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Abstract: The cranial base contains a special type of growth plate termed the synchondrosis, which
functions as the growth center of the skull. The synchondrosis is composed of bidirectional opposite-
facing layers of resting, proliferating, and hypertrophic chondrocytes, and lacks the secondary
ossification center. In long bones, the resting zone of the epiphyseal growth plate houses a population
of parathyroid hormone-related protein (PTHrP)-expressing chondrocytes that contribute to the
formation of columnar chondrocytes. Whether PTHrP+ chondrocytes in the synchondrosis possess
similar functions remains undefined. Using Pthrp-mCherry knock-in mice, we found that PTHrP+

chondrocytes predominantly occupied the lateral wedge-shaped area of the synchondrosis, unlike
those in the femoral growth plate that reside in the resting zone within the epiphysis. In vivo cell-
lineage analyses using a tamoxifen-inducible Pthrp-creER line revealed that PTHrP+ chondrocytes
failed to establish columnar chondrocytes in the synchondrosis. Therefore, PTHrP+ chondrocytes
in the synchondrosis do not possess column-forming capabilities, unlike those in the resting zone
of the long bone growth plate. These findings support the importance of the secondary ossification
center within the long bone epiphysis in establishing the stem cell niche for PTHrP+ chondrocytes,
the absence of which may explain the lack of column-forming capabilities of PTHrP+ chondrocytes in
the cranial base synchondrosis.

Keywords: bone biology; cartilage; chondrocyte(s); craniofacial biology/genetics; developmental
biology; growth/development; cranial base; PTHrP

1. Introduction

The growth and development of the craniofacial skeleton is a complex process involv-
ing cells of multiple embryonic origins including the neural crest and the mesoderm [1].
The cranial base supports the central nervous system [2] and is composed of three carti-
laginous synchondroses, including the spheno-occipital synchondrosis (SOS), intersphe-
noid synchondrosis (ISS), and spheno-ethmoidal synchondrosis (SES). The cranial base
synchondrosis contains opposite-facing layers of resting, proliferating, and hypertrophic
chondrocytes and lacks the secondary ossification center [3] (Figure 1). Malformations of
the cranial base are associated with various types of genetic craniofacial disorders such as
Crouzon, Pfeiffer, and Apert syndromes [4–8]. These conditions typically involve prema-
ture fusion of the synchondrosis and midfacial hypoplasia that leads to skeletal Class III
malocclusion. Current treatment for these craniofacial skeletal disorders involves extensive
craniofacial reconstructive surgery including maxillofacial advancement involving the Le
Fort osteotomy followed by orthodontic treatment [9,10]. Given their genetic similarity to
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humans, we utilize several transgenic mouse models in this study to discern the regulation
of the cranial base synchondroses.
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Figure 1. Morphology of cranial base and spheno-occipital synchondrosis (SOS), C57BL/6 mouse at 
postnatal day 28. (A) Gross morphology of dissected cranial base positioned in an anteroposterior 
manner and taken from the dorsal view following the removal of the brain and cranial vault. (B) 
Sagittal section of inter-sphenoid synchondrosis (ISS), basisphenoid bone and SOS. (C) Magnified 
image highlighting bidirectional arrangement of chondrocyte layers in SOS. Ant: anterior, NS: nasal 
septum, PS: pre-sphenoid, BS: basisphenoid, Post: posterior, ISS: inter-sphenoid synchondrosis, 
SOS: spheno-occipital synchondrosis, R: resting zone, P: proliferating zone, H: hypertrophic zone, 
PS: primary spongiosa. 

The growth and development of the cranial base are incompletely understood [11–
14], unlike those of the long bone that have been thoroughly studied [15,16]. Developmen-
tally, the SOS is derived from both the mesoderm and the neural crest, whereas the ISS is 
solely derived from the neural crest [3]. It is generally assumed that the long bone growth 
plate and cranial base synchondrosis are formed and organized via similar mechanisms. 
However, this notion has been questioned in several instances [13]. In long bones, the 
secondary ossification center (SOC) separates the articular surface and growth plate, 
which functions to alleviate mechanical loads in the skeletons of amniotes [17]. The for-
mation of the SOC within the epiphysis induces a subset of growth plate chondrocytes to 
acquire the capabilities for self-renewal and column-formation in long bones [18]. SOC 
formation coincides with the formation of skeletal stem cells expressing parathyroid hor-
mone-related protein (PTHrP) within the resting zone [19]. Thus, the SOC may facilitate 
the formation of growth plate stem cells and their subsequent differentiation. However, 
the cranial base synchondrosis lacks the SOC. It is therefore unknown whether PTHrP+ 
chondrocytes similarly possess skeletal stem cell properties in the cranial base synchon-
drosis. 

PTHrP is a constituent of the PTHrP—Indian hedgehog (Ihh) feedback loop that 
maintains chondrocyte proliferation and differentiation, functioning as an important reg-
ulator of endochondral bone growth [16]. PTHrP is expressed by round (fetal) or resting 
(postnatal) chondrocytes located at the top of the growth plate and delays the differentia-
tion of proliferating chondrocytes. IHH is expressed by pre-hypertrophic chondrocytes 
and stimulates chondrocyte proliferation in the adjacent layer. IHH also enhances PTHrP 
expression in the round chondrocyte layer [20]. Mice lacking PTHrP display reduced pro-
liferation of chondrocytes associated with premature hypertrophy and accelerated bone 
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Figure 1. Morphology of cranial base and spheno-occipital synchondrosis (SOS), C57BL/6 mouse
at postnatal day 28. (A) Gross morphology of dissected cranial base positioned in an anteroposte-
rior manner and taken from the dorsal view following the removal of the brain and cranial vault.
(B) Sagittal section of inter-sphenoid synchondrosis (ISS), basisphenoid bone and SOS. (C) Magnified
image highlighting bidirectional arrangement of chondrocyte layers in SOS. Ant: anterior, NS: nasal
septum, PS: pre-sphenoid, BS: basisphenoid, Post: posterior, ISS: inter-sphenoid synchondrosis, SOS:
spheno-occipital synchondrosis, R: resting zone, P: proliferating zone, H: hypertrophic zone, PS:
primary spongiosa.

The growth and development of the cranial base are incompletely understood [11–14],
unlike those of the long bone that have been thoroughly studied [15,16]. Developmentally,
the SOS is derived from both the mesoderm and the neural crest, whereas the ISS is solely
derived from the neural crest [3]. It is generally assumed that the long bone growth
plate and cranial base synchondrosis are formed and organized via similar mechanisms.
However, this notion has been questioned in several instances [13]. In long bones, the
secondary ossification center (SOC) separates the articular surface and growth plate, which
functions to alleviate mechanical loads in the skeletons of amniotes [17]. The formation
of the SOC within the epiphysis induces a subset of growth plate chondrocytes to acquire
the capabilities for self-renewal and column-formation in long bones [18]. SOC formation
coincides with the formation of skeletal stem cells expressing parathyroid hormone-related
protein (PTHrP) within the resting zone [19]. Thus, the SOC may facilitate the formation
of growth plate stem cells and their subsequent differentiation. However, the cranial
base synchondrosis lacks the SOC. It is therefore unknown whether PTHrP+ chondrocytes
similarly possess skeletal stem cell properties in the cranial base synchondrosis.

PTHrP is a constituent of the PTHrP—Indian hedgehog (Ihh) feedback loop that main-
tains chondrocyte proliferation and differentiation, functioning as an important regulator of
endochondral bone growth [16]. PTHrP is expressed by round (fetal) or resting (postnatal)
chondrocytes located at the top of the growth plate and delays the differentiation of prolif-
erating chondrocytes. IHH is expressed by pre-hypertrophic chondrocytes and stimulates
chondrocyte proliferation in the adjacent layer. IHH also enhances PTHrP expression in
the round chondrocyte layer [20]. Mice lacking PTHrP display reduced proliferation of
chondrocytes associated with premature hypertrophy and accelerated bone formation [21].
Similarly, in the cranial base, PTHrP-deficient mice display extensive premature hypertro-
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phy of the synchondrosis leading to midfacial hypoplasia [22]. Thus, PTHrP is operative in
both the long bone growth plate and cranial base synchondrosis.

In this study, we set out to investigate the contribution of PTHrP+ chondrocytes
to the cranial base synchondrosis. We focused our analyses on the SOS, which is the
last cartilaginous synchondrosis to ossify in humans [23,24]. Combined spatiotemporal
characterization of Pthrp mRNA expression and Pthrp-mCherry reporter activities revealed
that PTHrP-expressing cells are predominantly localized to the lateral wedge-shaped areas
of the synchondrosis. Additionally, cell-lineage analyses using Pthrp-creER revealed that
PTHrP+ cell-derived columnar chondrocytes are absent in the cranial base synchondrosis, in
sharp contrast with the long bone growth plate wherein PTHrP+ chondrocytes in the resting
zone contribute robustly to columnar chondrocytes. Therefore, PTHrP+ chondrocytes do
not appear to function as skeletal stem cells in the cranial base synchondrosis, highlighting
the divergent functions of PTHrP+ chondrocytes across different endochondral bones.
These findings also suggest the importance of the SOC in establishing the resting zone
stem cell niche within the growth plates, the absence of which may explain the lack of
column-forming capabilities of PTHrP+ chondrocytes in the cranial base synchondrosis.

2. Results
2.1. PTHrP Expression Is Confined to the Lateral Wedge-Shaped Area of the Synchondrosis

First, we assessed the endogenous Pthrp mRNA expression patterns in the cranial
base synchondrosis using RNAScope fluorescent in situ hybridization assays. At postnatal
day 3 (P3), the spheno-occipital synchondrosis (SOS) was composed of three layers of
round, flat, and hypertrophic chondrocytes (Figure 2A, top leftmost panel). The round
chondrocytes in the central area were relatively homogenous, without distinct columns of
chondrocytes being formed at this stage. This pattern continued at P6 (Figure 2A, top left
center panel). However, at P9, columnar chondrocytes composed of elongated proliferating
chondrocytes and hypertrophic chondrocytes appeared in the SOS (Figure 2A, bottom right
and center panels, arrowheads). In the SOS, Pthrp mRNA was barely detectable at P3, P6,
and P9 (Figure 2A). However, at P14, Pthrp became detectable in a wedge-shaped area on
the lateral borders of the SOS adjacent to the surrounding peripheral connective tissue
(Figure 2A, top right panel, dotted area).

We subsequently examined Pthrp-mCherry knock-in mice to define the PTHrP reporter
activities in the cranial base synchondrosis. A PTHrP knock-in reporter transgene pro-
vides a more sensitive readout than in situ hybridization [25]. The contrast between the
cranial base synchondrosis and the long bone growth plate is particularly instructive, as
described below. In the femur, as we previously reported, Pthrp-mCherry+ cells were
initially localized to the lateral portion of growth plates, adjacent to the groove of Ranvier
at P3 and P6 [19] (Figure 2B). Following the formation of the SOC at P9, a new group of
Pthrp-mCherry+ cells occupied the resting zone (Figure 2B). In contrast, in the cranial base
synchondrosis, PTHrP-mCherry+ chondrocytes were primarily localized to the lateral por-
tion of the synchondrosis, particularly within wedge-shaped areas adjacent to the resting
zone (Figure 2C, yellow dotted lines). Although the SOS expanded superior-inferiorly at
P14, PTHrP-mCherry+ cells were mostly confined to the wedge-shaped areas, whereas
a small group of large round chondrocytes (reminiscent of hypertrophic chondrocytes)
occupied the central portion of the resting zone of the SOS (Figure 2C, green dotted lines;
enlarged in Figure 2E, arrowheads). Surrounding this central zone, a small number of Pthrp-
mCherry+ flat chondrocytes were also formed at this stage (Figure 2C, arrows). Moreover,
we observed inconsistent localization of Pthrp-mCherry+ cells in the surrounding marrow
space; however, this could be attributed to autofluorescence in bone marrow stromal cells.
Additionally, we injected a thymidine analogue, EdU, shortly before sacrifice to evaluate
cell proliferation. Although incorporated randomly at P3, EdU was predominantly incorpo-
rated by proliferating chondrocytes at P6 and later time points. In contrast, Pthrp-mCherry+

cells in the wedge-shaped area were mostly devoid of EdU incorporation.
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Figure 2. PTHrP expression is confined to the lateral wedge-shaped area of the synchondrosis. (A, 
Upper panels) RNAScope in situ hybridization assays for endogenous Pthrp mRNAs in early post-
natal development. (A, Lower panels) 40× magnified images of transition zones between resting, 
proliferating, and hypertrophic chondrocytes. (B,C) Pthrp-mCherry knock-in reporter activities and 
EdU-labeling in femoral growth plate (B) and spheno-occipital synchondrosis (SOS) (C). Red: Pthrp-
Opal 570 (A), Pthrp-mCherry (B,C), gray: DAPI (A) DIC (B,C). Scale bars: 100 μm. (D) Quantifica-
tion of Pthrp-mCherry+ (Upper), EdU+ (Middle) and Pthrp-mCherry+-EdU+ (Bottom) chondrocytes. 
n = 3/4 of each group/timepoint. * p < 0.05, one-way ANOVA followed by the Mann–Whitney U test. 
Data are present as the mean ± SD. (E) 40× magnification of central hypertrophic zone in P14 SOS. 
(A,C) Yellow dashed wedges: PTHrP-mCherry expression domain restricted to the lateral wedge-
shaped areas, (A, lower center panel) arrowheads: proliferating columns, (A, lower right panel) ar-
rowheads: hypertrophic chondrocytes, (C) green dashed lines: presumptive central hypertrophic 
zone, (E) arrowheads: presumptive central hypertrophic chondrocytes. 
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Figure 2. PTHrP expression is confined to the lateral wedge-shaped area of the synchondrosis.
(A, Upper panels) RNAScope in situ hybridization assays for endogenous Pthrp mRNAs in early
postnatal development. (A, Lower panels) 40×magnified images of transition zones between resting,
proliferating, and hypertrophic chondrocytes. (B,C) Pthrp-mCherry knock-in reporter activities and
EdU-labeling in femoral growth plate (B) and spheno-occipital synchondrosis (SOS) (C). Red: Pthrp-
Opal 570 (A), Pthrp-mCherry (B,C), gray: DAPI (A) DIC (B,C). Scale bars: 100 µm. (D) Quantification
of Pthrp-mCherry+ (Upper), EdU+ (Middle) and Pthrp-mCherry+-EdU+ (Bottom) chondrocytes.
n = 3/4 of each group/timepoint. * p < 0.05, one-way ANOVA followed by the Mann–Whitney U test.
Data are present as the mean ± SD. (E) 40×magnification of central hypertrophic zone in P14 SOS.
(A,C) Yellow dashed wedges: PTHrP-mCherry expression domain restricted to the lateral wedge-
shaped areas, (A, lower center panel) arrowheads: proliferating columns, (A, lower right panel)
arrowheads: hypertrophic chondrocytes, (C) green dashed lines: presumptive central hypertrophic
zone, (E) arrowheads: presumptive central hypertrophic chondrocytes.

We further quantified the number of Pthrp-mCherry+ (PTHrP+), EdU+ (proliferating),
and Pthrp-mCherry+EdU+ (PTHrP+ proliferating) cells (Figure 2D) in the cranial base
synchondrosis and the central portion of the femur growth plate, which are similar in
size. Pthrp-mCherry+ cells were found in similar abundance and increased progressively
from P0 to P9, after which time they decreased in quantity (Figure 2D, upper). EdU+

cells increased steadily in the femoral growth plate from P0 to P14 (Figure 2D, middle,
red line). Conversely in the SOS, EdU+ cells increased transiently at P6, then decreased
thereafter. In the SOS, Pthrp-mCherry+EdU+ cells reached the highest number at P3, then
decreased and reached a plateau thereafter (Figure 2D, lower, blue line). In contrast, in
the femoral growth plate, the number of Pthrp-mCherry+EdU+ cells were relatively low
until P6, and progressively increased thereafter. Thus, PTHrP+ chondrocytes are slow-
cycling and relatively resistant to EdU incorporation in the femoral growth plate prior to
SOC formation.

Together, these findings demonstrate that PTHrP+ chondrocytes in the cranial base
synchondrosis are largely non-proliferative and predominantly confined to the lateral
wedge-shaped area. Therefore, PTHrP+ chondrocytes in the cranial base synchondrosis
may be different from those in the long bone growth plate.
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2.2. PTHrP+ Chondrocytes Lack Column-Forming Capabilities in the Cranial Base Synchondrosis

We subsequently asked whether PTHrP+ chondrocytes in the cranial base synchon-
drosis include a population of column-forming cells. For this purpose, we utilized a
tamoxifen-inducible Pthrp-creER line to trace the fate of PTHrP+ chondrocytes. First, to
determine the location of the PTHrP+ cells that can be lineage-marked by this transgene,
we pulsed Pthrp-creER; R26RtdTomato (PTHrPCE-tdTomato+) mice with a single dose of
tamoxifen at sequential postnatal time points of P6, P9, P12, P15, and P25, followed by
a subsequent chase for 72 h (Figure S1). This short-chase protocol is expected to mark
PTHrP+ chondrocytes as tdTomato+ as a result of cre-loxP recombination. We observed
similar numbers of PTHrPCE-tdTomato+ chondrocytes in the SOS when pulsed between P6
and P15, which declined substantially at P25 (Figure S1A,B). We selected P6 to mark the
PTHrP+ chondrocytes and analyzed their cell fates in our subsequent analyses.

For the following experiments, Pthrp-creER; R26RtdTomato mice were pulsed at P6
and analyzed up to 90 days of the chase, respectively, to assess the column-forming capabil-
ity of PTHrP+ chondrocytes (Figure 3A, right). Only a minimal number of tdTomato+ cells
were found across all layers of the SOS after the chase (Figure 3B). In contrast, consistent
with our previous study, tdTomato+ cells were abundantly present in the resting zone of the
femoral growth plate following the short chase at P9 and P12, which further differentiated
into columnar chondrocytes (Figure 3C).
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Overview of femoral growth plate. (C, Lower panels) 40× magnified views of Pthrp-creER; R26R-
tdTomato+ chondrocytes in the resting zone of the femur growth plate. Red: tdTomato, gray: DIC. 
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3. Discussion 
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Figure 3. PTHrP+ chondrocytes lack column-forming capabilities in the cranial base synchondro-
sis. (A) Diagram of Pthpr-creER; R26R-tdTomato lineage-tracing model (Left) and tissue collection
time points (Right). (B,C) Cell-lineage analysis of Pthrp-creER; R26RtdTomato+ (tamoxifen at P6)
chondrocytes in the cranial base synchondrosis (B) and the femoral growth plate (C) following
3 (P9), 6 (P12), and 15 days (P21) and 1 month (P36) and 3 months (P96) of the chase. (C, Upper
panels) Overview of femoral growth plate. (C, Lower panels) 40×magnified views of Pthrp-creER;
R26R-tdTomato+ chondrocytes in the resting zone of the femur growth plate. Red: tdTomato, gray:
DIC. Scale bars: 100 µm. (D) Quantification of Pthrp-creER; R26R-tdTomato+ resting chondrocytes.
(E) Quantification of Pthrp-creER; R26R-tdTomato+ proliferating chondrocytes. n = 3/4 of each
group/timepoint. * p < 0.05, one-way ANOVA followed by the Mann–Whitney U test. All data are
present as the mean ± S.D.

Quantification revealed that only a small number of tdTomato+ chondrocytes were
present in the resting zone of the SOS at all time points, in contrast to abundant tdTomato+

cells in the resting zone of the femoral growth plate (Figure 3D). Moreover, essentially no
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tdTomato+ proliferating chondrocytes existed in the SOS at all time points, in contrast to
abundant tdTomato+ cells in the proliferating zone of the femoral growth plate at P21, P36,
and P96 (Figure 3E). Thus, a small number of PTHrP+ chondrocytes present in the resting
zone of the cranial base synchondrosis do not differentiate into proliferating chondrocytes
and form columns in the cranial base synchondrosis.

3. Discussion

In this study, we described the uniquely limited contribution of PTHrP+ chondrocytes
to the cranial base synchondrosis. The two major findings of our study are (1) PTHrP
expression (based on mRNAs and reporter activities) is spatiotemporally restricted to the
lateral wedge-shaped areas of the cranial base synchondrosis, and (2) PTHrP+ chondrocytes
do not function as skeletal stem cells without forming columnar chondrocytes in the
synchondrosis (Figure 4). Our findings shed light on a functional difference of PTHrP+

chondrocytes between the cranial base synchondrosis and the long bone growth plate.
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ment has long been established [28]. PTHrP promotes bone formation through local para-
crine/autocrine-related mechanisms, and a PTHrP analog (abaloparatide) has been uti-
lized as a therapeutic agent for osteoporosis treatment [29,30]. Yet, these observations 
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Figure 4. Cranial base synchondrosis lacks PTHrP+ column-forming chondrocytes in the resting
zone. PTHrP+ chondrocytes are present both in the femoral growth plate and cranial base synchon-
drosis, which are generally characterized by their slow-cycling nature. Our cell-lineage analysis
using Pthrp-creER; R26RtdTomato mice reveals that PTHrP+ chondrocytes in the synchondrosis fail
to form columnar chondrocytes. Thus, PTHrP+ chondrocytes do not possess the characteristics of
skeletal stem cells in the synchondrosis, highlighting functional differences between skeletal stem
cells and their niches in two classes of endochondral bones—the cranial base and long bone. Red
cells: mCherry+, tdTomato+, Green cells: EdU+, Yellow cells: mCherry+; EdU+. R: resting zone,
P: proliferating zone, H: hypertrophic zone, PS: primary spongiosa, M: metaphyseal bone.

The difference between the cranial base synchondrosis and long bone growth plate
has been previously reported, highlighting the well-known phenomenon that long bones
possess a greater potential for longitudinal growth than that of the cranial base [26,27].
Additionally, although PTHrP expression domains appear to be different compared to the
femur growth plate, the cell types within these structures possess similar hierarchies of
resting, proliferating, and hypertrophic chondrocytes, further highlighting that PTHrP may
have different functions in different endochondral bones. We previously reported that
Pthrp-creER labels a population of resting chondrocytes with skeletal stem cell capabili-
ties in the resting zone of the postnatal growth plate [19]. Interestingly, PTHrP+ resting
chondrocytes acquire their stemness following the formation of the secondary ossification
center (SOC) within the epiphysis. These PTHrP+ resting chondrocytes give rise to prolif-
erating and hypertrophic chondrocytes and eventually to osteoblasts and bone marrow
stromal cells in the metaphyseal marrow compartment. An intriguing possibility is that the
cranial base lacks the capability to establish the stem cell niche within the resting zone. A



Int. J. Mol. Sci. 2022, 23, 7873 7 of 10

unique feature of the long bone epiphysis is the presence of the SOC. Although detailed
mechanisms underlying this event remain to be elucidated, our findings suggest that the
formation of SOCs may be a key modulator facilitating sustained longitudinal growth of
long bones.

One alternate hypothesis is that the decreased potential for growth during postnatal de-
velopment in the synchondrosis could be the direct result of low PTHrP expression, thereby
leading to decreased PTHrP—Ihh feedback and diminished chondrocyte proliferation. Fur-
thermore, PTHrP’s role as a paracrine/autocrine regulator in skeletal development has long
been established [28]. PTHrP promotes bone formation through local paracrine/autocrine-
related mechanisms, and a PTHrP analog (abaloparatide) has been utilized as a therapeutic
agent for osteoporosis treatment [29,30]. Yet, these observations have only been reported
in long bones. Thus, it remains unknown whether PTHrP possesses similar paracrine
functions in the cranial base. This is of critical importance, as growth deficiencies in the
cranial base manifest as midfacial hypoplasia. Stimulation of cranial base growth using
anabolic therapies may be a unique alternative to surgery for the repair of craniofacial
skeletal malformations.

PTHrP+ chondrocytes in the wedge-shaped area appear to lack the capability to
function as skeletal stem cells in the cranial base synchondrosis, emphasizing the differences
in skeletal stem cell populations contributing to the growth of different endochondral
bones. Although this study has not yet elucidated the presence of a skeletal stem cell
population in the cranial base synchondrosis, future investigations using combinatorial
lineage-tracing analyses and functional gene knockout approaches will highlight putative
stem cell populations in diverse endochondral bones.

4. Materials and Methods
4.1. Mice

Pthrp-creER, Pthrp-mCherry [19], and Rosa26-CAGG-lsl-tdTomato-WPRE (Ai14) reporter [31]
mice have been described previously. All animal experimental procedures were reviewed
and approved by the Institutional Animal Care and Use Committees (IACUC) of the Uni-
versity of Michigan, protocol 9496, and the University of Texas Health Science Center at
Houston, protocol AWC-21-0070. All experimental procedures followed the ARRIVE 2.0
guidelines for preclinical animal studies. Animals were not sorted for sex. Animal hus-
bandry is provided by the staff of the Unit for Laboratory Animal Medicine (ULAM) under
the guidance of supervisors who are certified as Animal Technologists by the American
Association for Laboratory Animal Science (AALAS). Veterinary care is provided by ULAM
faculty members and veterinary residents. The University of Michigan is fully accredited
by the American Association for Accreditation of Laboratory Animal Care (AALAC) and
the animal care and use program conforms to the standards in “the Guide for the Care and
Use of Laboratory Animals,” DHEW Pub. No. (NIH)78-23, Revised 1978. This includes
regular surveillance of animal facilities, a review of all funded projects for the humane use
of animals, and the appropriate use of surgical anesthesia, analgesics, and tranquilizers.
The University of Michigan has filed an assurance statement of these matters with the
Office of Protection from Research Risk at the NIH.

4.2. Histology

Skulls and femurs were dissected under a stereomicroscope (Nikon SMZ-800, Tokyo,
Japan) to remove soft tissues and fixed in 4% paraformaldehyde (PFA)/PBS for a proper
period, ranging from 3 h to overnight at 4 ◦C, then decalcified in 15% EDTA for a proper
period, typically ranging from 3 h to 14 days. Decalcified samples were cryoprotected in
30% sucrose/PBS solutions and then in 30% sucrose/PBS:OCT (1:1) solutions, each at least
overnight at 4 ◦C. Samples were embedded in the sagittal plane in an OCT compound
(Tissue-Tek, Sakura, Torrance, CA, USA) under a stereomicroscope and transferred on
a sheet of dry ice to solidify the compound. Embedded samples were cryosectioned at
14–50 µm using a cryostat (Leica CM1850, Wetzlar, Germany) and adhered to positively
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charged glass slides (ColorFrost Plus, Fisher, Waltham, MA, USA). Cryosections were stored
at −20 ◦C (quantification) or −80 ◦C (in situ hybridization and immunofluorescence) in
freezers until use. Sections were postfixed in 4% PFA/PBS for 15 min at room temperature.

For reporter and lineage tracing assays, 20 µm serial sections were collected through
the SOS and the femoral growth plate. For RNAScope in situ hybridization assays, mi-
crodissected cranial bases and long bone epiphyses were fixed for 24 h in 4% PFA/PBS
and sectioned at 12 µm. Sections were further incubated with DAPI (4′,6-diamidino-2-
phenylindole, 5 µg/mL, Invitrogen D1306, Waltham, MA, USA) to stain nuclei prior to
imaging. Stained samples were mounted in TBS with No.1.5 coverslips (Fisher, Waltham,
MA, USA).

4.3. RNAScope In Situ Hybridization

In situ hybridization was performed with RNAscope 2.5 Multiplex Fluorescent V2
Assay (Advanced Cell Diagnostics [Newark, CA, USA] 323100) using the following probes:
Pthlh (456521) according to the manufacturer’s fixed frozen tissue protocol. Probes were
diluted to 1:500 concentration using Opal 520 reagent (Akoya Biosciences [NC1601877],
Marlborough, MA, USA).

4.4. Tamoxifen

Tamoxifen (Sigma T5648, St. Louis, MO, USA) was mixed with 100% ethanol un-
til completely dissolved. Subsequently, a proper volume of sunflower seed oil (Sigma
S5007) was added to the tamoxifen–ethanol mixture and rigorously mixed. The tamoxifen–
ethanol–oil mixture was incubated at 60 ◦C in a chemical hood until the ethanol evaporated
completely. The tamoxifen–oil mixture was stored at room temperature until use. Mice
at 6 days of age received a single dose of 0.25 mg tamoxifen intraperitoneally for in vivo
lineage-tracing experiments.

4.5. Edu Cell Proliferation and Label-Retaining Assay

To evaluate cell proliferation, 5-ethynyl-2′-deoxyuridine (EdU) (Invitrogen A10044)
dissolved in PBS was administered to mice at indicated postnatal days. Click-iT Imaging
Kit with Alexa Flour 488-azide (Invitrogen, C10337) was used to detect EdU in cryosections.
EdU was pulsed once at all time points (50 µg) three hours before sacrifice.

4.6. Imaging and Cell Quantification

Images were captured by an automated inverted fluorescence microscope with a struc-
tured illumination system (Zeiss Axio Observer Z1 with ApoTome.2 system) and Zen 2 (blue
edition) software. The filter settings used were FL Filter Set 34 (Ex. 390/22, Em. 460/50 nm),
Set 38 HE (Ex. 470/40, Em. 525/50 nm), Set 43 HE (Ex. 550/25, Em. 605/70 nm), Set 50
(Ex. 640/30, Em. 690/50 nm), and Set 63 HE (Ex. 572/25, Em. 629/62 nm). The objectives
used were Plan-Apochromat 10×/0.45, EC Plan-Neofluar 20×/0.50, EC Plan-Neofluar
40×/0.75, and Plan-Apochromat 63×/1.40. Images were typically tile-scanned with a
motorized stage, Z-stacked and reconstructed by a maximum intensity projection (MIP)
function. Differential interference contrast (DIC) was used for objectives higher than 10×.
Regions of interest for quantification of mCherry+, tdTomato+, and EdU+ cells include all
layers of the SOS and the central portion of the growth plate resting and proliferating zones.
The number of mCherry+, tdTomato+, and EdU+ cells were counted by two individuals
manually or using ImageJ image analysis software by single-blinded methods to ensure
unbiased data interpretation.

4.7. Statistical Analysis

Results are presented as mean values ± s.d. Statistical evaluation was conducted
based on one-way ANOVA followed by the Mann–Whitney U-test. A p-value <0.05 was
considered significant.
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