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This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with
intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are
characterized byGaussian distributions with differentmeans and variances. According tomaximum a posteriori probability (MAP)
and Bayes’ rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local
objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In
level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image
domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field
estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show
desirable performances of our method.

1. Introduction

Image segmentation is an important and necessary step in
various image processing and computer vision applications.
However, due to the imperfection of the image acquisition
process, intensity inhomogeneity (or bias field) is often seen
in many real-world images, especially in medical images
[1]. For example, the intensity inhomogeneity in magnetic
resonance (MR) images usually manifests itself as a smooth
intensity variation across the image [2]. Thus the resultant
intensities of the same tissue vary with the locations of the
tissue within the image. This can cause serious misclassi-
fications when intensity-based segmentation algorithms are
used. Therefore, intensity inhomogeneity has been challeng-
ing difficulty in image segmentation.

The level set method, originally used as numerical tech-
nique for tracking interfaces and shapes [3], has been increas-
ingly applied to image segmentation in the past decades [4, 5].
Compared with the classical image segmentation methods
such as edge detection, thresholding, and region growing,

level set methods have three desirable advantages. First,
they can achieve subpixel accuracy of object boundaries [6].
Second, they allow incorporation of various prior knowledge,
for example, shape and intensity distribution, so as to get
more robust segmentation [7, 8]. Third, they can provide
smooth and closed contours as segmentation results, which
are necessary and can be readily used for further applications
such as shape analysis and recognition [9]. In general, the
existing level set methods can be categorized into two classes:
edge-based models [6, 10–12] and region-based models [9,
13–17].

Edge-based models typically use image gradient as an
image-based force to attract the contour toward object
boundaries. These models have been successfully used for
general images with strong object boundaries, but they
are generally sensitive to the initial conditions and may
suffer from boundary leakage problem for medical images
which typically contain weak boundaries. These drawbacks
greatly limit their utilities for medical images. Region-based
models use a certain region descriptor to guide the motion
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of the active contour. Therefore they are less sensitive to
initial contours and have better performance for images with
weak object boundaries. A typical example is the piecewise
constant (PC) model proposed in [13]. This model assumes
that image intensities are statistically homogeneous in each
region and thus always fails to segment images with intensity
inhomogeneity. Intensity inhomogeneity can be dealt with
by more complicated models than PC model. Tsai et al. [16]
and Vese and Chan [17] independently proposed two similar
region-based models, widely known as piecewise smooth
(PS) models, for segmentation of more general images. The
PSmodels cast image segmentation as a problemof finding an
optimal approximation of the original image by a piecewise
smooth function. Although the PS models do not assume
homogeneity of image intensities and therefore are able to
segment imageswith intensity inhomogeneity to some extent,
they are computationally too expensive.

Recently, local intensity information has been incorpo-
rated into level set methods to effectively handle intensity
inhomogeneity [1, 9, 18–23]. For example, Li et al. [9] defined
a region-scalable fitting (RSF) energy in terms of a contour
and two fitting functions that locally approximate the image
intensities on the two sides of the contours. Based on the
multiplicative model of images with intensity inhomogeneity
and a derived local intensity clustering property, Li et al. [21]
presented a variational level set framework for simultaneous
segmentation and bias correction. Similarly, Chen et al.
[19] adopted localized 𝐾-means-type clustering to define
an energy which contains the bias field as a variable, and
thus the energy minimization can also implement image
segmentation and bias field estimation simultaneously.These
models essentially draw upon local intensity means, which
enable them to cope with intensity inhomogeneity. However,
the local intensity means do not provide enough information
for accurate segmentation, especially in the presence of strong
noise and intensity inhomogeneity [1]. Therefore, more com-
plete statistical characteristics of local intensities recently
have to be taken into account. For instance, Rosenhahn et
al. [18] used both local intensity means and variances to
characterize the local intensity distribution in their proposed
level set method. However, the local intensity means and
variances are defined empirically in their models. Wang
et al. [1, 20] proposed a local Gaussian distribution fitting
(LGDF) energy with a level set function and local means
and variances as variables, in which the local intensity means
and variances are strictly derived from a variational principle,
instead of being defined empirically. However, LGDF model
cannot estimate the bias field so as to correct the intensity
inhomogeneity in the original image. An improved LGDF
model has been proposed by Chen et al. [22] to implement
image segmentation and bias field correction simultaneously.
Although these two LGDF models were derived based on
maximum a posteriori probability (MAP) rule, they assumed
the a priori probability of each partition among all partitions
is equiprobable; that in other words, the MAP rule actually
reduces to maximum likelihood (ML) rule. In [23], based on
MAP rule, Shahvaran et al. proposed a variational level set
combined withMarkov randomfieldmodel for simultaneous
segmentation and bias filed correction of MR images, in

which the a priori probability was approximated by the
normalized pseudolikelihood [24].

In this paper, we propose a new level set method based
on local region statistics and MAP rule for simultaneous
image segmentation and bias field estimation. Based on the
additive model of images with intensity inhomogeneity, we
describe image intensities belonging to each different tissue in
local regions by Gaussian distributions with different means
and variances. By using maximum a posteriori probability
(MAP) and Bayes’ rule, we first define a local energy for
image intensities in a neighborhood around each pixel.
The local energy is then integrated over the entire image
domain to form a global energy, which is converted into
a level set formulation. Minimization of this global energy
is achieved by an interleaved process of level set evolution
and estimation of the bias field. As an important application,
our method can be used for accurate segmentation and
bias correction of medical images in the presence of severe
intensity inhomogeneity and noise.

The remainder of this paper is organized as follows.
Section 2 reviews three different models of image with inten-
sity inhomogeneity and some relevant level set methods.
Section 3 gives the energy formulation of our method and
its minimization in level set framework is presented in
Section 4. In Section 5, experimental results are presented
and analyzed using a set of synthetic and real images, followed
by some discussions in Section 6. This paper is summarized
in Section 7.

2. Background

2.1. Models of Image with Intensity Inhomogeneity. According
to [2, 25], three commonly used models of image with
intensity inhomogeneity have been proposed in the literature,
depending on how the true image 𝐼, bias field 𝑏, and noise 𝑛
interact. Let 𝐽 be the observed image; the first model assumes
that the noise only arises from the scanner and is therefore
independent of the bias field, which is defined as

𝐽 = 𝐼 ⋅ 𝑏 + 𝑛. (1)

In the second model, only biological noise is considered,
which is scaled by the bias field 𝑏, so that the signal to noise
ratio (SNR) is preserved

𝐽 = (𝐼 + 𝑛) ⋅ 𝑏. (2)

The third model is based on log-transformed intensities,
by which the multiplicative bias field becomes additive.
However, if two main sources of noise, namely, the biological
noise and the scanner noise, should be considered in log-
space, the noise formation will be nontrivial and unknown.
Therefore, for methodological convenience, the noise is still
assumed to be additive Gaussian [2]. The image model is
expressed as

log 𝐽 = log 𝐼 + log 𝑏 + 𝑛. (3)

2.2. Li’s Method. A generally accepted assumption on the
bias field 𝑏 is that it is smooth or slowly varying. Ideally, the



Computational and Mathematical Methods in Medicine 3

intensity 𝐼 belonging to the 𝑖th tissue should take a specific
value 𝑐

𝑖
, which represents the measured physical property

[21]. Based on these two properties and the image model (1),
Li et al. [21] firstly defined a local objective function to classify
the data 𝐽(𝑥) in the circular neighborhood 𝑂

𝑦
centered on

𝑦 into 𝑁 clusters using a 𝐾-means clustering method, and
then this local objective function is integrated with respect to
the neighborhood center over the entire image domain Ω to
formulate the proposed energy function as follows.

𝐸Li = ∫
Ω

(

𝑁

∑

𝑖=1

∫
Ω𝑖

𝜔 (𝑥 − 𝑦)
𝐽 (𝑥) − 𝑏 (𝑦) 𝑐𝑖



2
𝑑𝑥)𝑑𝑦, (4)

where {Ω
𝑖
}
𝑁

𝑖=1
denote a partition of the image domain Ω,

𝑏(𝑦)𝑐
𝑖
is the 𝑖th cluster center within the neighborhood 𝑂

𝑦
,

𝜔 is a truncated Gaussian kernel which controls the size of
the neighborhood 𝑂

𝑦
. Note that the term inside the outer

brackets is the local objective function in the neighborhood
𝑂
𝑦
.

2.3. Chen’s Method. Similar to Li’s method, Chen et al.
[19] applied the 𝐾-means clustering to classify the log-
transformed intensities and thus proposed the following
energy function:

𝐸Chen = ∫
Ω

(

𝑁

∑

𝑖=1

∫
Ω𝑖

𝜔 (𝑥 − 𝑦)

𝐽 (𝑥) − �̃� (𝑦) − 𝑐𝑖



2

𝑑𝑥)𝑑𝑦,

(5)

where 𝐽, �̃� represent log 𝐽 and log 𝑏, respectively. 𝑐
𝑖
is the

log-transformed value of the intensity 𝐼 belonging to the 𝑖th
tissue. Correspondingly, (�̃�(𝑦) + 𝑐

𝑖
) is the 𝑖th cluster center

within the neighborhood 𝑂
𝑦
.

In essence, both Li’s and Chen’s methods utilize the local
intensity means, and hence they can handle intensity inho-
mogeneity. However, the local intensitymeans do not provide
enough information for accurate segmentation, especially in
the presence of strong noise and intensity inhomogeneity.
Besides, these two methods ignore the noise, which is also
a key factor to influence the segmentation accuracy.

2.4. Chen’s ImprovedMethod. For the imagemodel (2), taking
the logarithmic transformation of both sides, we have

log 𝐽 = log (𝐼 + 𝑛) + log 𝑏. (6)

Let 𝐽, 𝐼, and �̃� denote log 𝐽, log(𝐼 + 𝑛), and log 𝑏, respectively.
Equation (6) can be written as

𝐽 = 𝐼 + �̃�. (7)

Assuming that the intensities 𝐼 of different tissue regions
within the neighborhood 𝑂

𝑦
have different Gaussian distri-

butions, that is, means and variances, Chen et al. [22] utilized
MAP rule (strictly speaking, ML rule) to derive the local
Gaussian distribution fitting energy as follows:

𝐸
∗

Chen = ∫
Ω

𝑁

∑

𝑖=1

∫
Ω𝑖

−𝜔 (𝑥 − 𝑦) log𝑝
𝑖,𝑦
(𝐽 (𝑥) − �̃� (𝑦)) 𝑑𝑥 𝑑𝑦,

(8)

where 𝑝
𝑖,𝑦
(𝐼(𝑥)) is the probability density of the 𝑖th region

within the neighborhood 𝑂
𝑦
, which is defined as

𝑝
𝑖,𝑦
(𝐼 (𝑥)) =

1

√2𝜋𝜎
𝑖,𝑦

exp(−
(𝐼 (𝑥) − 𝑢𝑖 (𝑦))

2

2𝜎
2

𝑖,𝑦

) , (9)

where 𝑢
𝑖
(𝑦), 𝜎
𝑖,𝑦

are intensitymean and standard deviation of
the 𝑖th region within the neighborhood 𝑂

𝑦
, respectively.

3. Our Proposed Energy Formulation

In this paper, we adopt the image model (3), which was
used in [26–28]. Let 𝐽, 𝐼, and �̃� denote log 𝐽, log 𝐼, and log 𝑏,
respectively, (3) can be rewritten as

𝐽 = 𝐼 + �̃� + 𝑛, (10)

where noise 𝑛 is assumed to be zero-mean Gaussian noise
with variance 𝜎2

𝑖
within the 𝑖th tissue domain.

To effectively exploit information on local intensities, we
need to characterize the distribution of local intensities via
partition of neighborhood as in [1]. For each point 𝑦 in the
image domain Ω, we consider a circular neighborhood with
a small radius 𝑟, which is defined as 𝑂

𝑦
= {𝑥 : |𝑥 − 𝑦| ≤ 𝑟}.

The partition {Ω
𝑖
}
𝑁

𝑖=1
(𝑁 is the total number of segmented

regions) of the entire domain Ω induces a partition of the
neighborhood𝑂

𝑦
, that is, {𝑂

𝑦
∩ Ω
𝑖
}
𝑁

𝑖=1
forms a partition of𝑂

𝑦

[1, 19]. For a slowly varying bias field �̃�, the values �̃�(𝑥) for all
𝑥 in the circular neighborhood 𝑂

𝑦
can be well approximated

by its value �̃�(𝑦) at the center of 𝑂
𝑦
, that is

�̃� (𝑥) ≈ �̃� (𝑦) , 𝑥 ∈ 𝑂
𝑦
. (11)

If we assume that the intensity 𝐼 belonging to the 𝑖th tissue
should take a specific value 𝑐

𝑖
as in [19], the intensities 𝐽(𝑥)

within subregion 𝑂
𝑦
∩ Ω
𝑖
can be described as a Gaussian

distribution with mean (𝑐
𝑖
+ �̃�(𝑦)) and variance 𝜎2

𝑖
, according

to (10). In other words, the probability density in subregion
𝑂
𝑦
∩ Ω
𝑖
is

𝑝
𝑖,𝑦
(𝐽 (𝑥)) =

1

√2𝜋𝜎
𝑖

exp(−
(𝐽 (𝑥) − �̃� (𝑦) − 𝑐𝑖)

2

2𝜎
2

𝑖

) . (12)

Now we consider the segmentation of the circular neigh-
borhood 𝑂

𝑦
based on maximum a posteriori probability

(MAP) rule. Let 𝑝(𝑥 ∈ 𝑂
𝑦
∩ Ω
𝑖
| 𝐽(𝑥)) be the a posteriori

probability of the subregion𝑂
𝑦
∩Ω
𝑖
given the neighborhood

gray values 𝐽(𝑥). According to Bayes’ rule:

𝑝 (𝑥 ∈ 𝑂
𝑦
∩ Ω
𝑖
| 𝐽 (𝑥))

=

𝑝 (𝐽 (𝑥) | 𝑥 ∈ 𝑂𝑦 ∩ Ω𝑖) 𝑝 (𝑥 ∈ 𝑂𝑦 ∩ Ω𝑖)

𝑝 (𝐽 (𝑥))

,

(13)
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where 𝑝(𝐽(𝑥) | 𝑥 ∈ 𝑂
𝑦
∩ Ω
𝑖
) is the probability density in

region 𝑂
𝑦
∩ Ω
𝑖
, which is denoted by 𝑝

𝑖,𝑦
(𝐽(𝑥)) in (12). 𝑝(𝑥 ∈

𝑂
𝑦
∩ Ω
𝑖
) is the a priori probability of the partition 𝑂

𝑦
∩ Ω
𝑖

among all partitions of 𝑂
𝑦
, which can be denoted by 𝑝

𝑖
(𝑦).

The a priori probability 𝑝(𝐽(𝑥)) is independent of the choice
of the region. Therefore, (13) can be simplified as

𝑝 (𝑥 ∈ 𝑂
𝑦
∩ Ω
𝑖
| 𝐽 (𝑥)) ∝ 𝑝𝑖,𝑦 (𝐽 (𝑥)) 𝑝𝑖 (𝑦) . (14)

Assuming that the pixels within each region are inde-
pendent, the MAP can be achieved by finding the maximum
of ∏𝑁
𝑖=1
∏
𝑥∈𝑂𝑦∩Ω𝑖

[𝑝
𝑖,𝑦
(𝐽(𝑥))𝑝

𝑖
(𝑦)]. Taking a logarithm, the

maximization can be converted into the minimization of the
following energy:

𝐸
𝑦
=

𝑁

∑

𝑖=1

∫
𝑂𝑦∩Ω 𝑖

− log [𝑝
𝑖,𝑦
(𝐽 (𝑥)) 𝑝𝑖 (𝑦)] 𝑑𝑥. (15)

Generally, pixels far away from the neighborhood center
𝑦 are expected to have less influence than pixels close to 𝑦.
Therefore, we incorporate a nonnegative and monotonically
decreasing weighting function 𝜔(𝑑) into the energy (15) to
constrain the influence of different pixels. As in [1, 9, 19–
23], we choose a truncated Gaussian kernel as the weighting
function 𝜔; that is,

𝜔 (𝑑) =

{

{

{

1

𝑎
𝑒
−|𝑑|
2
/2𝜎
2

|𝑑| ≤ 𝑟,

0 else,
(16)

where 𝜎 is the standard deviation of the Gaussian kernel and
𝑎 is a constant to normalize the Gaussian kernel. With this
weighting function, the above objective function 𝐸

𝑦
can be

rewritten as

𝐸
𝑦
=

𝑁

∑

𝑖=1

∫
Ω𝑖

−𝜔 (𝑥 − 𝑦) log [𝑝
𝑖,𝑦
(𝐽 (𝑥)) 𝑝𝑖 (𝑦)] 𝑑𝑥 (17)

as 𝜔(𝑥 − 𝑦) = 0 for 𝑥 ∉ 𝑂
𝑦
.

The ultimate goal is to minimize 𝐸
𝑦
for all the center

points 𝑦 in the image domain Ω, which directs us to define
the following double integral energy:

𝐸 = ∫
Ω

𝐸
𝑦
𝑑𝑦 = ∫

Ω

(

𝑁

∑

𝑖=1

∫
Ω 𝑖

−𝜔 (𝑥 − 𝑦)

× log [𝑝
𝑖,𝑦
(𝐽 (𝑥)) 𝑝𝑖 (𝑦)] 𝑑𝑥)𝑑𝑦.

(18)

Substituting (12) into (18), we can obtain the proposed
energy formulation as follows:

𝐸 = ∫
Ω

(

𝑁

∑

𝑖=1

∫
Ω𝑖

𝜔 (𝑥 − 𝑦)

× ( − log (𝑝
𝑖
(𝑦)) + log (√2𝜋𝜎

𝑖
)

+

(𝐽 (𝑥) − �̃� (𝑦) − 𝑐𝑖)
2

2𝜎
2

𝑖

)𝑑𝑥)𝑑𝑦.

(19)

Note that our method is different from the method
proposed in [23]. First, the image model of intensity inho-
mogeneity we use is based on log-transformed intensities.
Second, we incorporate the a priori probability as a variable
into the energy function; thus the optimal value will be found
by the variational principle.

4. Energy Minimization in
Level Set Framework

The proposed energy 𝐸 in (19) is expressed in terms of
the regions Ω

1
, . . . , Ω

𝑁
. It is difficult to derive a solution

to the energy minimization problem from this expression
of 𝐸. Alternatively, we can use one or multiple level set
functions to represent the disjoint regions Ω

1
, . . . , Ω

𝑁
. Thus

this energy 𝐸 can be converted into an equivalent level set
formulation, which can be solved by using well-established
variational methods [29]. Besides, the energy 𝐸 is subject to
the constraint∑𝑁

𝑖=1
𝑝
𝑖
(𝑦) = 1; therefore, its minimization can

be derived using the Lagrange multiplier method.

4.1. Two-Phase Level Set Formulation. We assume that the
image domain can be partitioned into two regions corre-
sponding to the object and background; that is,𝑁 = 2. These
two regions can be represented as the regions outside and
inside the zero level set of function𝜙; that is,Ω

1
= {𝜙 > 0} and

Ω
2
= {𝜙 < 0}. Using the Heaviside function𝐻, the energy 𝐸

in (19) can be expressed as

𝐸 (𝜙, 𝑐
1
, 𝑐
2
, 𝜎
1
, 𝜎
2
, �̃�, 𝑝
1
, 𝑝
2
)

=∫
Ω

(

2

∑

𝑖=1

∫
Ω

𝜔 (𝑥 − 𝑦)

× (−log (𝑝
𝑖
(𝑦))+log (√2𝜋𝜎

𝑖
)

+

(𝐽 (𝑥)− �̃� (𝑦)− 𝑐𝑖)
2

2𝜎
2

𝑖

)𝑀
𝑖
(𝜙 (𝑥)) 𝑑𝑥)𝑑𝑦,

(20)
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where 𝑀
1
(𝜙(𝑥)) = 𝐻(𝜙(𝑥)) and 𝑀

2
(𝜙(𝑥)) = 1 − 𝐻(𝜙(𝑥)).

Heaviside function𝐻 is usually approximated by a smoothing
function𝐻

𝜀
defined by

𝐻
𝜀 (𝑥) =

1

2
[1 +

2

𝜋
arctan(𝑥

𝜀
)] , (21)

with 𝜀 = 1 as in [13]. The derivative of 𝐻
𝜀
is the following

smoothing function:

𝛿
𝜀 (𝑥) = 𝐻



𝜀
(𝑥) =

1

𝜋

𝜀

𝜀2 + 𝑥2
. (22)

As in typical level set methods, we need to regularize
the zero level set by penalizing its length to obtain a smooth
contour during evolution. This can be realized by the length
term

𝐿 (𝜙) = ∫
∇𝐻 (𝜙 (𝑥))

 𝑑𝑥. (23)

To avoid the expensive reinitialization procedures, we
regularize the level set function by penalizing its deviation
from a signed distance function as in [30], characterized by
the following energy:

𝑅 (𝜙) = ∫
1

2
(
∇𝜙 (𝑥)

 − 1)
2
𝑑𝑥. (24)

Therefore, the entire energy functional is defined as

𝐹 (𝜙, 𝑐
1
, 𝑐
2
, 𝜎
1
, 𝜎
2
, �̃�, 𝑝
1
, 𝑝
2
)

= 𝐸 (𝜙, 𝑐
1
, 𝑐
2
, 𝜎
1
, 𝜎
2
, �̃�, 𝑝
1
, 𝑝
2
) + ]𝐿 (𝜙) + 𝜇𝑅 (𝜙) ,

(25)

where ], 𝜇 are positive constants.
The minimization of energy 𝐹 can be achieved by an

iterative process: in each iteration, we minimize the energy 𝐹
with respect to each of its variables𝜙, 𝑐

𝑖
,𝜎
𝑖
, �̃�, and𝑝

𝑖
, given the

other four updated in previous iteration.We give the solution
to the energy minimization with respect to each variable as
follows.

For fixed 𝑐
𝑖
, 𝜎
𝑖
, �̃�, and 𝑝

𝑖
, the minimization of 𝐹 in (25)

with respect to 𝜙 can be achieved by using standard gradient
descent method, namely, solving the gradient flow equation

𝜕𝜙

𝜕𝑡
= −
𝜕𝐹

𝜕𝜙
, (26)

where 𝜕𝐹/𝜕𝜙 is the Gâteaux derivative of the energy 𝐹.
By calculus of variations, we can compute the Gâteaux

derivative 𝜕𝐹/𝜕𝜙 and express the corresponding gradient flow
equation as

𝜕𝜙

𝜕𝑡
= −𝛿
𝜀
(𝜙) (𝑒

1
− 𝑒
2
) + V𝛿

𝜀
(𝜙) div(

∇𝜙

∇𝜙


)

+ 𝜇(∇
2
𝜙 − div(

∇𝜙

∇𝜙


)) ,

(27)

where ∇ is the gradient operator, div(⋅) is the divergence
operator, ∇2 is the Laplace operator, and

𝑒
𝑖 (𝑥) = ∫

Ω

𝜔 (𝑥 − 𝑦)

× [

[

− log (𝑝
𝑖
(𝑦)) + log (√2𝜋𝜎

𝑖
)

+

(𝐽 (𝑥) − �̃� (𝑦) − 𝑐𝑖)
2

2𝜎
2

𝑖

]

]

𝑑𝑦.

(28)

For fixed 𝜙, 𝜎
𝑖
, �̃�, and 𝑝

𝑖
, the optimal 𝑐

𝑖
that minimizes the

energy 𝐹 is given by

𝑐
𝑖
=

∬
Ω
𝜔 (𝑥 − 𝑦) (𝐽 (𝑥) − �̃� (𝑦))𝑀𝑖 (𝜙 (𝑥)) 𝑑𝑥 𝑑𝑦

∬
Ω
𝜔 (𝑥 − 𝑦)𝑀

𝑖
(𝜙 (𝑥)) 𝑑𝑥 𝑑𝑦

. (29)

Similarly, we can obtain

𝜎
𝑖
= √

∬
Ω
𝜔 (𝑥 − 𝑦) (𝐽 (𝑥) − �̃� (𝑦) − 𝑐𝑖)

2

𝑀
𝑖
(𝜙 (𝑥)) 𝑑𝑥 𝑑𝑦

∬
Ω
𝜔 (𝑥 − 𝑦)𝑀

𝑖
(𝜙 (𝑥)) 𝑑𝑥 𝑑𝑦

,

(30)

�̃� (𝑦) =

∫
Ω
∑
𝑁

𝑖=1
𝜔 (𝑥 − 𝑦) ((𝐽 (𝑥) − 𝑐𝑖) /𝜎

2

𝑖
)𝑀
𝑖
(𝜙 (𝑥)) 𝑑𝑥

∫
Ω
∑
𝑁

𝑖=1
𝜔 (𝑥 − 𝑦) (1/𝜎

2

𝑖
)𝑀
𝑖
(𝜙 (𝑥)) 𝑑𝑥

,

(31)

𝑝
𝑖
(𝑦) =

∫
Ω
𝜔 (𝑥 − 𝑦)𝑀

𝑖
(𝜙 (𝑥)) 𝑑𝑥

∑
𝑁

𝑖=1
∫
Ω
𝜔 (𝑥 − 𝑦)𝑀

𝑖
(𝜙 (𝑥)) 𝑑𝑥

. (32)

4.2. Multiphase Level Set Formulation. For the case of𝑁 ≥ 3,
we can use multiple level set functions 𝜙

1
, . . . , 𝜙

𝑛
to represent

multiple regions {Ω
𝑖
}
𝑁

𝑖=1
with𝑁 ≤ 2𝑛 as in [17]. For notational

simplicity, we denote Φ = (𝜙
1
, . . . , 𝜙

𝑛
), 𝐶 = (𝑐

1
, . . . , 𝑐

𝑁
), Σ =

(𝜎
1
, . . . , 𝜎

𝑁
), and 𝑃 = (𝑝

1
, . . . , 𝑝

𝑁
). The energy for general

multiphase formulation of our method can be defined as

𝐹 (Φ, 𝐶, Σ, �̃�, 𝑃)

= ∫
Ω

(

𝑁

∑

𝑖=1

∫
Ω

𝜔 (𝑥 − 𝑦) ( − log (𝑝
𝑖
(𝑦)) + log (√2𝜋𝜎

𝑖
)

+

(𝐽 (𝑥) − �̃� (𝑦) − 𝑐𝑖)
2

2𝜎
2

𝑖

)

× 𝑀
𝑖 (Φ (𝑥)) 𝑑𝑥)𝑑𝑦

+ ]
𝑛

∑

𝑗=1

𝐿 (𝜙
𝑗
) + 𝜇

𝑛

∑

𝑗=1

𝑅 (𝜙
𝑗
) ,

(33)
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where𝑀
𝑖
(Φ) aremembership functions of the regionsΩ

𝑖
, 𝑖 =

1, . . . , 𝑁, such that

𝑀
𝑖
(𝜙
1 (𝑥) , . . . , 𝜙𝑛 (𝑥)) = {

1 𝑥 ∈ Ω
𝑖

0 else.
(34)

For example, in the case of 𝑁 = 3, we use two level set
functions 𝜙

1
and 𝜙

2
to define 𝑀

1
(𝜙
1
, 𝜙
2
) = 𝐻(𝜙

1
)𝐻(𝜙
2
),

𝑀
2
(𝜙
1
, 𝜙
2
) = 𝐻(𝜙

1
)(1 − 𝐻(𝜙

2
)), and 𝑀

3
(𝜙
1
, 𝜙
2
) = 1 −

𝐻(𝜙
1
) to give a three-phase level set formulation of our

method. For 𝑁 = 4,𝑀
𝑖
(Φ) can be defined as𝑀

1
(𝜙
1
, 𝜙
2
) =

𝐻(𝜙
1
)𝐻(𝜙
2
),𝑀
2
(𝜙
1
, 𝜙
2
) = 𝐻(𝜙

1
)(1 − 𝐻(𝜙

2
)),𝑀
3
(𝜙
1
, 𝜙
2
) =

(1 −𝐻(𝜙
1
))𝐻(𝜙

2
), and𝑀

4
(𝜙
1
, 𝜙
2
) = (1 −𝐻(𝜙

1
))(1 −𝐻(𝜙

2
)).

The minimization of the energy 𝐹 in (33) with respect to
the variableΦ = (𝜙

1
, . . . , 𝜙

𝑛
) can be performed by solving the

following gradient flow equations

𝜕𝜙
1

𝜕𝑡
= −

𝑁

∑

𝑖=1

𝜕𝑀
𝑖 (Φ)

𝜕𝜙
1

𝑒
𝑖
+ ]𝛿
𝜀
(𝜙
1
) div(

∇𝜙
1

∇𝜙1


)

+ 𝜇(∇
2
𝜙
1
− div(

∇𝜙
1

∇𝜙1


))

...

𝜕𝜙
𝑛

𝜕𝑡
= −

𝑁

∑

𝑖=1

𝜕𝑀
𝑖 (Φ)

𝜕𝜙
𝑛

𝑒
𝑖
+ ]𝛿
𝜀
(𝜙
𝑛
) div(

∇𝜙
𝑛

∇𝜙𝑛


)

+ 𝜇(∇
2
𝜙
𝑛
− div(

∇𝜙
𝑛

∇𝜙𝑛


)) .

(35)

The energy minimization with respect to 𝑐
𝑖
, 𝜎
𝑖
, �̃�, and 𝑝

𝑖

can be achieved by the same procedure as in the two-phase
case. And it is easy to show that optimal 𝑐

𝑖
, 𝜎
𝑖
, �̃�, and 𝑝

𝑖

are given by (29), (30), (31), and (32), respectively, only by
replacing𝑀

𝑖
(𝜙) with𝑀

𝑖
(Φ).

The implementation procedure of our proposed method
can be summarized as follows:

Step 1. Initialize the level set function 𝜙 (or Φ), the bias field
�̃�, and the a priori probability 𝑝

𝑖
.

Step 2. Update 𝑐
𝑖
and 𝜎

𝑖
using (29) and (30), respectively.

Step 3. Update the level set functions 𝜙 (or Φ) according to
(27) (or (35)).

Step 4. Update the bias field �̃� using (31).

Step 5. Update the a priori probability 𝑝
𝑖
using (32).

Step 6. Repeat Steps 2–5 until the convergence criteria are
met.

5. Experimental Results

In this section, the proposed method has been tested on
both synthetic and real images from different modalities.The

level set function 𝜙 can be simply initialized as a binary step
function as in [9], which takes a negative constant value −𝑐

0

(e.g., 𝑐
0
= 2) inside a region 𝑅

0
and a positive constant value

+𝑐
0
outside it. The bias field �̃�(𝑦) is initially equal to zero

for all 𝑦. The a priori probability 𝑝
𝑖
is initially equiprobable.

For the experiments in this paper, we set the iteration time
step Δ𝑡 = 0.1, standard deviation of the Gaussian kernel
𝜎 = 4, neighborhood radius of the Gaussian kernel 𝑟 = 15,
weighting coefficients 𝜇 = 1.0 and V = 0.001 × 2552 for all
images on a trial basis.

5.1. Application to Synthetic Images. We first apply our
method to segment two synthetic images, which are dis-
played in the first column of Figure 1. These two images are
corrupted by strong noise and intensity inhomogeneity. The
initial contours superposed on the original images are chosen
manually. The intermediate contours obtained by running
our method are shown in the second and third columns,
and the final contours obtained after the convergence of our
algorithm are shown in the fourth column. The two images
in the fifth column are the estimated bias fields. It is revealed
from Figure 1 that the new contours gradually emerge during
the evolution process. In the final segmentation results, the
complete boundaries of multiple objects can be successfully
extracted despite of the impact of noise and intensity inho-
mogeneity.

5.2. Application to Real Medical Images. We also evaluate
the performance of the proposed method on a set of real
medical images. The first two rows of Figure 2 show two X-
ray vessel images with intensity inhomogeneity. In addition,
parts of the vessel boundaries are quite weak. Such properties
render it a nontrivial task to segment the vessels in the
images. A coronal slice of brain MR image is shown in the
third row of Figure 2, in which intensity inhomogeneity is
quite obvious. The original images and initial contours, the
intermediate results, the final results, and the estimated bias
fields are shown from the left column to the right column of
Figure 2.These satisfactory segmentation results demonstrate
desirable performance of our method for these challenging
medical images.

5.3. MR Image Segmentation and Bias Correction. We then
focus on the application of the proposed method, which is
implemented using three-phase model, to segmentation and
bias correction of brain MR images. The first column of
Figure 3 shows two 3T MR images with obvious intensity
inhomogeneity. Some parts of white matter (WM) and
gray matter (GM) boundaries are quite fuzzy due to low
contrast. In addition, the noise also causes certain difficulties.
However, from the final contours and the segmentation
results, respectively, shown in the second and third columns
of Figure 3, it is obvious that ourmethod successfully extracts
the WM and GM in spite of the problems. The estimated
bias fields and the bias corrected images are shown in the
fourth and fifth columns. It can be seen that the intensities
within each tissue become quite homogeneous in the bias
corrected images. The improvement of the image quality in
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(a) (b) (c) (d) (e)

Figure 1: Application of ourmethod to synthetic images. Column 1: original images and initial contours. Columns 2-3: intermediate contours.
Column 4: final contours. Column 5: the estimated bias fields.

(a) (b) (c) (d) (e)

Figure 2: Application of our method to real medical images. Column 1: original images and initial contours. Columns 2-3: intermediate
contours. Column 4: final contours. Column 5: the estimated bias fields.

term of intensity homogeneity can be also demonstrated by
comparing the histograms of the original images and the bias
corrected images in Figure 4. Obviously, there are three well-
defined andwell-separated peaks in the histograms of the bias
corrected images, each corresponding to a tissue or the back-
ground in the images. In contrast, the histograms of the orig-
inal images do not have such well-separated peaks due to the
mixture of the intensity distribution caused by the bias field.

5.4. Comparison with Other Methods. In this subsection, we
first compare the proposed method with Chen’s method, Li’s
method, and Chen’s improved method.

Figure 5 shows the results of four algorithms for two syn-
thetic images with intensity inhomogeneity. The first image
contains a square object and backgroundof the same intensity
means but different variances. Since only the local intensity
means are taken into account, Chen’s and Li’s methods fail
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(a) (b) (c) (d) (e)

Figure 3: Application of our method to 3T brain MR images. Column 1: original images. Column 2: final contours. Column 3: segmentation
results. Column 4: the estimated bias fields. Column 5: the bias corrected images. The red and blue curves are zero level sets of 𝜙

1
and 𝜙

2
,

respectively.
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Figure 4: Histograms of original images and bias corrected images. (a) and (c) Histograms of the original images corresponding to the first
column in Figure 3. (b) and (d) Histograms of the bias corrected images corresponding to the fifth column in Figure 3.

to locate the object boundaries. By contrast, Chen’s improved
method and our method, which utilize local intensity means
and variances efficiently, can differentiate the object and
background using local intensity variance information. The
segmentation task for the second image is to extract three
objects with different shape. Due to the complicated intensity
inhomogeneity and strong noise, Chen’s and Li’s models fall
into a localminimumand thus obtain unsatisfactory segmen-
tation results. Nevertheless, both Chen’s improved method
and our method successfully implement the segmentation
task.

Figure 6 presents the results for two ultrasound images.
The original images have severe intensity inhomogeneity and
strong noise. Chen’s and Li’s methods are unable to overcome
these handicaps, and hence the segmentation results have

many false contours. Because both Chen’s improved method
and our method fully exploit intensity distribution informa-
tion in local regions, their segmentation results successfully
separate the lesion from normal tissues.

Next, in order to quantitatively compare the proposed
method with the above-mentioned other three methods,
we use 20 T1-weighted simulated brain MR images with
ground truth from Brain-Web in the link http://www.bic.mni
.mcgill.ca/brainweb/. All theMR images are selected from the
same volume data with 40% image intensity inhomogeneity
and 7% noise. The task of segmentation is to partition the
brain MR images into four regions, that is, white matter
(WM), gray matter (GM), cerebral spinal fluid (CSF), and
background. The segmentation results obtained by applying
these methods to two sample images are shown in Figure 7.

http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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(a) (b) (c) (d) (e) (f)

Figure 5: Comparison with othermethods using synthetic images. Column 1: original images and initial contours. Column 2: Chen’s method.
Column 3: Li’s method. Column 4: Chen’s improved method. Column 5: our method. Column 6: the estimated bias fields obtained by our
method.

(a) (b) (c) (d) (e) (f)

Figure 6: Comparison with other methods using ultrasound images. Column 1: original images and initial contours. Column 2: Chen’s
method. Column 3: Li’s method. Column 4: Chen’s improved method. Column 5: our method. Column 6: the estimated bias fields obtained
by our method.

(a) (b) (c) (d) (e) (f)

Figure 7: Comparison of segmentation results on two simulated brain MR images. Column 1: original images. Column 2: Chen’s method.
Column 3: Li’s method. Column 4: Chen’s improved method. Column 5: our method. Column 6: ground truth.
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Table 1: Comparison of the segmentation results obtained by the four methods over 20 images from the BrainWeb (mean ± SD).

Tissue Chen’s method Li’s method Chen’s improved method Proposed method
WM 0.8613 ± 0.0254 0.8792 ± 0.0223 0.9011 ± 0.0147 0.9289 ± 0.0152
GM 0.7583 ± 0.0317 0.7723 ± 0.0298 0.7953 ± 0.0241 0.8128 ± 0.0248
CSF 0.7349 ± 0.0414 0.7543 ± 0.0405 0.8311 ± 0.0319 0.8532 ± 0.0296

(a) (b) (c)

Figure 8: Application of ourmethod to two real IBSR images. Column 1: original images. Column 2: segmentation results. Column 3: ground
truth.

It can be observed that in contrast with Chen’s improved
method and our method, both Chen’s and Li’s methods
misclassifymoreWM intoGM, especially in the lower part of
the image in the second row of Figure 7.We adopt the Jaccard
similarity (𝐽𝑆) [2] as a measurement of the segmentation
accuracy. The 𝐽𝑆 between two regions 𝑆

1
and 𝑆
2
is defined as

𝐽𝑆(𝑆
1
, 𝑆
2
) = |𝑆

1
∩ 𝑆
2
|/|𝑆
1
∪ 𝑆
2
|. We compute the 𝐽𝑆 between

the segmented region 𝑆
1
obtained by the algorithm and the

corresponding region 𝑆
2
given by the ground truth.The closer

the 𝐽𝑆 value to 1, the better the segmentation result. The
resulting average 𝐽𝑆 values over 20 images for these four
methods are listed in Table 1. It demonstrates that both Chen’s
improved method and our method, which use local means
and variances, achieve higher accuracy than the other two
methods which only utilize local means. However, Chen’s
improved method virtually derived from ML rule ignores
the a priori information with respect to each partition and
therefore has lower accuracy than our method which is really
based on MAP rule.

Finally, we also quantitatively evaluate the performance
of our method for 20 real MR images selected from the
Internet Brain Segmentation Repository (IBSR). The data
sets are available at http://www.nitrc.org/projects/ibsr. The
test images are selected from sequence 100 23. The expert

manual segmentation results provide the basis for a “ground
truth” set to be used for comparative study. Figure 8 shows the
segmentation results of ourmethod in two sample images and
corresponding ground truth.We compare the accuracy of our
method with that of six segmentation methods provided by
the IBSR, including theMAP, adaptiveMAP, biasMAP, FCM,
maximum likelihood, and tree-structure𝐾-means algorithm.
Furthermore, two additional methods, FSL-FAST [31] and
SPM [25], which report average results on IBSR data set, are
also included. The average 𝐽𝑆 values of nine methods are
shown in Table 2. It can be seen that ourmethod outperforms
other eight methods in terms of segmentation accuracy.

6. Discussion

Our proposed method is based on log-transformed data,
and hence low intensity pixels have to be excluded to avoid
numerical problems [25]. As in other level set methods,
there are parameters which need to be adjusted to obtain
appropriate segmentation results. The parameter 𝜇 in (25) or
(33) influences the regularization term of the level set, and
its effect has been detailed in [30]. As shown in [22], the
parameter ] can be adjusted to smooth the curves, in a way
that the smoothness of the curve increases when ] increases.

http://www.nitrc.org/projects/ibsr
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Table 2: The average JS values of the segmentation results obtained
by the nine methods over the IBSR data set.

Segmentation Method WM GM
Maximum a posteriori probability (MAP) 0.554 0.550
Adaptive MAP 0.567 0.564
Bias MAP 0.562 0.558
Fuzzy c-means (FCM) 0.567 0.473
Maximum likelihood (ML) 0.551 0.535
Tree-structure𝐾-means 0.571 0.477
FSL-FAST 0.541 0.510
SPM 0.670 0.652
Our method 0.801 0.823

The truncatedGaussian kernel𝜔(𝑥−𝑦) is usually constructed
as a𝑚×𝑚mask (or𝑚×𝑚×𝑚 for 3D data), where𝑚 is a small
odd number typically within 3𝜎 ∼ 5𝜎. In our experiments, we
find that 𝜎 = 4 can appropriately complete segmentation task
for all the images.

In addition, it can be observed from (28)–(32) that for
every iteration, a few convolution operations are performed.
The convolution operations require a high computational
complexity𝑂(𝑆

1
𝑆
2
), where 𝑆

1
and 𝑆
2
are the size of the image

and the Gaussian kernel, respectively. For the images with the
size 181 × 217, the average CPU time using Matlab codes on
a PC with Intel Dual-Core 2.93GHz Processor and 2G RAM
is about 20 s. For the 3D data with the size 256 × 256 × 20
from the IBSR, the average CPU time is about 20 minutes.
Obviously, our method must be computationally expensive
to segment the whole brain. However, with the initial curve
near the edge of the objects, the proposed method may need
less iterations and less CPU time.

7. Conclusion

In this paper, we have proposed a new level set method
for segmentation and bias field estimation of images with
intensity inhomogeneity. Based on local region statistics and
maximum a posteriori probability, we define an energy in
terms of the level set functions that represent a partition of the
image domain and a bias field that accounts for the intensity
inhomogeneity of the image. Our method can estimate
intensity inhomogeneity, handle noise efficiently, and also
allow flexible initialization. In addition, the regularity of
the level set function is intrinsically preserved by the level
set regularization term to ensure an accurate computation
avoiding expensive reinitialization procedures. Comparisons
with other approaches demonstrate the superior performance
of the proposed method. However, our proposed method
does have some limitations such as high computation cost. In
our future work, we plan to reduce the computational scheme
by using the Split Bregman method [32], instead of gradient
descent method used in this paper.
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