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Purpose: To investigate the molecular mechanism and search for candidate biomarkers in

the gene expression profile of patients with diabetic peripheral neuropathy (DPN).

Methods: Differentially expressed genes (DEGs) of progressive vs non-progressive DPN patients

in dataset GSE24290were screened. Functional enrichment analysis was conducted, and hub genes

were extracted from the protein–protein interaction network. The expression level of hub genes in

serum samples in another dataset GSE95849 was obtained, followed by the ROC curve analysis.

Results: A total of 352 DEGs were obtained from dataset GSE24290. They were involved in

14 gene ontology terms and 10 Kyoto Encyclopedia of Genes and Genomes pathways,

mainly related to lipid metabolism. Eight hub genes (LEP, APOE, ADIPOQ, FABP4,

CD36, GPAM, CIDEC, and PNPLA4) were revealed, and their expression level was

obtained in dataset GSE95849. The receiver operatingcharacteristic curve analysis indicated

that CIDEC (AUC=1), APOE (AUC=0.833), CD36 (AUC=0.803), and PNPLA4

(AUC=0.861) might be candidate serum biomarkers of DPN.

Conclusion: Lipid metabolism of Schwann cells might be inhibited in progressive DPN.

CIDEC, APOE, CD36, and PNPLA4 might be potential predictive biomarkers in the early

DPN diagnosis of patients with DM.

Keywords: differentially expressed genes, functional enrichment analysis, demyelination,
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Introduction
It was estimated that 415 million people aged 20–79 years suffered from diabetes in

2015, and the number was predicted to rise to 642 million by 2040.1 Approximately

50% of those with diabetes may develop a diabetic peripheral neuropathy (DPN).

The number will only increase as the diabetes epidemic grows.2 DPN is character-

ized by pain, paraesthesia, and sensory loss.3 Patients complaint unbearable lanci-

nating, tingling and burning sensation, even depression, anxiety, and sleep

deprivation.4,5 Moreover, insensitivity to trauma often results in foot ulcers which

can lead to some levels of amputation.6 Several attempts have been made to treat

this disease; however, none of the pharmacotherapy have proven to be effective in

altering the progressive course to date.7 Various symptomatic medications are

nonspecific with serious side effects.8,9 The treatment dilemma reflects our present

knowledge for the pathogenesis of DPN is far from to be clear.

Demyelination is known as an early pathological feature in DPN, and it pre-

cedes the degeneration of axon.10 Therefore, studying the molecular mechanism
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associated with demyelination may conduce to a better

understanding of DPN and finding the predictive biomar-

kers of this disease. In 2010, Hur et al, analyzed genes that

differed between DPN progressors and non-progressors,

which is classified by the loss of myelinated fiber density

of sural nerves.11 Based on the microarray data, the pre-

sent study analyzed the differentially expressed genes

(DEGs) via function enrichment analysis and topological

approaches. We found several hub genes according to the

most significant cluster of protein–protein interaction (PPI)

network. The expression level of each hub gene was

obtained in serum samples of another dataset, followed

by receiver operating characteristic (ROC) curve study.

The results may reveal the molecular mechanism of

demyelination in DPN and provide potential serum

biomarkers.

Materials and methods
Data preprocessing and DEGs screening
From the Gene Expression Omnibus database, we col-

lected the gene expression data of GSE24290 deposited

by Hur et al.11 There were 35 specimens including pro-

gressors and non-progressors sural nerve biopsies for ana-

lysis. The raw expression data underwent background

correction, normalization, and summarization using the

robust multi-array average (RMA) algorithm in oligo.12,13

The limma package in R was applied to identify DEGs

between two groups. In this analysis, P-value <0.05 and

log|FC| >0.5 were used as the cutoff criteria.

Functional enrichment and PPI network

analysis
To investigate the main functional pathways of DPN, we

submitted the DEGs to Database for Annotation,

Visualization, and Integrated Discovery (DAVID),

which was used to perform the Gene Ontology (GO)

analysis and KEGG pathways enrichment analysis of

DEGs.14–16 Then, pathview was used to describe the

most important pathway.17,18 Criteria for this step were

set as P-value<0.05 and gene counts ≥3. The functional

protein interactions of DEGs and the encoding proteins

were predicted using the Search Tool for the Retrieval

of Interacting Genes (STRING).19 Cytoscape 3. 6. 1 was

used for visualization and to calculate the properties of

the PPI network. Subsequently, the Network Analyzer

plug-in of Cytoscape was utilized to analyze the topol-

ogy properties of the network.20 Connectivity degree

analysis was performed and the most highly connected

cluster was extracted from the PPI network through

MCODE analysis.21

ROC curve analysis
The genes that constituted the most highly connected

cluster in PPI network were considered to be hub genes.

Then, we downloaded the gene expression profiling data

of GSE95849, which contains serum samples from six

DM patients and six DPN patients.22 We obtained the

expression level of hub genes and used the pROC pack-

age in R software to draw the ROC curves and calculate

the area under curve (AUC).23 Larger AUC value means

the gene can well distinguish DPN from the DM patient

samples. The diagnosis effect of hub genes was further

investigated according to the AUC value.

Results
DEGs identified between progressive and

non-progressive DPN patients
The raw gene expression data of GSE24290 were nor-

malized by RMA. The boxplots of the intensity of all

samples demonstrated that the expression values of each

sample were close to the same after normalization

(Figure S1). A total of 352 DEGs between non-progres-

sive and progressive DPN patients were obtained with

the criteria of P-value <0.05 and log|FC|>0.5. The 142

up-regulated genes and the 210 down-regulated genes

were shown in the heat map and the volcano plot

(Figure 1A and B and Figure S2)

Functional annotation and enrichment

analysis of the DEGs
To reveal further insights into the biological functions of

DEGs, functional enrichment analyses were performed

using DAVID. For the GO analysis, we focused on the

categories of biological processes (BP) and set the criteria

with P-value <0.05 as significantly enriched GO terms. As

a result, DAVID identified two terms significantly enriched

from 142 up-regulated genes and 12 terms significantly

enriched from 210 down-regulated genes. These terms

demonstrated that the gene expression differences of

nerve samples in progressive DPN were associated with

“fatty acid homeostasis”, “glucose homeostasis”, and

other BP (Table 1). Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis unveiled ten sig-

nificantly enriched KEGG pathways with P-value <0.05
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(Figure 1C). Among these pathways, the PPAR signaling

pathway was the most important one according to the P-

value, gene counts, and fold enrichment. The DEGs in the

PPAR pathway were concentrated in PPAR-γ (Figure S3).

There were seven DEGs genes that participated in this

pathway (CD36, OLR1, SCD, ACSBG2, FABP4,

ADIPOQ, MMP1). We listed other useful information of

these KEGG pathways in Table 2.
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Figure 1 The heat map and the volcano plot of differentially expressed genes.

Notes: (A) The heat map of the differentially expressed genes in progressive DPN group vs non-progressive DPN group. The horizontal axis represents the 35 samples, and

the vertical represents the top50 up-regulated and top50 down-regulated genes sorted by P-value. Up-regulated genes are shown by warm colors. Down-regulated genes are

shown by cool colors. (B) The volcano plot of the differentially expressed genes. Red dots on the right indicate up-regulated genes, and blue dots on the left indicate

downregulation. Gray dots indicate genes with no statistically significant difference. (C) The bubble map of KEGG pathway analysis. The horizontal axis represents the fold

enrichment of pathways, and the vertical represents pathway names. Size of bubbles represents the number of genes, and the shade of color depends on the P-value.
Abbreviations: DPN, diabetic peripheral neuropathy; DEG, differentially expressed genes; FC, fold-change; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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PPI network clusters analysis and

selection of hub genes

PPI network was constructed involving 73 nodes (DEGs)

and 132 edges. The nodes represented the proteins

expressed by DEGs and the edges between two nodes

means the physical interactions. The connectivity degree

is an important parameter and the high connectivity

degree indicated the protein interacted with more

surrounding proteins and play a more important role.

The nodes with higher connectivity degree were shown

as larger sizes with red or orange color (Figure 2A).

Subsequently, we analyzed the PPI network and extracted

the most highly connected cluster by MCODE plug-in in

Cytoscape (Figure 2B). Genes in this cluster were at the

core of the whole network, including LEP, APOE,

ADIPOQ, FABP4, CD36, PNPLA4, GPAM, and

CIDEC. Hence, we consider the eight genes as the hub

Table 2 Information of KEGG analysis of dataset GSE24290

Term Count P-value Enriched genes Fold

enrichment

hsa03320:PPAR signaling pathway 7 <0.0001 CD36, OLR1, SCD, ACSBG2, FABP4, ADIPOQ,

MMP1

11.0569

hsa04923:Regulation of lipolysis in adipocytes 5 0.0002 PTGER3, NPY, PDE3B, FABP4, PRKG2 9.4492

hsa00982:Drug metabolism – cytochrome P450 5 0.0004 CYP2A6, ADH1A, GSTM5, UGT2B28, MGST1 7.7817

hsa04920:Adipocytokine signaling pathway 5 0.0004 LEP, CD36, NPY, ACSBG2, ADIPOQ 7.5593

hsa00980:Metabolism of xenobiotics by cyto-

chrome P450

5 0.0005 CYP2A6, ADH1A, GSTM5, UGT2B28, MGST1 7.1507

hsa05204:Chemical carcinogenesis 5 0.0006 CYP2A6, ADH1A, GSTM5, UGT2B28, MGST1 6.6144

hsa04060:Cytokine-cytokine receptor interaction 8 0.0007 LEP, IL20RB, INHBE, GDF5, IL26, EDAR,

CCL27, CCL26

3.4841

hsa00830:Retinol metabolism 4 0.0213 CYP2A6, SDR16C5, ADH1A, UGT2B28 6.6144

hsa04152:AMPK signaling pathway 5 0.0271 LEP, CD36, SCD, GYS2, ADIPOQ 4.3021

hsa04024:cAMP signaling pathway 6 0.0364 PTGER3, NPY, PDE3B, RYR2, CNGA3, HTR1D 3.2070

Notes: KEGG biological pathway enrichment analysis found that the PPAR signaling pathway (P-value <0.0001, count =7, and fold enrichment =11.0569) was the most

important one among the ten significantly enriched pathways.

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 1 GO terms enrichment results of DEGs

Term Count P-

value

Enriched genes

Enriched from up-regulated genes

GO:0007154~cell communication 3 0.0169 GJB6, GJB2, GJA3

GO:0050896~response to stimulus 3 0.0253 CLRN1, KERA, RPGRIP1

Enriched from down-regulated genes

GO:0055089~fatty acid homeostasis 3 0.0031 APOE, MLXIPL, GPAM

GO:0042593~glucose homeostasis 5 0.0042 LEP, CAV3, GPR21, MLXIPL, ADIPOQ

GO:0006936~muscle contraction 5 0.0052 CAV3, MYH1, ACTA1, MYH13, MYH7

GO:0042632~cholesterol homeostasis 4 0.0083 CAV3, MALRD1, APOE, FABP4

GO:0019433~triglyceride catabolic process 3 0.0114 APOE, FABP4, PNPLA3

GO:0051897~positive regulation of protein kinase B signaling 4 0.0173 LEP, TNFAIP8L3, STOX1, IL26

GO:0002027~regulation of heart rate 3 0.0193 CAV3, RYR2, MYH7

GO:0043407~negative regulation of MAP kinase activity 3 0.0223 CAV3, APOE, ADIPOQ

GO:0006810~transport 7 0.0259 CLCA2, AQP8, GRIK4, FABP4, CLVS1, CNGA3, TRPM1

GO:0035338~long-chain fatty-acyl-CoA biosynthetic process 3 0.0304 SCD, ACSBG2, ACOT6

GO:0006635~fatty acid beta-oxidation 3 0.0331 LEP, ABCD2, ADIPOQ

GO:0034220~ion transmembrane transport 5 0.0480 CLCA2, AQP8, GRIK4, ANO3, RYR2

Notes: Significantly enriched GO terms with P-value <0.05 count ≥3 and were screened out. Five terms were directly associated with lipid metabolism.

Abbreviations: GO, Gene Ontology; DEGs, differentially expressed genes.

Zhou and Zhang Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:121216

http://www.dovepress.com
http://www.dovepress.com


genes for further analysis, and they were all down-regu-

lated as demyelination.

ROC curves and candidate biomarkers
The ROC curve analysis was performed by the pROC

package in R (Figure 3). The AUCs of each gene were

more than 0.500. Among these hub genes, CIDEC was the

outstanding one with the AUC =1.000, which represented

it might have great value for the diagnosis of DPN in

patients with DM. Besides, APOE (AUC=0.833), CD36

(AUC=0.803), and PNPLA4 (AUC=0.861) could also be

predictive biomarkers. The AUCs of other hub genes were

less than 0.8000.

Discussion
The mechanism producing DPN is multifactorial and

extremely complex. To further understand the molecular

mechanism and search for novel serum biomarkers for

DPN, we analyzed two different datasets of expression

profile by bioinformatic approaches in the current study.

We first compared the microarray data of two groups of

sural nerve samples from DPN progressors and non-

progressors. They were divided by the level of demyelina-

tion. Samples in the progressor group lost ≥500 fibers/

mm2, while samples in the non-progressor group lost

≤100 fibers/mm2 over 52 weeks.11

Totally 352 DEGs were identified for following func-

tional enrichment analysis and PPI network analysis. The

results demonstrated the function of DEGs was closely

related to lipid metabolism. In GO analysis, most of the

terms were derived from down-regulated DEGs. We only

focused on the most prominent parts of these terms. It was

not difficult to find that five terms were directly associated

with lipid metabolism in total 14 GO terms of BP. They

were “fatty acid homeostasis”, “cholesterol homeostasis”,

“Adipocytokine signaling pathway”, “triglyceride cata-

bolic process”, “long-chain fatty-acyl-CoA biosynthetic

process”, and “fatty acid beta-oxidation” (Table 1). The

changes were likely to occur in Schwann cells. In the

peripheral nerve system, myelin results from the circum-

ferential wrapping of the Schwann cell plasma membrane,

which is enriched in lipid-like glycosphingolipids, satu-

rated long-chain fatty acids and, particularly, cholesterol.24

After being damaged by hyperglycemia, the balance of

Schwann cells de-differentiation and re-differentiation

Figure 2 The protein–protein interaction network and the most highly connected cluster.

Notes: (A) The protein–protein interaction network consists of 73 nodes and 132 edges. Color and size represent the connectivity degree of nodes. (B) The most highly

connected cluster is composed of eight hub genes: LEP, APOE, ADIPOQ, CD36, FABP4, CIDEC, GPAM, and PNPLA4.
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can be destroyed.25 As the fatty acid homeostasis, choles-

terol homeostasis was changed and the triglyceride cata-

bolic process, long-chain fatty-acyl-CoA biosynthetic

process was inhibited, re-differentiated mature Schwann

cells might be difficult to generate new myelin, which

might be an important cause of DPN progression.

The KEGG analysis further revealed changes in the

signaling pathways in progressive DPN. Three important

signaling pathways were associated with lipid metabolism.

They were “PPAR signaling pathway”, “regulation of

lipolysis in adipocytes”, and “adipocytokine signaling

pathway”. The “PPAR signaling pathway” is highlighted

with smallest P-value and largest fold enrichment among

them. Almost all DEGs involved in the PPAR signaling

pathway were down-regulated, which was consistent with

the study of Kim et al.26 They demonstrated chronic high

glucose inhibited the function of PPAR-γ due to the reduc-

tion of PPAR-γ binding to target genes in Schwann cells.

Montani et al, described the endogenous fatty acid synth-

esis, which was potentially critical process of myelination,

could trigger activation of the PPAR-γ transcriptional pro-
gram in Schwann cells and the PPAR-γ agonist could

partially rescue Schwann cell myelination in the setting

of deficient endogenous fatty acid synthesis.27 Our study

suggested the inhibition of PPAR-γ signaling pathway

caused by hyperglycemia might be crucial in the progres-

sion of DPN.

The PPI network contained multiple clusters. We

applied the MCODE in Cytoscape to extract the most

significant cluster of PPI network. All the genes that

make up this cluster play important roles in lipid metabo-

lism. For example, CD36 facilitates cell membrane free

fatty acid transport in adipocytes and ADIPOQ and LEP

were secreted by adipocytes.28–30 Accordingly, we

assumed that Schwann cells could secrete some adipokines

like adiponectin and take in lipid and free fatty acid via

CD36. Uptake of palmitic acids, which is the most abun-

dant plasma free fatty acid involved in inducing insulin

resistance, proven to cause Schwann cells dysfunction and

death.31–35 Downregulation of CD36 in progressive DPN

might reduce lipid uptake and influence myelination, but

might play a protective role.

Furthermore, we suggested that CIDEC, PNPLA4,

APOE, and CD36 might be used as potential molecules

for liquid biopsy of DPN based on the results of ROC

curve analysis. In particular, CIDEC might be an important

molecule that has not been thoroughly studied but is of great

value to the diagnosis of DPN. CIDEC protein is a member

of the cell death-inducing DNA fragmentation factor-like

effector family, which are crucial for multiple lipid

Figure 3 The ROC curves of hub genes in GSE95849.

Notes: CIDEC, PNPLA4, APOE, and CD36 were four genes with the AUC>0.8000.

Abbreviations: ROC, receiver operating characteristic; AUC, the area under curve.
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metabolic pathways and lipid homeostasis.36–39 PPAR-γ
agonist may lead to upregulation of CIDEC thereby increas-

ing lipid accumulation.40,41 Although the expression of

CIDEC proven to positively correlate with the development

of insulin sensitivity in obese people,42 it has not been

studied within the context of DPN by now. The only inves-

tigation of CIDEC associated with diabetic complications is

that silence of CIDEC may partially reverse diabetic pul-

monary vascular in type 2 diabetes.43

The present study re-analyzed the two publicly available

microarray gene expression profiling via different methods

and arrived at different conclusions. We constructed the PPI

network of DEGs of the dataset GSE24290 and extracted the

most important cluster via MCODE. This topological analy-

sis differs from gene co-citation analysis in primary publica-

tion. Combining with our results from analysis of the dataset

GSE95849, we proposed our new point that lipid metabolism

of Schwann cells might be inhibited in progressive DPN and

the inhibition of PPAR-γ signaling pathway might be crucial

in the pathogenesis of the disease. In addition, in the primary

publication of the dataset GSE95849, the research found the

downregulation of the neurotrophin-MAPK signaling path-

waymay be crucial for DPN pathogenesis, while our analysis

only focused on the expression level of several selected

genes in serum samples of the dataset.

Conclusion
The present study aimed to investigate the molecular

mechanism in gene expression profiling in the pathogen-

esis of DPN. Totally 352 DEGs and eight hub genes were

screened via this bioinformatic approaches of two micro-

array datasets (GSE24290 and GSE95849). Our salient

findings were that lipid metabolism of Schwann cells

might be inhibited in progressive DPN and CIDEC,

APOE, CD36, PNPLA4 were identified as candidate pre-

dictive biomarkers in the early DPN diagnosis of patients

with DM. However, there were some limitations in the

present study such as small sample size and lack of ver-

ification test. Further basic experiments with large sample

size are needed to validate our results.
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Supplementary materials

Figure S1 The boxplots of sample data before and after normalization.

Notes: The lateral axis represented 35 samples from 18 progressive and 17 non-progressive DPN patients. The longitudinal axis represents expression levels. The

horizontal line in the middle of post represents the expression levels of each sample. Each sample was close to the same following normalization.

Abbreviation: DPN, diabetic peripheral neuropathy.
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Figure S2 The heat map of all 352 DEGs.

Abbreviation: DEGs, differentially expressed genes.
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Figure S3 The PPAR signaling pathway and DEGs.

Abbreviation: DEGs, differentially expressed genes.
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