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Abstract: The inertial measurement unit and ultra-wide band signal (IMU-UWB) combined indoor
positioning system has a nonlinear state equation and a linear measurement equation. In order to
improve the computational efficiency and the localization performance in terms of the estimation
accuracy, the federated derivative cubature Kalman filtering (FDCKF) method is proposed by
combining the traditional Kalman filtering and the cubature Kalman filtering. By implementing
the proposed FDCKF method, the observations of the UWB and the IMU can be effectively fused;
particularly, the IMU can be continuously calibrated by UWB so that it does not generate cumulative
errors. Finally, the effectiveness of the proposed algorithm is demonstrated through numerical
simulations, in which FDCKF was compared with the federated cubature Kalman filter (FCKF) and
the federated unscented Kalman filter (FUKF), respectively.

Keywords: federated derivative cubature Kalman filtering; information fusion; indoor positioning

1. Introduction

With the development of science and society, more and more intelligent products have entered
in people’s lives, and the most representative of them are intelligent robots, such as cleaning robots,
storage robots, and service robots. Most intelligent robots are mainly used in indoor scenarios such as
home services, factory logistics, and business services. Therefore, it is of great significance to study
high-precision indoor positioning techniques.

The current indoor positioning solutions include WiFi [1], Bluetooth [2], ultra-wide band
(UWB) [3–5], ZigBee [6], inertial measurement unit (IMU) [7–9], and so on. The inertial navigation
system is a self-contained system that calculates the position, velocity, and attitude of a vehicle
from the outputs of inertial measurement units (IMUs). However, IMUs have drift errors, and their
positioning errors increase unrestrictedly with time [10]. Therefore, the IMU as a positioning sensor
alone is only effective for a short time. If it needs to work for a long time, other sensors need to be
introduced to continuously correct the accumulated error of the IMU. Compared with other indoor
positioning solutions, UWB signals have the characteristics of strong anti-multipath effect, low energy
consumption, low power consumption, and comparatively high positioning accuracy. Therefore, it is a
popular indoor positioning solution with high comprehensive performance. Thanks to the miniature
of single chip transceiver [11], UWB positioning system has been adopted to provide accurate location
information for multi-agent systems [12,13]. The disadvantage of UWB is that this solution cannot
obtain accurate bearing information in an indoor environment. Due to the fact that IMU information
and UWB information are complementary [14,15], the fusion of IMU and UWB information can
overcome the shortcomings of two independent systems, such as the lack of bearing information of
UWB and the long-term drift error of IMU. It also enables to sufficiently exploit the advantages of both
stand alone systems, such as UWB’s positioning accuracy does not change over time, and IMU’s short
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time positioning accuracy is extremely high [16]. Fusion of multiple sensors information and complete
real-time fault diagnosis is currently the most popular solution [17].

There are many algorithms for information fusion in the literature such as the filtering based
method [18–20], the statistical inference method [21,22], and the artificial intelligence method [23].
Among them, Extended Kalman Filter (EKF) is the most commonly used state estimation algorithm
for nonlinear systems [24]. This algorithm uses an approximate idea to transform a nonlinear system
into a linear system through Taylor expansion [25]. However, when the system’s non-linearity is
high, EKF will produce a large truncation error, resulting in inaccurate fusion results. The Unscented
Kalman Filter (UKF) uses a finite number of sigma points to propagate the probability density function
of state distribution through the nonlinear dynamics of a system [26]. Therefore, UKF is one of the
most commonly used methods for attitude estimation [27] and multi-sensor information fusion [28].
In high-dimensional systems, UKF needs to adjust parameters reasonably to obtain better filtering
effects, which turns out to be difficult in practice. Ienkaran Arasaratnam and Simon Haykin recently
proposed the cubature Kalman filter (CKF) [29] which has been the closest approximation until now
to Bayesian filtering in theory. A prominent advantage of CKF is that it is mathematically rigorous,
which is reflected in the fact that CKF is based on the third-degree spherical-radial cubature rule.
A unique characteristic of the CKF is that the spherical radial cubature rule leads to an even number of
equally weighted cubature points. These cubature points are distributed on a sphere centered on the
real point [30,31]. The state estimation and target tracking based on cubature Kalman have gradually
received more and more attention from scholars [32]. Large-scale system will lead to the problem of
high calculation complexity and large calculation burden [33]. It is an efficient solution to decompose
the large system into multiple subsystems for distributed and decentralized calculation [34,35]. In order
to improve system performance, it is necessary to adopt a framework of decentralized Kalman
filtering [36]. The federated filter uses a two-stage filtering structure, which reduces the amount of
calculation and improves the system’s fault tolerance [37]. To sum up, a distributed framework for
federated filtering shall be proposed in this paper, where the derivative CKFs are used as sub-filters to
fuse UWB and IMU information.

The rest of the paper is organized as follows. In Section 2, we introduce practical systems with
both UWB and IMU sensors [38]. Section 3 proposes an estimation fusion algorithm based on the
derivative CKF in the federated filtering framework which is called the federated derivative cubature
Kalman filter (FDCKF). The derivative CKF uses KF to simplify the calculation of the measurement
update without reducing the estimation accuracy. In addition, inspired by [39,40], this paper also
applies Singular Value Decomposition (SVD) decomposition to the DCKF algorithm to improve the
convergence of the algorithm and avoid ill-posed problems [41,42] during the Cholesky decomposition.
In Section 4, the proposed algorithm is verified through numerical examples on the odometer based
motion system. Finally, conclusions are made in Section 5.

The terms of the filtering algorithm appearing in this section will be explained respectively
in Table 1.
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Table 1. Shorthand table of filtering algorithms.

Shorthand Explanation

KF A method for state estimation of linear systems.

CKF A method for state estimation of nonlinear systems.

DCKF Aiming at the system introduced in this article, a derivative
algorithm is proposed by combining the KF and CKF algorithms.
The KF algorithm is used for the linear part of the system, and the
CKF algorithm is used for the nonlinear part of the system.

SVD−DCKF The Cholesky decomposition for solving cubature points in the
DCKF algorithm is replaced with SVD decomposition.

Federated filter An information fusion framework.

SVD−FDCKF Apply SVD-DCKF as a sub-filter to the federated filter.

The relationship between these filtering algorithms is shown in Figure 1.

Figure 1. Relationship between filtering algorithms.

This article proposes a new IMU-UWB fusion scheme called Singular Value Decomposition
(SVD)-FDCKF, which continuously corrects the IMU through UWB positioning information to avoid
the accumulation of IMU drift errors. With the assistance of UWB, the high positioning accuracy of the
IMU in a short time can be fully utilized.

2. IMU-UWB Mobile Robot System Model

As shown in Figure 2, the system used in this paper is a mobile robot system equipped with UWB
sensors and IMU sensors. For a mobile robot running in an indoor environment, precise position
information is necessary for performing complex mobile tasks. The IMU information can provide
accurate position information and direction information of the mobile robot in a short time. Over time,
accelerometer errors in the IMU can lead to accumulation of drift errors. Although UWB information
cannot provide complete pose information, its positioning results are relatively stable, indicating that
the positioning accuracy will not change with time. The mobile robot considered in this article is a
wheeled mobile robot, so it is also equipped with an odometer, which can obtain the speed, acceleration,
and posture information of the mobile robot by recording the driving mileage of the driving wheels.
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Figure 2. Inertial measurement unit and ultra-wide band signal (IMU-UWB) indoor positioning via the
Singular Value Decomposition (SVD)-federated derivative cubature Kalman filter (FDCKF).

The specification of simulated sensors and mobile robot are shown in Figure 3. (a) The UWB
sensors are commercial products provided by the company of YCHIOT, and its modole is Mini3s;
(b) we chose a very popular spatial motion sensor chip MPU6050 as the IMU sensor; (c) the odometer
is constructed by the DC gear motors MG513 with encoder; (d) the wheeled mobile robot platform
realizes accurate positioning by carrying the above sensors. The specific applications and mathematical
expressions of these sensors will be described in detail below.

(a) UWB sensor (b) IMU sensor

(c) DC geared motor (d) Wheeled mobile robot

Figure 3. The sensors and mobile robot involved in this article.

2.1. Description of System State Equation

The position change of the mobile robot system is based on the odometer, so we choose the
odometer model to describe the current system state. Assuming that the indoor environment is an
ideal plane environment, the position of the mobile robot can be expressed as (x, y, θ), where x and y
represent the position coordinates of the robot in the Cartesian coordinate system, and θ represents the
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yaw angle of the robot. Based on this state information, the mobile robot can be navigated. The system
state vector Xk is defined as follows:

Xk = [xk, yk, θk]
T (1)

where the subscript k indicates the value of the state at time k. According to the characteristics of the
odometer, state-space model for the mobile robot is given as:

Xk+1 =

 x k +M k /γ k (cos(θ k +γ k)− cosθ k)

y k +M k /γ k (sin(θ k +γ k)− sinθ k)

θ k +γ k

+ wk (2)

where Mk is the distance recorded by odometer, γk is the change amount of the yaw angle of the mobile
robot, which can be obtained by the odometer based on the difference between the left and right wheel
movement distances. The wk is the Gaussian white noise with its variance Qk being expressed by:

E[wkwT
k ] = Qk (3)

The variables Mk and γk included in the above state equation do not belong to the state variable
Xk of the system; instead, they are used as inputs uk in this state equation. For wheeled mobile robots,
the odometer’s change value of the left wheel4Ml,k and right wheel4Mr,k can be obtained separately.
The input of the state equation can be obtained by the following formula:

Mk = (4Mr,k +4Ml,k)/2

γk = (4Mr,k −4Ml,k)/L (4)

where L is the distance between the driving wheels of the wheeled mobile robot. Consequently, it can
be seen from Equation (2) that the system’s state equation is a nonlinear equation with inputs.

2.2. Description of System Measurement Equations

The measurement equations considered in this paper are obtained according to the UWB module
and the IMU module, respectively. The UWB module can calculate the position of the mobile robot
based on the ranging information, and the IMU module can obtain the position information based on
the acceleration integral. Next, it will be described in detail.

2.2.1. IMU Measurement Equation

The IMU consists of a gyroscope and an accelerometer, which are used to measure acceleration
and angular velocity, respectively. Integrating the acceleration twice can yield the position information,
and similarly integrating the angular velocity can achieve the yaw angle information. However,
the measurement results of low-cost commercial accelerometers are of low accuracy, and the
acceleration deviation is seriously affected by the working time, i.e., the positioning results will
have a large drift error as the working time increases. The data can be collected from the IMU
including the position (xk, yk) and the yaw angle (θk) of the mobile robot.

The measurement equation of the system based on the IMU is shown as follows: Zx,k
Zy,k
Zθ,k

 =

 1 0 0
0 1 0
0 0 1


 xk

yk
θk

+

 v1x ,k × T2

2
v1y ,k × T2

2
v1θ ,k

 (5)
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where the v1x ,k, v1y ,k, v1θ ,k are measurement noise with variance R1,k, and T denotes the signal
sampling period.

E[v1x ,kvT
1x ,k] = R1,k (6)

2.2.2. UWB Measurement Equation

In the set up of the UWB positioning system, three UWB sensors are deployed as anchors.
We establish a Cartesian coordinate system by accurately measuring the distance and angle between
these anchors. A UWB sensor is deployed on the mobile robot as a tag, and the time of arrival (TOA)
method is used for distance measurement between the tag and the anchors. The coordinates of the tag
are calculated using the distance measurement information and the coordinates of the anchors. Typical
TOA based algorithms include trilateration, weighted least square, second order cone programming
(SOCP), etc. Since the UWB sensor’s refresh frequency can reach 200 Hz, it can be considered that the
UWB positioning result can reflect the mobile robot’s position information (x, y) in real time.

The measurement equation of the UWB localization system is shown as follows:

[
Zx,k
Zy,k

]
=

[
1 0 0
0 1 0

] x k
y k
θ k

+ v 2,k (7)

where the υ2,k is the measurement noise and its variance R2,k is expressed as:

E[v2,kvT
2,k] = R2,k (8)

3. The Federated Derivative Cubature Kalman Filter

3.1. Problem Statement

In the previous section, we have shown the state equations of the moving system to be located and
the measurement equations of the IMU-UWB. It is not difficult to see that the system’s state equation
is nonlinear, while the measurement equation is linear. Due to the linear nature of the measurement
equation, if a combination of federated filtering and CKF filtering is used, a volume of redundant
calculations will be generated when the cubature points are propagated through the measurement
equation. Meanwhile, the Cholesky decomposition used in CKF requires the matrix to be a positive
definite matrix, which has strong limitations. The SVD decomposition can decompose any form of
matrix, and can be transformed into the form required by CKF. Therefore, the problem of interest is
to design a SVD-FDCKF method so as to improve the computational efficiency and the localization
performance in terms of estimation accuracy.

The SVD-FDCKF method developed in this section uses derivative CKF and the distributed
framework of federated filtering to excute distributed information fusion. The main framework of
the SVD-FDCKF algorithm is shown in Algorithm 1. Further detailed steps and related proofs will be
explained in the sequel.
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Algorithm 1 A Cycle of SVD-FDCKF Algorithm to Estimate System State.

Input: Mk, γk, X̂k, Pk, Z1
k+1, Z2

k+1
Output: X̂k+1, Pk+1

CKF-Time Update
1: Initialize state estimate X̂k and the error covariance matrix Pk.
2: Calculate the state cubature points X j

k by SVD decomposition.
3: Propagating the cubature points X j

k through the nonlinear state equation.
4: Calculate the predicted state X̂ j

k+1|k and the error covariance Pk+1|k.

KF-Measurement Update
5: Calculate the predicted measurements of two sub-filters Ẑ1

k+1&Ẑ2
k+1 at the same time according to

KF.
6: The state estimates X̂1

k+1, X̂2
k+1 and error covariance matrices P1

k+1, P2
k+1 of the two sub-filters are

updated separately.
7: return Fuse two local filters to obtain a better estimation by reset federated filter and return X̂k+1,

Pk+1.

3.2. Algorithm Description

The considered nonlinear discrete-time system is represented by:

Xk+1 = f (Xk, uk) + wk

Z1
k = H1Xk + v1,k

Z2
k = H2Xk + v2,k (9)

where Xk ∈ Rn and Zi
k ∈ Rm

i (i = 1, 2) denote respectively the state and measurement vector at
time k. The state Xk = [xk, yk, θk]

T , f (·) is the nonlinear n-dimensional vector function, and Hi is the
measurement matrix. wk and vi,k are the uncorrelated zero-mean Gaussian white noise processes with
covariances as:

E[wkwT
k ] = Qk

E[vi,kvT
i,k] = Ri,k i = 1, 2 (10)

The optimal Bayesian filter (BF) is an ideal tool for state estimation. For nonlinear system state
models, Bayesian filtering requires an approximate analysis in practice. When the density functions of
the state and the measurement variables conforms to the Gaussian distribution, CKF is an approximate
non-linear filtering algorithm closest to BF. The procedure of the proposed SVD decomposition based
federated cubature Kalman filter (SVD-FDCKF) is elaborated as follows:

• Step 1. Initialize state estimate X̂k and the error covariance matrix Pk.
• Step 2. Since the error covariance matrix Pk is a positive definite matrix, the state cubature

points are calculated by SVD decomposition, and its weight as follows:

Pk = UΣUT = (U
√

Σ)(U
√

Σ)T

= SkST
k

X j
k = Skξ j + X̂k j = 1, 2, · · · , m (11)
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where m is the total number of cubature points. According to Spherical–Radial Cubature law,
we have m = 2n where n is the dimension of the state quantity. Σ = diag(λ1, · · · , λn) is a
diagonal matrix composed of eigenvalues. ξ j is the cubature point which is set to:

ξ j =

{√
nIj j = 1, · · · , n

−
√

nIj j = n + 1, · · · , 2n
(12)

where Ij represents the jth column of the identity matrix. The cubature points’ weights are set to:

ωj =
1
m

(13)

• Step 3. Evaluate the propagated cubature points. The transformed cubature points yielded
through the nonlinear state model are given as follows:

X j
k+1|k = f (X j

k, uk) j = 1, 2, · · · , m (14)

• Step 4. Calculate the predicted state and the error covariance as follows:

X̂k+1|k =
2n

∑
j=1

ωjX
j
k+1|k

Pk+1|k =
2n

∑
j=1

ωjX
j
k+1|k(X j

k+1|k)
T

− X̂k+1|k(X̂k+1|k)
T + Qk (15)

After the time update, the measurement update is then performed.
• Step 5. As the system measurement equation is linear, the KF method is used for the

measurement update and the Kalman gain calculation. The predicted measurement can be
computed as follows:

Ẑi
k+1 = HiX̂k+1|k (16)

• Step 6. The state estimate X̂i
k+1 and the corresponding error covariance matrix Pi

k+1 can be
updated by:

X̂i
k+1 = E(Xk+1|Zi

k+1)

= X̂k+1|k + Ki
k+1(Zi

k+1 − Ẑi
k+1) (17)

Pi
k+1 = cov(X̃i

k+1)

= Pk+1|k − Pk+1|k HT
i

(HiPk+1|k HT
i + Rk+1)

−1HiPk+1|k (18)

where X̃i
k+1 = Xk+1 − X̂i

k+1 is filtering error. The Kalman gain at time k can be obtained as
follows:

Ki
k+1 = Pk+1|k HT

i (HiPk+1|k HT
i + Rk+1)

−1 (19)

• Step 7. Adopt the federated filtering framework to fuse the local estimation information of two
local filters to obtain a better estimation:

Pg
k+1 = [(P1

k+1)
−1 + (P2

k+1)
−1]−1 (20)

X̂g
k+1 = Pg

k+1[(P1
k+1)

−1X̂1
k+1 + (P2

k+1)
−1X̂2

k+1]
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where Pg
k+1 and X̂g

k+1 in the above formula are used respectively to re-initialize Pk and X̂k in
Step 1, and then repeat Step 1 to Step 7 for the next sample.

In the process of state estimation, the proposed SVD-FDCKF algorithm was updated by adopting
a simple and effective KF method to replace the CKF method which uses extra cubature points to
approximate the state mean and covariance for the linear measurement equation. Compared with the
CKF method, the proposed algorithm reduces the redundant computation load.

In addition to the applicability of the system proposed in this article, the proposed method can
be modified to deal with systems where the state equation is a linear equation and the measurement
equation is a nonlinear equation.

Lemma 1. The set of cubature points have the same sample mean and covariance as the distribution of the
system Xk in (9).

Proof. Cubature points are of equal weights about X̂k. Meanwhile, they are symmetrically selected.
From the rules of cubature points’ selection which can be obtain in Formula (11) and (12), it is clear
that the sample mean is X̂k.

Suppose that the sample covariance is P. We can conclude

P =
2n

∑
j=1

wj{X
j
k − X̂k}{X

j
k − X̂k}T

=
2n

∑
j=1

1
m
{Skξ j}{Skξ j}T

=
2n

∑
j=1

1
2n
{Skξ jξ

T
j ST

k }

= Sk

2n

∑
j=1

1
2n
{ξ jξ

T
j }ST

k (21)

From the known conditions (12), we can obtain that ∑2n
j=1

1
2n ξ jξ

T
j is a identity matrix and the

equation SkST
k = Pk. Therefore, we can get P = Pk from the above formula.

Theorem 1. For the system given in Section 2, the proposed DCKF algorithm has the same estimation error
covariance as CKF.

Proof. In order to facilitate the distinction, the symbols used by the CKF algorithm are superscripted
with ’c’.

For non-linear state equations, the state prediction X̂k+1|k and the error covariance prediction
Pk+1|k can be obtained after time updates. Factorize the error covariance and calculate the measurement
cubature point as follows:

Pk+1|k = Sc
k+1|kSc

k+1|k
T

X∗,j,ck+1|k = Sc
k+1|kξc

j + X̂k+1|k (22)

where ξc
j is the measurement cubature point which is expressed as:

ξc
j =

{√
nIj j = 1, · · · , n

−
√

nIj j = n + 1, · · · , 2n
(23)
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Cubature points are propagated through the linear observation equation:

Zj,c
k+1 = HX∗,j,ck+1|k (24)

From this, the predicted measurement can be obtained by:

Ẑc
k+1 =

1
2n

2n

∑
i=1

Zj,c
k+1

=
1

2n
H

2n

∑
i=1

X∗,j,ck+1|k

= HX̂k+1|k (25)

By the result in Lemma 1, the measurement covariance of CKF can be derived as:

PZ,c
k+1 =

1
2n

2n

∑
j=1

Zj,c
k+1(Zj,c

k+1)
T − Ẑc

k+1(Ẑc
k+1)

T + Rk+1

=
1

2n

2n

∑
j=1

HX∗,j,ck+1|k(X∗,j,ck+1|k)
T HT

− HX̂k+1|k(X̂k+1|k)
T HT + Rk+1

= H[
2n

∑
j=1

1
2n

X∗,j,ck+1|k(X∗,j,ck+1|k)
T

− X̂k+1|k
2n

∑
j=1

(X∗,j,ck+1|k)
T −

2n

∑
j=1

X∗,j,ck+1|k(X̂k+1|k)
T

+ X̂k+1|k(X̂k+1|k)
T ]HT + Rk+1

= H[
2n

∑
j=1

1
2n

(X∗,j,ck+1|k − X̂k+1|k)

(X∗,j,ck+1|k − X̂k+1|k)
T ]HT + Rk+1

= HPk+1|k HT + Rk+1 (26)

Using the same proof method as (26), we can get the cross-correlation matrix between the predicted
state and measurement:

PXZ,c
k+1 =

1
2n

2n

∑
j=1

X∗,j,ck+1|k(Zj,c
k+1)

T − X̂k+1|k(Ẑc
k+1)

T

=
1

2n

2n

∑
j=1

X∗,j,ck+1|k(X∗,j,ck+1|k)
T

− X̂k+1|k(X̂k+1|k)
T HT

= [
1

2n

2n

∑
j=1

X∗,j,ck+1|k(X∗,j,ck+1|k)
T

− X̂k+1|k(X̂k+1|k)
T ]HT

= Pk+1|k HT (27)
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The Kalman gain of CKF can be obtained by the following formula:

Kc
k+1 = PXZ,c

k+1 (PZ,c
k+1)

−1

= Pk+1|k HT(HPk+1|k HT + Rk+1)
−1 (28)

From (19) and (28), we can get Kck f
k+1 = Ki

k+1, i.e., DCKF and CKF can get the same Kalman gain in
the system used in this paper. After getting Kalman gain, we can update the state prediction by:

X̂c
k+1 = X̂k+1|k + Kc

k+1(Zk+1 − Ẑc
k+1) (29)

According to formula (16) and (24), we have Zj,c
k+1 = Ẑi

k+1. It can be found that (17) and (29) are
equivalent. Therefore, both the CKF algorithm and the DCKF algorithm proposed in this paper have
the comparative estimation accuracy.

Theorem 2. The SVD-FDCKF fusion algorithm proposed in this paper yields an optimal estimate of the system
state in the sense of minimum variance.

Proof. The centralized fusion estimation is the optimal estimation of the system state in the sense of
minimum variance. Therefore, it is sufficient to prove that the algorithm proposed in this paper is
equivalent to the centralized fusion algorithm. Consider the time update first. In the time update part,
the algorithm is not performed independently, i.e., Pk+1|k = Pg

k+1|k and X̂k+1|k = X̂g
k+1|k. Therefore, it is

only necessary to prove that the measurement update part is equivalent to the centralized fusion.
Define the centralized fusion measurement equation:

Zk = HXk + vk (30)

where Zk = [Z1
k , Z2

k ]
T , H = [HT

1 , HT
2 ]

T , vk = [vT
1,k, vT

2,k]
T and Rk = diag(R1,k, R2,k). The measurement

update of centralized fusion can be described as:

(Pglobal
k+1 )−1 = (Pg

k+1|k)
−1 + HT R−1

k+1H (31)

(Pglobal
k+1 )−1X̂global

k+1 = (Pg
k+1|k)

−1X̂g
k+1 + HT R−1

k+1Zk+1 (32)

According to (20), we can obtain that:

(Pg
k+1)

−1 = (P1
k+1)

−1 + (P2
k+1)

−1

=
2

∑
i=1

[(Pi
k+1|k)

−1 + HT
i Ri

k+1Hi]

= (Pg
k+1|k)

−1 + (HT
1 , HT

2 )× diag((R1
k+1)

−1, (R2
k+1)

−1)

× (HT
1 , HT

2 )
T

= (Pg
k+1|k)

−1 + HT R−1
k+1H

= (Pglobal
k+1 )−1 (33)
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In addition, it can be derived that:

(Pg
k+1)

−1X̂g
k+1 = (P1

k+1)
−1X̂1

k+1 + (P2
k+1)

−1X̂2
k+1

=
2

∑
i=1

[(Pi
k+1|k)

−1X̂i
k+1 + HT

i (Ri
k+1)

−1HiX̂i
k+1]

= (Pg
k+1|k)

−1X̂g
k+1 + HT R−1

k+1Zk+1

= (Pglobal
k+1 )−1X̂global

k+1 (34)

Then it can be seen from Equations (33) and (34) that the algorithm proposed in this paper is
equivalent to the centralized fusion algorithm, implying that the proposed method can achieve the
optimal estimation of the system state in the sense of minimum variance.

3.3. Computational Burden Analysis

To evaluate the computational burden of the identification algorithm, we will count the number
of multiplication and addition operations of the algorithm. Each multiplication or addition operation
is called a flop and the total number of flops represents the computational burden.

For the considered system, the computational burden of the derivative cubature Kalman filter
(DCKF) is significantly reduced compared with CKF. For CKF, it is necessary to select the cubature
point set to derive the nonlinear system during the time update and measurement update. However,
the measurement equation of the system considered in this article is a linear equation, and choosing
this method obviously increases the computational burden. The DCKF method uses KF in the linear
part of the system, avoiding redundant calculations for measurement updates. Table 2 shows the
detailed analysis for the computational cost of the derivative cubature Kalman filter.

Table 2. Comparison of cubature Kalman filter (CKF) and derivative cubature Kalman filter (DCKF)
computational burden.

Step CKF DCKF Flops Difference

Calculate the
measurement
cubature point

Pk+1|k = Sck f
k+1|kSck f

k+1|k
T

none 13
3 n3 + n2

X∗,j,ck f
k+1|k = Sck f

k+1|kξ
ck f
j + X̂k+1|k

Estimate the
predicted
measurement

Zj,ck f
k+1 = HX∗,j,ck f

k+1|k Ẑk+1 = HXk+1|k 4n3 − 2n2

Ẑck f
k+1 = 1

2n ∑2n
j=1 Zj,ck f

k+1

Calculate
Kalman gain

Kk+1 = PXZ,ck f
k+1 (PZ,ck f

k+1 )−1 Kk+1 =
Pk+1|k HT

HPk+1|k HT+Rk+1
6n3 + 14n2 + 4n

See (26) and (27) for details

Update states X̂ck f
k+1 = X̂k+1|k X̂k+1 = X̂k+1|k ×

+Kck f
k+1(Zk+1 − Ẑck f

k+1) +Kk+1(Zk+1 − Ẑk+1)

Update error
covariance

Pck f
k+1 = Pk+1|k − Kck f

k+1PZ,ck f
k+1 Kck f

k+1

T
Pk+1 = Pk+1|k − Kk+1HPk+1|k ×

Based on the above analysis, Table 2 compares the computational costs of CKF and DCKF in
detail. As a result that CKF and DCKF are identical in the time update step, only the measurement
update part is compared. Through the analysis of the computational cost, we can conclude that in each



Sensors 2020, 20, 3514 13 of 20

cycle, the CKF algorithm requires 43
3 n3 + 13n2 + 4n flops more calculations than DCKF, while they

have the comparative estimation accuracy.

Remark 1. The “flops difference” in Table 2 refers to the number of CKF flops minus the number of DCKF flops.

3.4. Improvement of the Stability of the DCKF

For the DCKF algorithm, there are two main problems that may cause the filtering results to
diverge. The first is that the Kalman filtering related algorithms are sensitive to some parameters.
Improper parameter selection may lead to divergent estimation results. Second, the Cholesky
decomposition used in the CKF algorithm requires that the decomposed error covariance matrix
be a positive definite matrix. However, due to the rounding error generated by the computer during
calculation, the covariance matrix may not be strictly positive definite, which will also cause the
estimation result to diverge.

When the DCKF algorithm is used to calculate cubature points, it is necessary to perform Cholesky
decomposition on the sample covariance matrix. Due to the randomness of the covariance matrix,
ill-posed problems [41,42] are often encountered during the decomposition process, which affects
the filtering performance and even causes the filtering results to diverge. Using SVD decomposition
instead of Cholesky decomposition can avoid the problem of unstable filter values due to calculation
errors, improve calculation efficiency, and enhance the numerical stability during calculation methods
such as iterative update of the state covariance matrix. The SVD decomposition was introduced into
the EKF algorithm, and a good covariance matrix iterative stability was obtained [31]. In addition,
the SVD decomposition was introduced to the UKF algorithm to yield better stability [32]. The SVD
decomposition is not sensitive to disturbance, and it is applied to the DCKF algorithm proposed in this
paper. Compared with the CKF algorithm, the proposed SVD-FDCKF algorithm can effectively avoid
the ill-posed problem of computing the square root of a covariance matrix which makes the algorithm
have better stability and robustness, and obtain better filtering performance.

4. Simulations

Simulations are conducted in this section to comprehensively evaluate the performance of the
proposed singular value decomposition-derivative CKF. The simulations are carried out in the Matlab
program on a x86 Core i7 PC with 2.5-GHz CPU and 2-GB memory. The comparisons of the proposed
SVD-FDCKF with the FCKF and FUKF will be made below.

4.1. Comparison Test of SVD-FDCKF and FCKF

In this sub-section, the state of the mobile robot system described in Section 2 is estimated using
the proposed SVD-FDCKF algorithm and FCKF algorithm respectively. By comparing the simulation
time and positioning results, the advantages generated by the SVD decomposition and the proposed
derivative algorithm are quantitatively analyzed.

In Figure 4, the data is collected from 1000 times Monte Carlo experiments, from which we can
find that the computation time of the proposed SVD-FDCKF algorithm is significantly less than that of
the FCKF algorithm. The reason for the reduction in calculation time is that the SVD-FDCKF algorithm
uses the characteristic that the measurement equations of the system are linear equations, avoiding
complex calculations, such as the selection of cubature point sets and the propagation of cubature
points. This result is consistent with the analysis of the calculation burden in Section 3, and the decrease
in calculation burden leads to a reduction in calculation time. The average calculation time of the
SVD-FDCKF algorithm proposed in this paper is 0.0435 s, which is 29.26% shorter than the FCKF
algorithm of 0.0615 s.
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Figure 4. The simulation time in 1000 times Monte Carlo by the SVD-FDCKF and FCKF.

This set of simulations includes 200 path points. The distance L between the two driving wheels of
the wheeled mobile robot is selected as 2 dm, which means that the width of the mobile robot is 2 dm.
At the beginning of the simulation, we set the left wheel odometer change value4Ml,k = 1.1, the right
wheel odometer change value4Mr,k = 1, and as the movement of the mobile robot,4Mr,k becomes
1.1 and4Ml,k becomes 1. In subsequent movements,4Ml,k and4Mr,k change periodically. Figure 5
shows the estimated paths of the three algorithms SVD-FDCKF, FDCKF, and FCKF. This set of
simulations observes the performance of the combination of SVD decomposition and the derivative
CKF by the closeness of the estimated path and the actual path. By comparing with the actual path,
we can see that the three methods have similar performance in terms of positioning accuracy, which is
consistent with Theorem 1 in Section 3. A part of the trajectory in Figure 5 has been randomly selected
to enlarge, which is convenient to observe the path more clearly.
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Figure 5. The comparison of the real trajectory of the mobile robot with the SVD-FDCKF estimated
trajectory and FCKF estimated trajectory.

Although it is difficult to get the specific positioning error by observing Figure 5, the scale of
the estimated bias seems reasonable. Therefore, we analyze the positioning errors of FCKF, FDCKF,
and SVD-FDCKF in Figures 6 and 7. Among them, Figure 6 shows the attitude error of the mobile
robot, including x coordinate error, y coordinate error, and yaw angle error; Figure 7 shows the error
of the position estimated by the three algorithms. Combining these two figures with Theorems 1 and 2,
none of the algorithms have significantly higher performance than the other two algorithms. Therefore,
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the derivative CKF proposed in this paper reduces the computational burden of CKF without reducing
the positioning error.
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Figure 6. The attitude errors of mobile robots, including x coordinate, y coordinate, and yaw angle θ,
are estimated by FCKF, FDCKF, and SVD-FDCKF algorithms at 200 path points, respectively.
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Figure 7. The error between the positioning result estimated by FCKF, FDCKF, SVD-FDCKF, and the
actual position.

From Table 3, we can find that the average error and error variance of the proposed SVD-FDCKF
algorithm in this paper are lower than the corresponding values of FCKF algorithm and FDCKF
algorithm. It is because the process of generating cubature points requires Cholesky decomposition of
the sample covariance matrix to find the square root of the matrix. If the matrix Pk is a singular matrix,
the Cholesky decomposition cannot be performed, which will cause the iterative calculation cannot
continue; in addition, the Cholesky decomposition is too sensitive to the calculation error, and the
small rounding error caused by the finite word length during the operation often makes the matrix Pk
loses its symmetry or positive definiteness, which results in unstable filtering results and reduces the
filtering algorithm accuracy.

Table 3. The average error and variance of SVD-FDCKF, FDCKF, and FCKF.

Method Average Error/dm Variance/dm2

SVD-FDCKF 0.1721 0.0119
FDCKF 0.1919 0.0138
FCKF 0.2006 0.0146
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4.2. Comparison Test of SVD-FDCKF and FUKF

The unscented Kalman filter (UKF) is currently the most widely used state estimation algorithm,
so it is very meaningful to compare with its performance. This sub-section uses the SVD-FDCKF
and FUKF algorithms respectively for the described system to show the advantages of the proposed
SVD-FDCKF algorithm through comparative experiments. The simulation results are shown in the
following figures.

In this group of simulations compared with the FUKF algorithm, the UKF algorithm needs to be
parameterized. This group of parameters is selected based on the previous simulation experience of
filtering other models. The parameter α that determines the degree of the sigma points spread is 1;
the parameter β used to describe the distribution information of the state X takes 1. Through these
parameters, the weight w(m)

i of the sigma points and the weight w(c)
i of the covariance can be

solved separately.
From the 1000 Monte Carlo experiments in Figure 8, it can be concluded that the calculation time

of the SVD-FDCKF algorithm (0.0435 s) and the FCKF algorithm (0.0615 s) is lower than that of the
FUKF algorithm (0.0750 s). FCKF calculation time is shorter than FUKF, it is because FUKF needs to
generate 4n + 2 sigma points, while FCKF only needs 4n cubature points. The reason for the short
calculation time of FDCKF has been elaborated in the previous section, so it will not be repeated here.
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Figure 8. The simulation time in 1000 times Monte Carlo by the SVD-FDCKF, FCKF, and FUKF.

As shown in Figure 9, the simulation locates 200 path points. The positioning results of FUKF
algorithm sometimes have large deviations, but the estimated trajectory of SVD-FDCKF algorithm is
basically the consistent as the actual path. This is because the FUKF uses sigma points to approximate
the probability distribution, and the cubature points used in FCKF are calculated using the third-order
spherical-cubature rule, which has better stability.
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Figure 9. The comparison of the real trajectory of the mobile robot with the SVD-FDCKF estimated
trajectory and FUKF estimated trajectory.

It can be drawn from Figures 10 and 11 that for the specific mobile robot model proposed in this
paper, the attitude error and overall error estimated by FUKF are significantly larger than the method
proposed in this paper. Combining Table 4 and Figure 10, observe the difference of variance and the
trend of attitude error. It is not difficult to find that the main reason for the larger FUKF positioning
error is the poor stability of the algorithm, and the divergence of individual points affects the overall
performance. The main reason for this phenomenon is that, unlike FUKF, SVD-FDCKF does not need
any parameters in the state estimation process. Secondly, the weight value is positive, and finally the
SVD decomposition is introduced to enhance the stability of the algorithm, thereby ensuring that the
filter can run stably. Therefore, for the odometer system proposed in this paper, SVD-FDCKF has more
advantages in overall accuracy and stability.
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Figure 10. The attitude errors of mobile robots, including x coordinate, y coordinate, and yaw angle θ,
are estimated by FUKF and SVD-FDCKF algorithms at 200 path points, respectively.
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Figure 11. The error between the positioning result estimated by FUKF, SVD-FDCKF, and the
actual position.

Table 4. The average error and variance of SVD-FDCKF and FUKF.

Method Average Error/dm Variance/dm2

SVD-FDCKF 0.1721 0.0119
FUKF 0.2344 0.0171

5. Conclusions

Based on the combination of traditional Kalman and the cubature Kalman filters under the
federated filtering framework, this paper has proposed a computationally efficient Singular Value
Decomposition-federated derivative cubature Kalman filtering (SVD-FDCKF) method which makes
use of the ultra-wide band and inertial measurement unit information fusion to achieve high-precision
indoor positioning. This algorithm can make full use of the characteristics, that the system state
equation is non-linear and the observation equation is linear, to reduce the computational burden
while guaranteeing the positioning accuracy. In addition, the singular value decomposition has
been incorporated to the federated derivative cubature Kalman filtering method to deal with the
convergence problem caused by computer rounding errors. Numerical simulations show that the
proposed SVD-FDCKF method performs better than the federated cubature Kalman filter and federated
unscented Kalman filter in terms of computational burden and the positioning accuracy.

The algorithm described in this article is a state estimation algorithm applied to a specific system.
After a simple change of the algorithm, it can be applied to another kind of system which have linear
state equation and nonlinear observation equation. The future work will be devoted to explore the
robustness and stability of the proposed SVD-FDCKF. For instance, a consensus-based distributed
derivative cubature Kalman filtering method will be developed to yield robust state estimation against
the external disturbances.
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