exposure 
to alcohol introduced subcutaneously was sufficient to promote 
cellular apopotosis in the deep cerebellar nuclei (36).

Functional Differences  
(Mature Cerebellum)
Abnormal cerebellar functioning is another consequence of 
chronic alcohol exposure. Very little attention has been given to 
the chronic effects of alcohol on the cerebellum in adult labora-
tory animals. To the best of our knowledge, only one study to 
date has examined these effects. In mature mice, chronic alcohol 
consumption resulted in a decrease in simple and complex spike 
firing and an increase in complex spike duration and pause in 
Purkinje cells but no differences were detected in Golgi cell firing 
patterns (37).

Functional Differences  
(Developing Cerebellum)
Most of our current knowledge on the functional consequences 
of chronic alcohol exposure stems from work on the develop-
ing cerebellum. Following alcohol exposure during pregnancy, 
in vitro experiments using a long-term depression (LTD) induc-
tion protocol showed parallel fiber long-term potentiation (LTP) 
in cerebellar slices in alcohol-exposed juvenile mice but LTD in 
control mice (38). Furthermore, in vivo experiments showed that 
simple spike firing rates in Purkinje cells increased and showed 
faster oscillations of local field potentials in exposed mice relative 
to controls (38). These exposed mice also exhibited impaired EBC, 
further supporting the hypothesis that cerebellar LTD in Purkinje 
cells is crucial for the timing of eyeblink CRs (39). Interestingly, 
other in vitro electrophysiology experiments showed that alcohol 
exposure led to relatively greater inhibitory inputs to the Purkinje 
cells in the vermis (40). In the cerebellar deep nuclei, activity in 
the interpositus nucleus of the cerebellum was diminished and 
did not develop as rapidly in neonatal alcohol-exposed rats rela-
tive to controls during EBC (41, 42).

Learning Deficits
Since the cerebellum is vulnerable to chronic alcohol exposure and 
this structure plays a critical role in EBC, prolonged alcohol use is 
likely to result in learning deficits. Surprisingly, to date, there are 
no laboratory animal eyeblink conditioning studies investigating 
the role of chronic alcohol consumption in adulthood.

By contrast, there have been several animal studies on 
effects of pre- and neonatal exposure. Neonatal rats exposed 
to alcohol during the equivalent of the human third trimester 
showed learning deficits in standard delay EBC (43) as well 
as more complex EBC protocols, including trace conditioning, 
discrimination, and reversal learning (44, 45). The effects of 
alcohol on EBC also appear to be dose dependent, with higher 
dosages producing greater impairments (45, 46). Binge-like 
and even moderate exposure to alcohol during development 
produces EBC deficits that persist into adulthood, suggest-
ing long-lasting permanent cerebellar damage (35, 47). This 

evidence is consistent with studies that report a significant 
correlation between learning and the number of deep cerebel-
lar nuclear cells in alcohol-exposed rats (34). Finally, interven-
tions to ameliorate neonatal alcohol-related learning deficits 
have been met with mixed results. MK-801 administration, 
choline supplementation, and a combination of exercise and 
environmental enrichment mitigate behavioral EBC deficits, 
suggesting neuroprotective or other ameliorative effects 
(48–50), whereas vitamin E did not reduce alcohol-related EBC 
deficits (51).

HUMAn wORK

Structural Alterations  
(Mature Cerebellum)
Consistent with laboratory animal findings, human data also 
indicate that chronic alcohol consumption has harmful effects 
on the structural integrity of the adult cerebellum (4, 52). 
Structural MRI has revealed gray matter reductions in the 
cerebellar hemispheres and vermis in AUDs (53). Furthermore, 
cerebellar gray matter volume loss was correlated with poor 
neuropsychological performance and early age of first drinking 
(54). Diffusion tensor imaging (DTI) showed that recovered 
AUDs had diminished white matter fibers relative to healthy 
controls, suggesting that impaired connectivity may partially 
mediate some of these behavioral deficits (55). Human histologi-
cal studies report significant Purkinje cell loss in the cerebellar 
hemispheres and vermis as a result of years of alcohol abuse (9, 
56, 57).

Structural Alterations  
(Developing Cerebellum)
As indicated above, animal models predict that alcohol exposure 
damages the developing cerebellum. These findings are also con-
sistent with human studies: autopsy reports of children prenatally 
exposed to large quantities of alcohol describe malformations in 
the cerebellum characterized by reduced size and disorganiza-
tion (58). In addition, cerebellar dysgenesis was reported in 10 
of 16 FAS autopsies (59). Modern neuroimaging data agree with 
these observations, as exposed children had proportionately 
greater reductions in cerebellar cranial vault and volume (60, 61), 
including a 15% reduction in cerebellar volume in children with 
FAS (8). Specifically, significantly smaller cerebellar hemispheres 
and vermis were found in exposed relative to healthy children 
(62, 63). Differences in white matter integrity [lower fractional 
anisotropy (FA) and greater perpendicular diffusivity] between 
alcohol-exposed and non-exposed children have been identified 
in the middle cerebellar peduncles, fibers shown to be impor-
tant in animal models of EBC (64, 65). Children with FAS also 
showed lower FA bilaterally in the superior peduncles. Finally, 
using in vivo (1) H magnetic resonance spectroscopy (MRS) to 
examine neurochemical differences in the cerebellar deep nuclei, 
Du Plessis et al. (66) found that prenatal alcohol exposure was 
associated with lower levels N-Acetylaspartate (NAA) and glyc-
erophosphocholine + phosphocholine (Cho) and higher levels of 
glutamate plus glutamine (Glx).
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Functional Differences  
(Mature and Developing Cerebellum)
Consistent with these structural findings, evidence from func-
tional magnetic resonance imaging (fMRI) studies suggests 
fMRI brain activations are also affected by alcoholism. In a finger 
tapping task, AUD subjects tended to exhibit more extensive and 
bilateral cerebellar activation than healthy controls (67). Greater 
right superior cerebellar activity during a Sternberg working 
memory task was assessed in AUD subjects (68). In an auditory 
language task, AUD subjects showed greater fMRI activations 
in the cerebellar vermis, despite comparable behavioral perfor-
mance to healthy controls (69). Children diagnosed with fetal 
alcohol syndrome (FAS) or partial FAS (PFAS) showed greater 
cerebellar activation in a working memory n-back task relative to 
healthy children (70). Rhythmic tapping elicited greater activa-
tion in children with FASD in crus I and vermis IV–V (71). This 
pattern of greater activation by adults and children may represent 
compensatory mechanisms during each task.

Learning Deficits
Similar to laboratory animals, humans also show alcohol-related 
deficits in EBC. Impaired standard delay eyeblink condition-
ing (CS and US co-terminate) was seen in amnesic Korsakoff 

patients and recovered, uncomplicated AUDs (72). These find-
ings were extended to more complex conditioning protocols. 
During temporal discrimination, in which two distinct CSs with 
two different interstimulus intervals (ISI) were presented, AUDs’ 
peak CR latency at the long ISI was significantly shorter relative 
to healthy controls, demonstrating a deficit in adaptive CR tim-
ing (73). Trace conditioning is a procedure that incorporates a 
stimulus free period between offset of the CS and onset of the 
US. Naive AUDs showed learning deficits in trace conditioning, 
whereas AUDs previously trained in delay conditioning showed 
comparable trace conditioning to naive control subjects (74). 
AUDs who were successful at learning a delay discrimination 
protocol (i.e., learn that one CS predicts the US, whereas another 
CS predicts its absence) were impaired when the contingencies 
were reversed, suggesting an inability to learn new adaptive 
associations (75).

Similar to adults, children with FASD demonstrate remark-
ably consistent conditioning deficits. In a cross-sectional study 
comparing children with FASD, attention deficit hyperactive 
disorder (ADHD), dyslexia, and healthy controls, the children 
with FASD and dyslexia showed conditioning impairments 
relative to the healthy children and different patterns than 
those seen in children with ADHD (76). In the first prospective 

TABLe 1 | effects of alcohol on cerebellar structure, function, and eyeblink conditioning reported in the literature.

Animals Humans

Reference Comments Reference Comments

Structural 
alterations

(32) Purkinje and granule cell loss (D) (9) Purkinje cell volume loss (M)

(36) Purkinje and deep cerebellar nuclear cell loss (D) (8) Cerebellar volume loss (D)

(30) Purkinje cell loss (lobules I–V, IX, and X) (D) (63) Hypoplasia of cerebellar vermis (D)

(34, 35) Deep cerebellar nuclear cell loss (D) (54) Cerebellar gray matter loss correlated with neuropsych. tests (M)

(33) Purkinje and granule cell loss (postnatal days 4–5) (D) (55) Diminished white matter fiber (M)

(21) Purkinje and granule cell loss (M) (59) Cerebellar dysgenesis in 10 of 16 FAS autopsies (D)

(27) Dendritic microtubules loss (M) (58) Cerebellar reduction and disorganization (D)

(24) Longer terminal dendritic segments in Purkinje cells (M) (66) Differences in cerebellar neurochemisiry (D)

(25) Deep cerebellar nuclear axon terminal degeneration (M) (65) Cerebellar peduncles damage (D)

(18) Granule cell loss (M) (60, 61) Reductions in cerebellar cranial vault and volume (D)
(19, 22) Longer and reduced Purkirje dendritic spines (M) (57) Cell loss in cerebellar vermis (M)

(23) Increased climbing fibers (M) (62) Cerebellar vermis volume reduction (D)
(20) Purkinje and granule cell loss (M) (64) Cerebellar peduncles damage (D)
(26) Fewer synapses between parallel fibers and Purkinje cells (M) (53) Cerebellar vermis gray matter deficits (M)
(31) Purkinje cell loss (postnatal days 4–5) (D) (56) Reduced Purkinje cell density in the vermis (M)

Functional 
differences

(41) No single-unit activity changes in cerebellar deep nuclei (D) (69) Greater fMRI activity in cerebellar vermis (M)
(40) Greater inhibitory inputs to Purkinje cells (D) (68) Greater fMRI responses in lobule VI (M)
(42) Slower increases in deep nuclear activity (D) (70) Greater cerebellar fMRI activation (D)
(37) Purkinje cell firing differences (M) (71) Greater crus I and vermis IV–V activation (D)
(38) Purkinje cell firing differences (D) (67) More extensive cerebellar fMRI activation (M)

Learning 
deficits

(44) Impaired EBC discrimination learning (D) (76) Impaired delay EBC (D)
(34, 35, 47) Impaired delay EBC (D) (75) Impaired EBC discrimination and reversal learning (M)

(45) Impaired trace EBC (D) (77, 78) Impaired delay and trace EBC (D)
(43) Impaired delay EBC (D) (74) Impaired trace EBC (M) 

(72, 73) Impaired delay and temporal EBC discrimination (M)

A summary of animal and human work investigating how excessive alcohol consumption affects the cerebellum and eyeblink conditioning. M and D indicate effects on the mature 
and developing cerebellum, respectively.
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longitudinal study on EBC in children with FASD, Jacobson 
et  al. (77) extended these findings by presenting additional 
trials (up to 150 trials) to 5-year-old children diagnosed with 
FAS, PFAS, heavily exposed non-syndromal (HE) children, and 
controls. Despite the additional training opportunity, none of 
the children with FAS met criterion for conditioning, whereas 
75% of the controls did (77). In another cohort of school-aged 
children, 66.7% of the children with FAS failed to meet criterion 
on the delay task, and only 16.7% of the FAS and 21.4% of HE 
group met criterion for trace conditioning in comparison to 
66.7% of healthy controls (78). Odds ratio data from a logistic 
regression analysis showed that the children with FAS were 
7.7 times more likely to fail to meet criterion on the delay task 
compared with controls and 10.0 times more likely on the trace 
conditioning task. Similarly, the HE group was 5.1 times more 
likely to fail to meet criterion on delay and 7.3 times more likely 
on trace. In both the 5-year and school-age studies, IQ did not 
differentiate the children who reached criterion on delay and 
trace EBC from those who failed, indicating that it could not 
be a mediator of the effect of fetal alcohol exposure on perfor-
mance on either EBC task; nor was ADHD responsible for the 
observed alcohol-related pattern of EBC impairment seen in 
the two cohorts. Collectively, these findings strongly support 
the view that prenatal alcohol exposure has deleterious effects 
on children’s ability to demonstrate successful EBC and thus 
has the potential to serve as a biobehavioral marker of prenatal 
alcohol impairment as well as a useful tool to assess the efficacy 
of an intervention (79).

DiSCUSSiOn

The damaging effects of alcoholism on the cerebellum and EBC 
have been well-documented in animal and human investigations. 
This mini-review summarizes some exemplary laboratory animal 
and human studies (see Table  1). Chronic, excessive alcohol 
consumption leads to neuroanatomical alterations in the adult 
and/or fetal cerebellum, including neuronal loss and white matter 
degradation. Alcohol exposure also triggers abnormal cerebellar 

activity as shown through electrophysiology and neuroimaging 
methodologies. The combination of these effects likely underlies 
the conditioning deficits seen by these two populations.

One limitation in this field of study is that alcohol affects 
multiple regions of the brain outside the cerebellum. Affected and 
connected areas may exert influences on cerebellar structures, 
making results difficult to interpret. Future work should consider 
the cerebellum as part of a larger network. This fundamental 
associative learning task is clinically relevant because it represents 
a foundation on which more complex learning is built. Studies 
of environmental exposures, such as alcohol, on EBC have the 
potential to provide new information about the EBC neural 
circuitry and behavioral performance and to elucidate vulnerable 
neural structures that are uniquely recruited during basic learn-
ing processes. A comparison of EBC and neuroimaging findings 
between adults with AUD and children with FASD to determine 
common neuroanatomical targets of alcohol abuse is an impor-
tant goal. Moreover, EBC has the potential to identify impairment 
related to different exposures and in different pediatric and adult 
disorders, such as ADHD, schizophrenia, FASD, and AUD. This 
work could lead to assessment of degree of behavioral and cer-
ebellar impairment in AUD and aid in early identification of fetal 
alcohol-affected children as well as assessment of efficacy of new 
interventions and treatments. Future interventions could involve 
the use of neuromodulatory tools, such as transcranial magnetic 
stimulation and transcranial direct current stimulation, as a way 
to alter brain activation in an effort to improve learning in AUD 
and FASD individuals. Finally, this learning model could also be 
used to identify at-risk individuals, thereby leading to effective 
prevention strategies.
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