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Abstract

Background: The aim of this study was to determine if remotely sensed data and Digital Elevation
Model (DEM) can test relationships between Culex quinquefasciatus and Anopheles gambiae s.l. larval
habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in
Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to
compare the larval abundance of Cx. quinquefasciatus and An. gambiae s.l. The aquatic habitat dataset
were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150
m % |50 m grid cells stratified by levels of drainage. The LULC change was estimated over a period
of 14 years. Poisson regression analyses and Moran's | statistics were used to model relationships
between larval abundance and environmental predictors. Individual larval habitat data were further
evaluated in terms of their covariations with spatial autocorrelation by regressing them on
candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based
GIS methods were generated to evaluate stream flow direction and accumulation for identification
of immature Cx. quinquefasciatus and An. gambiae s.I. and abundance.

Results: The main LULC change in urban Gulu IDP camps was non-urban to urban, which included
about 71.5 % of the land cover. The regression models indicate that counts of An. gambiae s.l. larvae
were associated with shade while Cx. quinquefasciatus were associated with floating vegetation.
Moran's | and the General G statistics for mosquito density by species and instars, identified
significant clusters of high densities of Anopheles; larvae, however, Culex are not consistently
clustered. A stepwise negative binomial regression decomposed the immature An. gambiae s.I. data
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into empirical orthogonal bases. The data suggest the presence of roughly | 1% to 28 % redundant
information in the larval count samples. The DEM suggest a positive correlation for Culex (0.24)
while for Anopheles there was a negative correlation (-0.23) for a local model distance to stream.

Conclusion: These data demonstrate that optical remote sensing; geostatistics and DEMs can be
used to identify parameters associated with Culex and Anopheles aquatic habitats.

Background

Flood and swamp water mosquito abundance can be pre-
dicted in real time using high resolution data through
application of a dynamic hydrological model [1]. These
models account for topographic variability and their con-
trol over soil moisture heterogeneity and runoff within a
shed. Soil moisture levels can be associated with local
mosquito biting rates on humans and entomologic inoc-
ulation rates (EIR) [2]. The probability distribution of the
soil moisture deficit, i.e., statistics of topography, is gener-
ated from digital elevation model (DEM) data by using a
multidirectional flow routing algorithm, which is tied to
an adaptive error correction (pit infill) scheme needed for
low-relief areas such as coastal plains [3]. DEM can yield
several catchment hydrological variables including per-
cent surface saturation, and total surface runoff for identi-
fication of spatial distribution of potential mosquito
aquatic habitats within a catchment [4].

Monitoring water table depth (WTD) permits detection of
mosquito breeding pools at very fine, sub-meter pixel,
spatial scales. For example, a modeled local WID for a
given pixel of -0.2 m does not imply that the pixel is dry,
merely that water may accumulate at this location. Given
the variability in surface elevation and WTD, a percentage
of the water table can be expected to protrude through the
soil level. The shallower the local WTD for a given pixel,
the greater the percentage of that pixel area can be esti-
mated to be wet at the surface [5]. Thus, a pixel with a
mean WTD, of -0.4 m can be expected to have more sur-
face pooling than a pixel with a WID of -1.4 m. DEM's
have shown that substantial soil moisture heterogeneity
exists at most scales within a catchment [6]. This fractal
geometry permits such extrapolation of the pixel-to-pixel
variability of local WTDs to a smaller, subpixel scale. Hoof
prints, ditches, tire tracks, and natural relief can all
account for the heterogeneity of elevation at the pixel level
[1]. Therefore the use of local WTD allows a statistical esti-
mation of such potentially saturated portions of the sur-
face exploited by floodwater mosquitoes.

In this paper, we examine the distribution of mosquitoes
across various IDP's camps in Gulu, Uganda through the
use of high spatial resolution satellite sensor imagery and
georeferenced field sampled mosquito data. The research
objectives were to : a) compute Land Use Land Cover
(LULC) indices; b) determine non-spatially dependent

and spatially dependent ecological covariates affecting lar-
val abundance; ¢) spatially filter all residuals, and, ¢) con-
struct a Digital Elevation Model (DEM) that researchers
can use to identify potential aquatic habitats of Cx quin-
quefasciatus and An. gambiae s.1.

Methods

Study Site

Gulu district is located in northern Uganda. The district is
made up of 19 sub-counties and 4 divisions. There are 120
parishes in the rural sub-counties and 16 wards in the
divisions and a total of 406 villages. Collectively these IDP
camps are located between longitude 30°-32° east; lati-
tude 02°-04° degrees north. The IDP camps are bordered
by Sudan on the north, Pader District on the east, Kitgum
District on the northeast and Arua District on the west.
The other district borders include Adjumani on the north-
west, Masindi on the south and Apac on the southeast and
Nebbi on the southwest. Gulu is 332 km from Kampala.
The mean annual rainfall is 1,500 mm with the monthly
average rainfall varying between 1.40 mm in January and
230 mm in August. Normally the wet season extends from
April to October with the highest peaks in May, August
and October, while the dry season begins in November
and extends to March. Survival rates per gonadtrophic
cycle for An. gambiae s.1. averaged 0.31 during the short
rains, 0.49 during the dry season and 0.78 during the long
rains with low vectoral capacities due to low survival rates
and a high degree of zoophily [7]. The average maximum
temperature is 50°C and the minimum is 18°C. The rela-
tive humidity is high during the wet season and low in the
dry season. Vegetation within the IDP camps is classified
by Lang lands (1974) as of intermediate savannah grass-
land. The vegetation type is characterized by open canopy
of trees 10 m to 12 m high and underlying grasses of 80
cm high. The soil of Gulu IDP camps consists of ferrugi-
nous sandy with a high percentage of sandy soils and,
therefore, susceptible to erosion. Due to the sandy nature,
the soil has low water retention capacity and high rate of
water infiltration. Flooding, soil amendment and crop
phenology affect the population dynamics of Anopheles
and Culex species [8].

Gulu is located in a zone protracted civil conflict region.
Consequently of the total population of 462,581, approx-
imately 92% (416,322) have settled temporarily in the
IDP camps, where relative security can be provided. There-
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fore, overcrowding is common the IDP camp. IDP camp
communities rely heavily on the surrounding forest and
vegetation cover for fuel wood, and on subsistence faming
to supplement humanitarian assistance. The houses are
the grass thatched houses. The utilities include makeshift
toilets. Water pumps are the only source for clean drink-
ing water in the camps. Multiple artificial water storage
containers are found within close proximity (e.g. bucket)
to many houses. The average household size is six. The
IDPS are composed of the indigenous population of Gulu
District, the Acholi. Many of the IDP camps are found
along the main roads, trading centers and its suburbs (Fig-
ure 1).

Larvae Sampling

In Gulu IDP camps, 65 aquatic habitats were randomly
selected and mapped using a CSI-Wireless differentially
corrected global positioning systems (DGPS) Max
receiver. Each aquatic habitat was sampled throughout
May 2006 to June 2006. All water bodies were inspected
for mosquito larvae using standard dipping techniques
with a 350 ml dipper to collect the mosquito larvae and
pupae [9]. Culex and Anopheles mosquito larvae were iden-
tified morphologically using the keys at the Human
Health Division, International Centre of Insect Physiol-
ogy and Ecology (ICIPE) in Nairobi, Kenya. Culicine and
Anopheline mosquitoes were identified to specific species
using the identification key constructed by Gillies and
Coetzee [10].

Larval habitat characterization

Environmental variables recorded for each aquatic habitat
were water depth, pH, water surface area, distance to the
nearest house, canopy coverage, surface debris coverage,
algal coverage, emergent plant coverage, turbidity, habitat
type, and substrate type. Distance to the nearest house was
measured with a tape when it was shorter than 100 m.
When the distance exceeded 100 m, it was estimated visu-
ally. The distance to the nearest house was categorized
into 7 classes (e.g., 1: 0-100 m, 2: 101-200 m, and so on,
and 7 for distances greater than 600 m). Canopy cover was
defined as the amount of terrestrial vegetation and other
objects in the habitat. Emergent plants included both
aquatic and immersed terrestrial vegetation. Plant cover-
age of a habitat was measured in percentage of water sur-
face covered by placing a square frame (1 m2) with 100
grids (10 cm?) above the habitat. Turbidity was measured
by placing water samples in glass test tubes and holding
against a white background, and classified into 4 levels:
clear, low, medium, and high turbidity. The habitat types
included animal footprints, pond (water area larger than
50 m2), stream pool, puddle (water area less than 50 m2),
water tank, and tire track. Substrate types were classified
into muddy, sandy, gravel with soil, and artificial sub-
strate without soil (e.g., concrete or brick).

http://www.ij-healthgeographics.com/content/7/1/11

Habitat base-mapping

Each georeferenced An. gambiae s.1. and Cx. quinquefascia-
tus aquatic habitat from the study site were entered into a
Vector Control Management System® (VCMS) (Clarke
Mosquito Control Products, Inc. 159 N. Garden Avenue.
Roselle, IL 60172) database. VCMS supported the mobile
field data acquisition in each village through a Microsoft
PocketPC™. All two-way, remote synchronizing of data,
geocoding, and spatial display were processed using the
embedded GIS Interface Kit™ that was built using Earth
Systems Research Institute (ESRI, Redlands, CA, USA)
MapObjects™ 2 technology. The VCMS database plotted
and updated the DGPS ground coordinates of larval hab-
itats and supported exporting data in a GIS shape file for-
mat.

Remote Sensing Data

Visible and near-infrared (NIR) information ranging from
0.45-0.90 um from the Landsat 7 ETM+ image obtained
July 28, 2005 and Thematic Mapper™ (TM) from July
15,1991 were used to create a multitemporal LULC
change dataset in Erdas Imagine V8.7° (Atlanta, GA, USA).
The TM image of the study site data consisted of four spec-
tral bands with a spatial resolution of 30 m for bands 1-
4. The Universal Transverse Mercator (UTM) Zone 36S
datum and WGS-84 projection was used for all spatial
datasets.

Satellite data classification and land cover analysis

The satellite data were classified using the Iterative Self-
Organizing Data Analysis Technique (ISODATA) unsu-
pervised routine in ERDAS Imagine V9.1° (Atlanta, GA,
USA). This approach to classification has been used
widely in the identification of land covers and mosquito
habitats associated with intermediate hosts and disease
vectors [11-15]. The image was classified into 6 categories
residential, industrial, crops, forest, water bodies, and
grass. These categories were aggregated according to the
following categorization.

1) Urban: Urban classes encompassed the following cate-
gories: man-made physical infrastructures. This land cover
class included residential, industrial, transportation, and
communications/utilities. This class also included the
livestock buildings and barns for cows, pigs, and chickens.

2) Non-urban: Vegetated (mainly natural vegetation
classes), woodland (trees > 5 m tall; 25%-75% canopy).
This land cover class included mixed woodland, grass
lands and old field with mixed scattered trees.

3) Water: This class included permanent bodies of water
such as lakes, streams and essentially any open water area
or area covered by water the majority of the time. This
class also included areas with hydrophilic vegetation, wet-
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Camp Name Populalion  Camp Wame Populalion  Camp Name Populalion

D1-Coopie 10,980 19-Awere 4 (44 37-Awere 14,946
02-Lukodi 1,608 20-Dino 4.560 38-Pagak 7282
D3-Patike-Ajulu 8,374 21-Acet 18,523 30-Paratongo 11,389
04-Lugere 3497 22-Ongako T.116 40-Kaladima 1102
D5-Palarc 3.837 23-Alokolum 9,253 41 -Olwal 12,825
0D6-Oroko 1,125 21-Koch Gomsz 11,330 12-Labonpo-zali  6.160
07-Awach 13,224 25-Alero 12,846 43 Giumi-Guru 2486
08-Paicho 0104 26-Anaka 22449 44-Amum 37.429
09-Tcvapadola 5684 27-Agung 2.047 45-OmeeLower  3.484
10-Unyama 12,593 28-Aparanga 2231 40-Omee Upper  2.444
11-Koro-abili 3,597 29-Olatvo 2.130 17 -Jeng-pari 3,311
12-Te-hi=u 10,082 30-Puranizo 6,952 48 -Pubho 53.6012
13-Palenga 10,449 31-Wii Ancno 1_142 40-Orong 1424
14-Bobi 11,945 32-Wii Anaka 1,139 50-Pawel 3,065
15-Awoo 5291 33-Lolim 494 51-Palukcre 693
16-Opit 26.215 34-Tegot 363 52-Afiak 19,594
17-Lalogi 13,655 35-Lacor 6.139 53-Bibia 5,167
18-Ondek 2,444 36-Kevo 43328 Tolul 460,226

Figure |
Base map of Internally Displaced Peoples (IDP) camps in Gulu study area. This a map of IDP camps sites and differ-
ent land cover types. Also included are the population statistics for each IDP camp.
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lands with a high water table and areas interspersed with
channels or pools of open water.

Stratifying an urban grid

New maps for this study site were generated from Quick-
Bird data using the DGPS ground coordinates in ArcInfo
9.1° (ESRI, 2005a, CA, USA). The QuickBird image bands
were acquired May, 2006. QuickBird multispectral prod-
ucts provide four discrete non-overlapping spectral bands
covering a range from 0.45 to 0.72 pm with an 11-bit col-
lected information depth [16]. A 150 m x 150 m orthog-
onal grid cell was overlaid on a QuickBird image of the
study site with the purpose of sampling and providing a
comparison technique for LULC and mosquito aquatic
habitats.

The study area was stratified based on the level of drainage
present within each grid cell. A grid cell was classified as
well-drained if functional (e.g. clear of debris or vegeta-
tion at the time of observation) engineered drainage sys-
tems were present and no standing water was visible, or if
the grid cell was located on a slope and no standing water
was visible. A grid cell was classified as poorly drained if it
was located in a depression or valley and had either no
drainage systems, or the drainage systems were blocked
with debris or vegetation.

A unique identifier was assigned to each grid cell. The
level of house spacing, road types and networks, commu-
nity water sources, and access to utilities within grid cells
also were noted. Information contained in the census of
the study site and District Development Reports, as well
as, environmental descriptions from previous field and
topographical maps were used to assist with the stratifica-
tion process.

To determine the number of samples appropriate for col-
lection in the IDP camps villages, we evaluated Anopheles
and Culex larval count data from multiple villages in
Kenya. We expected the larval count in the IDP camp mos-
quito aquatic habitats to follow a Poisson distribution, as
was the case in the Kenyan villages [17-19]. Therefore, we
used the mean count and standard deviations on the log
number of larval counts collected in the Kenyan villages to
determine sample size requirements. We applied a sam-
pling intensity formula for determining the number of
samples to collect when randomly sampling from an infi-
nite population n = (ts/E)*2 where t = t value (t = 2), s =
the standard deviation of In count values observed in Ken-
yan villages (s = 0.889) and E is desired half-width of the
confidence interval around the mean expressed in same
units as standard deviation (E = In(1.25) [20]. Applying
this formula and assuming larval production is similar for
mosquito habitats in Kenya and Uganda, we determined
65 samples were required. We overlaid vector image of the

http://www.ij-healthgeographics.com/content/7/1/11

sampling scheme (grid cell) with the LULC raster image to
identify areas of interest within each polygon (grid cell) of
the sampling scheme. All potential aquatic larval habitat
sites were identified, and data relative to species composi-
tion and abundance, predators, water quality and envi-
ronmental parameters were collected longitudinally.

Data Analysis Strategy

Field data parameters were analyzed using SAS 9.1.3 ©
(SAS inc. Carey, NC, USA). The differences in larval counts
among habitat types and LULC changes were compared
by an ANOVA test. Where significant differences were
observed, the means were separated by Tukey's HSD test.
LULC was examined for each sample unit at the study site
to determine the amount of the land cover change
between 1991 and 2005. A chi-square test was performed
to assess the relationship between LULC change and
strata. Poisson regression analyses were used to determine
the relationship between An. gambiae s.1. and Cx. quinque-
fasciatus larval counts and the measured habitat character-
istics. Larval data were log-transformed before analyses to
normalize the distribution and minimize standard error.
All the covariates were tested for multicollinearity using
partial F test in SAS and no problematic correlations were
found.

Spatial analyses

We used spatial methods to identify the trend in the eco-
logical dataset. Moran Coefficients (MC), a product
moment correlation coefficient type of spatial autocorre-
lation index provides a technique for indexing spatial
autocorrelation. Subsequently, we detrended the data
using spatial autocorrelation analysis. The most straight-
forward hypothesis with which to test statistical signifi-
cance of the MC assumes spatial autocorrelation is zero.
The MC may be tested using analytical expectations and
variances based largely on the neighborhood structure
assumed in a spatial weighting matrix [21]. The general
formula for computing Moran's I is [22]:

N N
N2 ¥ wijzizj
= i=1j=1
" N N N
Y X wij Xz
i=1j=1 i=1

Where
n = number of values to be taken into account

Viji = value at location i and j

w;; is the weight at distance d, that is, w;; = 1 if point j is
within distance class d from point i, else w;; = 0;
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z's are deviations (i.e., z; = V;-Y,.qn fOT Variable y),

W is the sum of all the weights. The summation is done
for all i not equal to j.

The MC was generated on the residual of the detrended
data in ArcGIS. The MC and high/low clustering was
measured using Getis-Ord General G preformed from the
functions provided in Arc Toolbox. The spatial autocorre-
lation analyses measured feature similarity based on sam-
ple locations, species and larval aquatic habitat density
values simultaneously in the study site. The tool evaluated
whether the pattern expressed was clustered, dispersed, or
random. An MC value near +1.0 indicated clustering of
either high or low-density mosquito larvae measures
while an index value near -1.0 indicated dispersed meas-
ures of mosquito density. A Z-score was calculated for
assessing whether the observed clustering or dispersion
was statistically significant or not.

Spatial filtering analyses

From results of the MC and Getis spatial test for clustering
it was indicated that there was spatial autocorrelation in
the anopheline larval data. We filtered the spatial compo-
nents of the An. gambiae s.1. larval data. SAS PROC GEN-
MOD was also used to build a Poisson model with a non-
constant, gamma-distributed mean (i.e., negative bino-
mial model). Spatial filtering seeks to transform a variable
containing spatial dependence into one free of spatial
dependence by partitioning the original georeferenced
attribute variable into two synthetic variates: a spatial fil-
ter variate capturing latent spatial dependency that other-
wise would remain in the response residuals, and a
nonspatial variate that is free of spatial dependence [23].
Both positive and negative spatial autocorrelation eigen-
vectors were selected by a stepwise negative binomial
regression procedure. Because eigenvectors are mutually
orthogonal and uncorrelated in a linear model, a normal
approximation stepwise regression was executed. This
procedure confirmed that both positive and negative spa-
tial autocorrelation eigenvectors were needed to describe
the geographic distribution of the An. gambiae s.l. larval
counts. This initial screening also was performed because
Generalized Linear Model (GLM) estimation involves
weighting schemes that corrupt, to some degree, these
properties of orthogonality and un-correlation.

To expand the inferential basis with a random effect, a
Generalized Linear Mixed Model (GLMM) was used to
account for latent non-spatial residual correlation. The
GLMM estimation was computed using SAS PROC
NLMIXED. Rather than switching from a Poisson to a neg-
ative binomial probability model, the GLMM was
extended to account for latent non-spatial correlation
effects as well as to allow inferences to be drawn for a
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much wider range of geographic sampling configurations
than those utilized by employing a GLMM. The GLMM
included a random effect, which is specified here as a ran-
dom intercept that was assumed to be normally distrib-
uted with a mean of zero, a constant variance and zero
spatial autocorrelation. This varying intercept term com-
pensated for the nonconstant mean associated with a neg-
ative binomial GLMM specification. All parameters except
the intercept were treated as single-valued, while the inter-
cept was treated as a distribution of values.

A Box-Cox type of power transformation was employed in
the study site for normal approximation analysis purposes
so that the frequency distributions of the An. gambaie s.1.
larval counts better mimicked a bell-shaped curve. We
used the spatial filter construction methodology transfor-
mation procedure as proposed by Griffith [23] that
depends on the eigenfunctions of matrix (I - 117/n)C(I -
117/n) - where I denotes the identity matrix, 1 is an n-by-
1 vector of ones, and T denotes matrix transpose — a term
appearing in the numerator of the MC spatial autocorrela-
tion index. According to Griffith [24], the first eigenvector,
E,, is the set of numerical values that has the largest
Moran's I achievable by any set for the spatial arrange-
ment defined by the geographic connectivity matrix C.
The second eigenvector is the set of values that has the
largest achievable MC by any set that is uncorrelated with
E,. The third eigenvector is the third such set of values.
And so on. This sequential construction of eigenvectors
continues through E_, the set of values that has the largest
negative MC achievable by any set that is uncorrelated
with the preceding (n-1) eigenvectors.

To identify spatial clusters that can be uncovered with spa-
tial filtering, Thiessen polygon surface partitionings were
generated for the study site in order to construct geo-
graphic neighbor matrices, each denoted by matrix C,
which also was used in spatial autocorrelation analysis.
Entries in matrix C were 1 if two points share a common
Thiessen polygon boundary and 0 otherwise; the diagonal
was coded 0. Next, the linkage structure for each surface
was edited in order to remove unlikely geographic neigh-
bors (i.e., pairs of sample locations sharing a common
Thiessen polygon boundary, but whose separation is too
great) [25]. Attention was restricted here to those map pat-
terns associated with at least a minimum level of spatial
autocorrelation, which for implementation purposes was
defined by [MC,/MC, .| > 0.25, where MC; denoted the
jth value and MC,,, the maximum value of MC. This
threshold value allowed two candidate sets of eigenvec-
tors to be considered, one for substantial positive and one
for substantial negative spatial autocorrelation.
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Digital Elevation Model (DEM)

A DEM of the study area was downloaded from seamless
United States Geological Survey (USGS, March 17th,
2007). The use of the DEM for determining environmen-
tal parameters for establishing a predictive model has
been proven by different studies on the ecology of malaria
vectors including An. gambiae s.1 and the impact of land-
scape on their populations and malaria transmission [4].
The DEM was constructed based on a contour map of
1:50,000. The purpose of DEM construction was to extract
topographic variables that were associated with mosquito
larval habitat formation, such as elevation, flow accumu-
lation, flow direction and stream order. Wetness index or
topographic index represents land surface moisture con-
tent. It was calculated as In(A/TanB) where A was the ups-
lope contributing area and TanB was the local slope.
Parameters A and TanB were derived using a multiple
flow-direction algorithm.

The Stream Raster Grid was generated in ArcGIS. The
advantage of using flow distance-to-stream rather than
simple distance-to-stream is that flow distance takes flow
direction and landscape profile into consideration. Euc-
lidian distance-to-nearest hydrological body was calcu-
lated as the distance from a grid cell to a stream grid cell
defined by a Stream Raster Grid. Flow distance-to-stream
may affect availability of the aquatic habitat and is calcu-
lated as the distance from a grid cell moving downstream
to a stream grid cell defined by the Stream Raster grid. The
Terrain Analysis Using DEM (TauDEM) in ArcGIS was
used to retrieve these parameters. A three-dimensional
model of the study area was constructed based on the
DEM using ArcScene extension of ArcGIS.

Results

A total of 65 aquatic habitats belonging to five habitat
types were identified in the study area and inspected for
mosquito larvae. These included ditches (47.7%), canals
(35.4%), seeps (9.21%), pools (6.22%) and tire tracks
(1.54%). Anopheline larvae were present in 31 habitats
and 16 (24.6%) of these habitats had only anophelines.
Culicine larvae were found in 34 habitats and 15 (23.1%)
of these habitats had only culicines. Chi square analysis
indicated that coexistence anopheline and culicine larvae
in the same habitats was not greater than would be
expected by chance alone (¥2=0.12, p = 0.73). The mean
number of anopheline larvae collected per sample was
6.46 + 1.44 while that of culicine was 14.6 + 6.04 per sam-
ple. Canals were the most important habitats in anophe-
line productivity (ANOVA, F = 3.10, p = 0.02) whereas
among culicines, there was no significant difference in lar-
val density among habitat types (ANOVA, F = 1.58, p =
0.19). The overall larval abundance for anopheline was
6.45.
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Table I: Anopheles gambiae s.l. and Culex. quinquefasciatus larval
density in diverse habitat types identified in the IDP camps study
site

Drainage Habitat type Anopheles spp. Culex spp.
Well drained Canal 0.30 £ 0.30 0.80 + 0.42
Ditch 0.09 £+ 0.09 0.18 £0.12
Seep 0.50 £ 0.50 0.50 £ 0.50
Total 022 +0.14 0.48 £ 0.20
Poorly drained Canal 0.54 + 0.29 1.77 £ 0.67
Ditch 035+0.17 1.50 + 0.60
Pool 0.00 £ 0.00 225 %225
Seep 0.00 £ 0.00 23.5+232
Tire track 0.00 £ 0.00 0.00 £ 0.00
Total 033 £0.12 3.71 £221

The An. gambiae s.1. and Cx. quinquefasciatus larval densi-
ties collected in diverse habitat types among the well and
the poorly drained strata are represented in Table 1.
Although there was no significant difference in larval den-
sities among habitats located within the well and the
poorly drained strata, 5 habitat types were identified in
the poorly drained strata compared to 3 in the well
drained strata. The importance of a particular habitat type
varied amongst strata. (Table 1).

The total number of pixels in the LULC classification was
27.0 km2 of which 15.3 km2 of land cover showed change
between 1991 and 2005. The percentage of overall LULC
change for 14 years in the Gulu IDP camps was 56.6 %.
The main land cover category in the Gulu IDP camps was
non-urban to urban, which included about 71.5 % of the
land cover.

Accordingly, land cover changes between 1991 and 2005
were analyzed in ArcInfo 9.1° and mapped. Significantly
higher number of aquatic habitats positive for Culex and
Anopheles larvae were observed in LULC change sites than
in non-LULC change sites (Table 2). The most frequent
LULC change positive for Culex (F=2.27df =1, 64, P =

Table 2: Summary of total aquatic habitats showing the
proportion of site positive for Culex quinquefasciatus and
Anopheles gambiae s.l. aquatic habitats in LULC change sites in
the IDP camps study site

LULC change n  Cx. quinquefasciatus ~ An. gambiae s.|.
larvae/20 dip larvae/20 dip
Non-urban to -urban 34 6.31 2.46
Urban to non-urban 6 0.74 0.22
Urban to water 4 111 0.49
Water to urban 0 0.37 0.02
Non-urban to water 2 1.25 0.81
Water to non-urban | 0.82 0.24
Non-change 18 3.97 222
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0.05) and Anopheles (F = 2.32 df = 1, 64, P = 0.05) larvae
was non-urban to urban.

Of the 13 ecological variables that were entered into the
model, two were found to be significant predictors of lar-
val abundance. Cx. quinquefasciatus larvae was negatively
associated with emergent vegetation while An. gambiae s.1
was negatively associated with shade. Turbidity was also a
significant positive predictor for both species (Table 3).

The measures of clustering of An. gambaie s.1. and Cx. quin-
quefasciatus aquatic habitats are reported in Table 4. In the
analyses, significant Z-values had a probability being
caused by random chance of less than 0.05

Estimation results from SAS PROC GENMOD for all mod-
els appear in Table 5. In each case both positive and neg-
ative spatial autocorrelation eigenvectors were selected by
the stepwise negative binomial regression procedure. Pos-
itive and negative spatial autocorrelation spatial filter
component pseudo-R2 values are reported in Table 5.

GLMM estimation results from SAS PROC NLMIXED
appear in Table 6. These spatial autocorrelation compo-
nents suggest the presence of roughly 12% to 28% redun-
dant information in the An. gambiae s.l. larval count
samples.

A DEM model was generated in ArcGIS. The range of the
elevation in the DEM had a minimum value of 996 m
with a maximum value of 1,132 m. The slope of the An.
gambiae s.1. aquatic habitats was 0.171%. The slope of the
Cx. quinquefasciatus was 0.006%. There is a significant pos-
itive correlation for Cx quinquefsaciatus aquatic habitat
count and slope (0.24) while for An. gambiae aquatic hab-
itat count and slope there was a negative correlation (-
0.23) for a local model based on distance to stream.

http://www.ij-healthgeographics.com/content/7/1/11

Table 3: Poisson regression results, with levels of significance
with percent of total deviation of the field and satellite
parameters for the IDP camps study site for abundance and
distribution An. gambiae s.l. and Cx. quinquefasciatus larval
mosquitoes

Mosquito Species Variable Final Beta R?

Shade <0.001 -137 162
Turbidity <0.001 258 153
Pseudo-R2 31.8
Emergent vegetation < 0.001 -1.77 13.6
Turbidity <0.001 1.58 13.0
Pseudo-R2 26.6

An. gambiae

Cx. quinquefasciatus

Discussion

In IDP camps the highest numbers of aquatic larval habi-
tats observed were in the poorly drained strata. In earlier
studies in East African urban regions many mosquito
aquatic habitats were observed in the poorly drained
strata, suggesting that drainage does affect habitat devel-
opment at some level [26]. Canal and seeps produced the
highest number of Cx. quinquefasciatus and An. gambiae s..
habitats for all LULC change sites in which aquatic habi-
tats were present. Ditch habitats had the least larval den-
sity, for both species. The most common locale for
mosquito aquatic habitats was in LULC sites was non-
urban to urban. Jacob et al. [27] reported similar findings
in the study sites for An. gambaie s.1. aquatic habitats in the
Kisumu and Malindi study sites.

The regression results indicated that counts of An. gambiae
s.l. and Cx. quinquefasciatus were negatively associated
with shade and emergent vegetation, respectively. In addi-
tion both species were positively associated with turbidity.
Floating and emergent vegetation can obstruct mosquito
oviposition and also reduce the amount of sun light
reaching the aquatic habitat resulting in low water tem-
peratures [28]. This interferes with microbial growth that
forms the main diet for mosquito larvae, and increases
both the larval development time and probability of con-

Table 4: Moran's | and the General G statistics with corresponding Z-values for mosquito density by species and instar, total density by

species, and total density for all species.

Larval Instar Species Moran's | z General G z
Istinstar e 0.31 4.18% 0.03 5.29*
2rdjnstar e 0.02 0.48 0.02 2.55%
3rdinstar An. gambiae s.| 0.07 1.03 0.02 1.57
4thinstar An. gambiae s.| 0.03 0.64 0.01 1.57
Istinstar e 0.11 1.57 0.02 0.75
2rdinstar - 0.07 1.05 0.01 -0.63
3rdinstar Cx. quinquefasciatus 0.07 1.03 0.13 10.9%
4thinstar Cx. quinquefasciatus 0.00 0.13 0.01 -0.78
Significant (p < 0.05)

---- Individuals not identified to species
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Table 5: Poisson spatial filtering model results for An gambiae s.l.
mosquito counts in the IDP camp study site

Spatial Statistics L3 L4
SF: # of eigenvectors 5 2
SF: MC 0.671 0.092
SF pseudo-R? 0.192 0.128
Positive SA SF: # of eigenvectors 3 |
Positive SA SF: MC 0.586 0.943
Positive SA SF pseudo-R? 0.131 0.081
Negative SA SF: # of eigenvectors | |
Negative SA SF: MC -0.352 -0.537
Negative SA SF pseudo-R? 0.048 0.067

Deviance statistic 1171 1.145
Dispersion parameter 0.544 1.089

SF denotes spatial filter

SA denotes spatial autocorrelation

A pseudo-R? is the squared correlation between observed and GLM-
predicted

tact with predators [29]. Gimnig et al. [30] found increas-
ing An. gambiae s.l. larvae densities with increasing
turbidity while Muturi et al. [28] found that the produc-
tion of Cx. quinquefasciatus was favored in highly turbid
water.

In the spatial analyses, the positive value for MC indicates
that clustering of high and/or low larval habitat density
sites for An. gambiae s.1. is likely and positive values for the
general G statistic suggest that high larval density sites is
clustered. General G analysis identifies the same areas as
having significant clusters of high larval densities of An.
gambiae s.1. larvae. Jacob et al. [31] report detecting posi-
tive spatial autocorrelation in urban An. gambiae s.1. mos-
quitoes. However, inconsistent results between MC and
general G values for Cx. quinquefasciatus aquatic habitats
measures and totals suggest larval densities are not con-
sistently strongly clustered. Effectively controlling Cx.
quinquefasciatus in the study site may require a more wide-
spread approach than targeting larval "hot spots". Several
key factors in arboviral transmission are known to vary
across urban regions including the dominant enzootic
vectors, the relationships between vector abundance and
land use and differences in the composition of host com-

Table 6: Poisson SF GLMM random effects results for An.
gambiae s.l. larval mosquito counts in the IDP camp study site

Statistics L3 L4

Mean 0.056 0.083
Standard deviation 0.489 0.733
MC -0.055 0.014
Pseudo-R2 0.935 0916

GLMM denotes generalized linear mixed model
MC denotes the Moran Coefficient

http://www.ij-healthgeographics.com/content/7/1/11

munities that can, in turn, influence mosquito habitat
preferences [32].

In the spatial filtering analyses, positive and negative spa-
tial autocorrelation eigenvectors were selected using step-
wise negative binomial regression. The larval Anopheles
mosquito counts contained hidden negative spatial auto-
correlation that is masked by positive spatial autocorrela-
tion. Because the MC are asymptotically normally
distributed, MC may fail to detect hidden negative spatial
autocorrelation in highly heterogeneous environments
though all of the visual and conventional numerical evi-
dence suggests the presence of positive spatial autocorre-
lation [23].

The inclusion of a random effects term had little impact
upon the resulting spatial filters. The spatial filters
obtained with the Poisson spatial filtering model and
GLMM analyses were almost identical for the study site.
The spatial dependency in the models suggests both neg-
ative and positive components are present suggesting the
presence of redundant information in the An. gambiae lar-
val data. Redundant information may be attributed to the
locational arrangements of sample points which may
cause observations to be dependent, rather than inde-
pendent, moving data analysis away from the classical sta-
tistical independence model [25].

The DEM found that An. gambiae s.1 1arval abundance was
negatively associated with distance from the stream. In
contrast, Cx quinquefasciatus larval abundance was posi-
tively associated with distance from the stream. The
numerous open-sun lit pools that form at the edge or
slightly upland from the stream may provide ideal larval
habitats for An. gambiae s.1. [30]. The positive association
between Culex quinquefasciatus and distance from the
stream is biologically plausible given its preference for
eutrophic aquatic habitats [33,34]. Aquatic habitats fur-
ther away from the stream are likely to be rich in organic
matter than those closer to the stream because they are
least likely to be diluted by surface run-off from the
stream.

Cx quinquefasciatus aquatic habitats were more prevalent
in valley bottoms than on hills in the study area. In the
valley bottom aquatic habitats can occur in streams and
adjacent swamps. Minakawa et al. [35] found that surface
runoff from uphill springs and groundwater seepage com-
monly form larval habitats in swamp margins at the valley
bottoms.

In conclusion, 56.6% of LULC change for the urban Gulu
study site in 14 years contributed to changes in abun-
dance, and distribution of Cx. quinquefasciatus and An.
gambiae s.. aquatic habitats. There were more LULC
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changes than non-LULC changes in the study site. In
LULC change sites, the highest percent of aquatic habitat
positive for Culex and Anopheles larvae was in non-urban
to urban land cover change sites. In the Poisson regression
analyses,Cx. quinquefasciatus larvae abundance was nega-
tively associated with emergent vegetation while An. gam-
biae s.1 was negatively associated with shade. A cluster
analyses revealed that high density An. gambaie s.1. aquatic
habitats have a strong tendency to be aggregated in the
study site. The spatial filter analyses described the full
range of all possible mutually orthogonal map patterns
present in the An. gambiae s.1 larval data. These spatial
autocorrelation components suggest the presence of
roughly 12% to 28% redundant information in the An.
gambiae s.1. larval count samples. The DEM of land surface
topography and hydrological networks accounted for
mosquito larval abundance for both species. The sign and
magnitude of the association of modeled surface wetness
and species abundance appear to be a function of mos-
quito species biology and overall abundance. Modelling
and forecasting floodwater mosquito larval species using
newer GIS software applications and fine resolution satel-
lite data will enable local public health agencies to insti-
tute control measures before the mosquitoes emerge as
adults, and their role as transmitters of disease comes into

play.
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