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Background: The epidermal growth factor receptor (EGFR) is a primary target of molecular
targeted therapy for lung adenocarcinoma (LUAD). The mechanisms that lead to epigenetic
abnormalities of EGFR in LUAD are still unclear. The purpose of our study was to evaluate
the abnormal methylation of EGFR CpG sites as potential biomarkers for LUAD.

Methods: To assess the differentially methylation CpG sites of EGFR in LUAD, we used
an integrative study of Illumina HumanMethylation450K and RNA-seq data from The
Cancer Genome Atlas (TCGA). We evaluated and compared EGFR multiple-omics data to
explore the role of CpG sites located in EGFR promoter regions and gene body regions
and the association with transcripts, protein expression levels, mutations, and somatic
copy number variation. We calculated the correlation coefficients between CpG sites of
EGFR and immune infiltration fraction (by MCPcounter and ESTIMATE) and immune-
related pathways in LUAD. Finally, we validated the differential methylation of clinically and
prognostically relevant CpG sites using quantitative methylation-specific PCR (qMSP).

Results:We found that the methylation level of many EGFR CpGs in the promoter region
was negatively correlated with the transcription level, protein expression, and SCNV, while
the methylation at the gene body region was positively correlated with these features. The
methylation level of EGFR CpGs in the promoter region was positively correlated with the
level of immune infiltration and IFN-g signature, while the opposite was found for
methylation of the gene body region. The qMSP results showed that cg02316066 had
a high methylation level, while cg02166842 had a low methylation level in LUAD. There
was a high degree of co-methylation between cg02316066 and cg03046247.

Conclusion:Our data indicate that EGFR is an epigenetic regulator in LUAD acting through
DNAmethylation. Our research provides a theoretical basis for the further detection of EGFR
DNA methylation as a predictive biomarker for LUAD survival and immunotherapy.
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INTRODUCTION

Lung cancer is the primary cause of cancer-related death
worldwide (1). The most prominent pathological subtype of
lung cancer is lung adenocarcinoma (LUAD), which accounts
for about 45 percent of lung cancer cases (2). The five-years
overall survival rate for patients with advanced lung cancer is less
than 20% (3). Genetic analyses have revealed driver genes in
LUAD and have changed the treatment paradigm (4). In Asia,
epidermal growth factor receptor (EGFR) mutations account for
51.4% of advanced LUAD driver mutations, while it accounts for
15 to 22% of advanced LUAD driver mutations in non-Asian
areas (5, 6). EGFR tyrosine kinase inhibitors (TKIs) are typically
used to treat patients with EGFR-mutant LUAD (7, 8). The high
heterogeneity of this type of cancer, on the other hand, restricts
the survival advantage of patients undergoing EGFR-targeted
treatment, indicating the need for more research into new
prognosis-related molecular mechanisms. The molecular
mechanism by which EGFR regulates LUAD through DNA
methylation has yet to be completely elucidated.

EGFR is a receptor tyrosine kinase (TK) that dimerizes in
response to ligand stimulation, resulting in the activation of
intracellular TKs and autophosphorylation of multiple tyrosine
residues, which triggers a sequence of downstream signaling
cascades (9, 10). The Ras/MAPK and PI3K/PKB signaling
pathways are two of the most studied EGFR pathways, both of
which have a well-established role in tumor development,
survival, and progression (11). The most studied epigenetic
mechanism is DNA methylation, which is linked to cell
division, immune regulation, and X chromosome inactivation
(12). Methylation of gene promoter regions is often linked to
transcriptional silencing, while methylation of gene bodies
has the opposite effect. Epigenetic dysregulation has been
linked to the early stages of oncogenic transformation in a
variety of solid tumors, and it can be used as a biomarker for
early detection, systemic sampling, and prognosis in a variety of
human cancers (13). Indeed, Haijing Liu et al. (14) reported the
potential link between EGFR alterations at the multi-omics levels
and clinical prognosis by pan-cancer analysis, but the
relationship between DNA methylation of EGFR in LUAD and
immune infiltration has not been reported. For patients
with LUAD who do not benefit from targeted therapy, the
discovery of DNA methylation-related immune landscapes has
important implications for the molecular mechanisms
of immunotherapy.

Using the LUAD dataset from The Cancer Genome Atlas
(TCGA), we performed a comprehensive multi-omics data
assessment of EGFR-annotated CpGs. We investigated whether
EGFR CpG methylation sites correlated with EGFR gene
expression, protein levels and overall survival (OS) time.
We further explored the relationship between somatic
copy number variation (SCNV) and DNA methylation of
EGFR, and the link between EGFR CpG methylation sites and
LUAD immunological infiltration cells and immune-
related pathways.
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MATERIALS AND METHODS

EGFR CpGs and TCGA Data Analysis
The Illumina 450K TCGA dataset was used to extract
methylation and expression data for all EGFR CpGs. We
investigated 49 CpGs in the promoter and gene body regions
of EGFR. Figure 1 depicts the EGFR genome arrangement
(Figure 1A) and the relative locations of all EGFR CpGs
genomes (Figure 1B). Clinical information is integrated with
data from the GDC data portal (https://portal.gdc.cancer.gov)
(15). These data included 535 LUAD patients, as well as
information on EGFR status and somatic copy number
variation (SCNV). Methylation data came in the form of beta-
values, while expression data came in the form of TPM
(Transcripts Per kilobase Million)-normalized read counts.
cBioProtal (http://www.cbioportal.org/study?id=luad_
tcga#summary) was used to retrieve RPPA (Reverse phase
protein array)-based protein expression data (16).

Survival Analysis
For all available LUAD samples, Kaplan-Meier survival analysis
curves (17) for the 49 EGFR CpG were plotted, with a P-value of
0.05 used as a statistical threshold, according to the group with
high or low methylation. We did the above survival analysis
curves in the EGFR wild-type group, EGFR mutation group and
EGFR wild-type and PDL1 high expression group.

Assessment of Immune Cells Infiltration,
ESTIMATE Scores
We employed the R package ESTIMATE (18) to investigate the
immune invasion of LUAD samples. After that, to obtain a more
detailed picture of immune cell-types and other stromal cells
infiltration, R package MCPcounter was used (19). MCPcounter
utilizes the scoring data for individual tumor specimens (20). We
calculated the Pearson correlation between the b value of the
CpG site on EGFR and the score of immune infiltration.

Sample Collection
20 paired LUAD and non-cancerous lung tissue samples
were obtained from the First Affiliated Hospital of Guangxi
Medical University from September 2019 to February 2020,
and stored at -80°C. LUAD diagnosis was confirmed by two
independent pathologists. This study was approved by the ethics
committee of the First Affiliated Hospital of Guangxi
Medical University.

DNA Extraction, DNA Sodium Bisulfite
Conversion, and Quantitative Methylation
Specific PCR
Genomic DNA was isolated from individual specimens using a
CTAB DNA extraction (21). Nanodrop 2000 spectrophotometer
(Thermofisher, USA) was used to detect the concentration and
purity of the DNA extraction, and nucleic acid gel electrophoresis
was used to detect DNA integrity (22). Samples were then
bisulfite-converted using the Epitect Fast DNA Bisulfite Kit
August 2021 | Volume 11 | Article 691915
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(Qiagen; 59824), according to the manufacturer protocol. The
purified products were quantitated using a Qubit ssDNA Assay
kit (Thermo, Q10212). Primer Premier 6.0 software (Premier,
Canada) was used to design the primer sequences to target CpG
sites. Fully methylated genomic DNA after bisulfite treatment and
normal genomic DNA (not transformed with bisulfite) were used
as templates. Uncalibrated methylation levels, roughly equivalent
to percent methylation, were calculated using cycle threshold
(CT) values obtained from probes that specifically bind to
methylated (CTmethylated) and unmethylated (CTunmethylated)
DNA, respec t ive ly (methy la t ion [%] =100%/(1 +
2CTmethylated–CTunmethylated). The primers were utilized as shown
in Table 1. QMSP was performed using an Applied Biosystems
7900HT Fast Real-Time PCR system (Waltham, Massachusetts,
USA) with the following temperature profile: 5 minutes at 95°C,
followed by 40 cycles of 15 seconds at 95°C, 30 seconds at 60°C,
and 60 seconds at 60°C.

Statistical Analysis
Pearson correlation coefficients were used to assess correlations
between EGFR mRNA expression, protein expression, immune
score, and all individual beta values of EGFR in the TCGA
Frontiers in Oncology | www.frontiersin.org 3
dataset. Wilcoxon rank sum test with continuity correction was
used to assess differential methylation. Results were deemed
significant if p<0.05.
RESULTS

Differential Methylation Analysis of EGFR
and Its CpG Sites
We sought to explore whether variations in DNA methylation
were linked to EGFR expression abnormalities. The cbioprotal
official website analysis showed that EGFR hypermethylation is
inversely correlated with mRNA (r2 = -0.38, P = 1.14e-16)
(Figure 1C) and protein (r2 = -0.39, P = 5.76e-13) (Figure 1D)
overexpression in LUAD of TCGA. We next analyzed the
relationship between the methylation levels of the EGFR
promoter and the clinicopathological parameters of LUAD
patients by UALCAN. EGFR were significantly hypermethylated
in LUAD tissues when compared with normal lung tissues
(P = 3.38e-3) (Figure 1E), and the mRNA levels of EGFR in
LUAD were remarkably lower than those in normal lung tissues
(P = 1.41e-4) (Figure 1F).
A

B

D E FC

FIGURE 1 | EGFR Genomic structure, CpG site landscape, methylation level. (A) Schematic representation of the EGFR gene structure within the human hg19
genome sequence. (B) Overview of 49 analyzed methylation sites of EGFR. (C) Correlation analysis between DNA methylation and mRNA expression of EGFR in the
TCGA LUAD cohort. (D) Correlation analysis between DNA methylation and protein expression of EGFR in the TCGA LUAD cohort. (E) Promoter methylation levels
of EGFR on normal and LUAD tissues. (F) EGFR mRNA expression in normal and LUAD groups.
August 2021 | Volume 11 | Article 691915
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In the same cohort of LUAD patients from the TCGA
database we collected methylation data from the Infinium
HumanMethylation450 BeadChip for 49 CpG sites of EGFR
(Table 2 and Supplemental Table 1). Six CpG sites were located
in promoter regions (cg16751451, cg07311521, cg03860890,
cg22396409, cg05064645, cg14094960) and 43 were in the gene
body or in the 3’UTR regions. There were 34 of 49 CpG sites that
were differentially methylated between LUAD tissues and control
groups (P < 0.05). Five CpG sites in promoter regions and 17
CpG sites in the gene body had a significantly higher percentage
of methylation in LUAD when compared to normal lung tissues.
Meanwhile, cg16751451 in promoter regions and 11 CpG sites in
the gene body or 3’ UTR regions had a significantly lower
percentage of methylation in LUAD compared to normal
lung tissues.

LUAD with EGFR mutations is a subtype of LUAD with a
particular molecular mechanism and selective treatment (23).
We analyzed EGFR methylation changes of LUAD in the EGFR
mutations group and EGFR wild-type (non-mutated) group. We
found that in the EGFR mutation group, EGFR showed a
significant hypomethylation state. Interestingly, when
performing differential methylation analysis of CpG sites we
found that 19 of 26 CpGs were significantly hypomethylated
while 7 CpGs were significantly hypermethylated in the EGFR
mutation group compared to the EGFR wild-type group.

We further explored the relationship between SCNV and
DNA methylation of EGFR, and found that there was a negative
correlation between SCNV and DNA methylation for some
CpGs (cg05064645, cg14094960, cg25311271, cg11849717,
cg03860890), while for the majority (26/31 CpGs) there was a
positive correlation.

OS-Related CpG Sites
To explore the prognostic value of 49 CpGs of EGFR in LUAD,
we constructed survival curves to evaluate the association between
CpGs and OS with the Kaplan-Meier method. A total of 10 CpG
sites were significantly associated with the OS of LUAD patients
(Figure 2A). Except for cg05064645, the hypermethylation of
cg27637738, cg16751451, cg02316066, cg22396409, cg03046247,
cg02166842, cg21901928, cg07311521 and cg06052090 CpG sites
revealed poor prognosis of LUAD patients (p<0.05).
Frontiers in Oncology | www.frontiersin.org 4
We next performed a survival analysis in the EGFR-mutant
and EGFR-wild subsets separately. In the EGFR mutation group,
the hypermethylation of cg01461514, cg26277197 and
cg25311271 was associated with a good prognosis of LUAD
(p<0.05), while the hypermethylation of cg21901928,
cg22427313, cg02316066, cg26055062, cg10002850 and
cg03046247 was associated with a poor prognosis (p<0.05)
(Figure 2B). In patients with wild type EGFR, high levels of
PDL1 expression affected the prognosis of immunotherapy (24).
In the EGFR wild-type group, we divided LUAD patients into
three equal parts according to the mRNA expression level of
PDL1, and the group with the highest expression was identified
as the EGFR wild-type and high PDL1 expression group. We
found that the hypermethylation of cg02316066, cg16589260,
and cg27637738 was associated with a poor prognosis in LUAD
patients without EGFR mutations but with high PDL1
expression (p<0.05) (Figure 2C).

Apart from EGFR mutations, KRAS mutations were the most
common mutations in LUAD (25), and we discovered that
hypermethylation of cg26055062 and cg04625338 predicted
good prognosis in LUAD patients with KRSA mutations
(Figure 3A). Hypermethylation of cg18809076 and cg25311271
in the KRAS wild-type group predicted good prognosis, but
ch.7.1264585R had the opposite effect (Figure 3B).

Patients with LUAD might have a variety of molecular
features depending on their smoking history (26). We explored
the relationship between EGFR methylation and prognosis in
patients with LUAD in the smoking and non-smoking groups.
Hypermethylation of cg16751451 and cg27637738 suggested a
poor prognosis for LUAD in the smoking group (Figure 3C). In
the nonsmoking group, hypermethylation of cg04625338 and
cg05064645 indicated a favorable outcome, but cg02316066,
cg05898452, cg06052090, cg21808635, cg16751451, and
cg16589260 had the opposite effect (Figure 3D).

EGFR Expression Is Correlated With
DNA Methylation
Individual CpG methylation was studied in relation to EGFR
mRNA and protein expression (Figure 4A). Of the 49 CpG sites
examined in LUAD tissue, 44 had a strong association with
EGFR mRNA expression. The methylation levels of all CpG sites
TABLE 1 | Primer sequences used in this study.

Name Sequence (5’-3’) Types Products (bp)

cg02316066-M TGTGGGGTTACGGGTAAGTTTC Forward Primer 170
cg02316066-M TCTACCAATTATAAATCTAATATCACATAC Reverse Primer
cg02316066-U TGTGGGGTTATGGGTAAGTTTT Forward Primer 170
cg02316066-U TCTACCAATTATAAATCTAATATCACATAC Reverse Primer
cg03046247-M TGGAAATAGTATAAATTGGAGGTGA Forward Primer 228
cg03046247-M AACTACGCTATTTTAAAAACCACG Reverse Primer
cg03046247-U TGGAAATAGTATAAATTGGAGGTGA Forward Primer 228
cg03046247-U AAAAACTACACTATTTTAAAAACCACA Reverse Primer
cg02166842-M GAGTGAGTGGGTTTAGTTAAGTGAGT Forward Primer 170
cg02166842-M ACCCTCCTAAATATAATATTTACACG Reverse Primer
cg02166842-U GAGTGAGTGGGTTTAGTTAAGTGAGT Forward Primer 170
cg02166842-U AACCCTCCTAAATATAATATTTACACA Reverse Primer
August 2021 | Volume 11 |
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in promoter regions were shown to be inversely correlated to
EGFR mRNA levels. The methylation level of CpG sites in 27 of
43 CpGs within the gene body region was positively correlated
with the mRNA level of EGFR, and 11/43 showed a significant
negative correlation. Cg03046247, cg08428266 and cg20062492
hypermethylation was significantly related to the high expression
of EGFR mRNA, and cg10002850 hypomethylation was
significantly related to the high expression of EGFR mRNA.
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Then we investigated the connection between CpG methylation
and EGFR protein expression, and the findings matched the
EGFR mRNA association described previously. Cg02316066
hypermethylation and cg01461514 hypomethylation were
significantly related to the high expression of EGFR protein.

Next, we explored the correlation between the mRNA and
protein expression levels of EGFR and EGFR CpG sites in EGFR
and KRAS mutation status or not (Figures 4B, C).
TABLE 2 | Differential methylation levels of EGFR CpG sites among different subgroups.

CpG site Position Mean methylation level p value Mean methylation level p value Mean methylation level p value

normal LUAD EGFR-mutation EGFR-wild -2 -1 0 1 2

cg03860890 TSS1500 0.13 0.16 9.80E-04 0.14 0.16 3.40E-04 0.18 0.18 0.16 0.15 0.14 2.30E-02
cg05064645 5’UTR;1stExon 0.05 0.08 4.00E-04 0.06 0.08 1.10E-02 0.20 0.09 0.09 0.07 0.06 3.90E-07
cg07311521 TSS1500 0.03 0.05 3.90E-03 0.04 0.05 6.60E-03 0.04 0.05 0.05 0.05 0.06 8.10E-01
cg14094960 5’UTR;1stExon 0.08 0.11 4.70E-05 0.10 0.11 1.70E-01 0.24 0.12 0.12 0.10 0.09 1.50E-06
cg16751451 TSS1500 0.38 0.36 1.50E-02 0.30 0.36 1.00E-04 0.42 0.39 0.36 0.35 0.33 2.50E-01
cg22396409 TSS1500 0.13 0.16 1.20E-02 0.15 0.16 3.80E-02 0.15 0.17 0.16 0.16 0.16 7.50E-01
cg01461514 Body 0.59 0.39 2.20E-15 0.32 0.40 7.20E-07 0.49 0.47 0.40 0.39 0.26 3.70E-10
cg02003682 Body 0.81 0.76 1.00E-04 0.77 0.75 3.60E-02 0.72 0.71 0.75 0.77 0.74 4.00E-03
cg02166842 Body 0.60 0.53 2.60E-03 0.42 0.54 2.40E-10 0.59 0.58 0.53 0.53 0.42 7.30E-04
cg02316066 Body 0.63 0.67 3.50E-03 0.69 0.66 6.60E-03 0.58 0.65 0.65 0.68 0.71 1.40E-04
cg03046247 Body 0.73 0.70 1.30E-01 0.71 0.70 1.30E-01 0.62 0.70 0.69 0.71 0.71 2.50E-02
cg04116217 Body 0.79 0.76 3.20E-02 0.77 0.76 8.30E-02 0.67 0.72 0.75 0.77 0.74 2.50E-02
cg04625338 Body 0.31 0.29 1.30E-02 0.28 0.29 4.80E-01 0.25 0.30 0.28 0.31 0.26 3.00E-01
cg05207583 Body 0.74 0.76 1.60E-04 0.72 0.77 1.20E-04 0.66 0.77 0.77 0.77 0.72 2.70E-03
cg05530630 Body 0.79 0.80 2.90E-02 0.80 0.80 4.10E-02 0.72 0.80 0.79 0.81 0.80 1.60E-02
cg05537387 Body 0.81 0.80 8.10E-01 0.76 0.80 1.10E-02 0.72 0.79 0.79 0.81 0.76 2.00E-02
cg05898452 Body 0.59 0.61 1.20E-01 0.63 0.60 1.10E-02 0.46 0.58 0.59 0.62 0.64 2.40E-04
cg06052090 Body 0.67 0.74 5.80E-07 0.68 0.75 1.30E-03 0.68 0.74 0.72 0.75 0.74 6.10E-02
cg10002850 Body 0.70 0.80 1.60E-06 0.69 0.81 1.30E-05 0.83 0.82 0.81 0.80 0.68 4.70E-03
cg10550611 Body 0.76 0.72 2.80E-01 0.70 0.72 2.30E-01 0.73 0.71 0.72 0.72 0.70 9.10E-01
cg10690277 Body 0.86 0.85 1.20E-01 0.84 0.85 2.60E-01 0.79 0.85 0.85 0.85 0.82 7.40E-03
cg11849717 Body 0.12 0.12 4.40E-01 0.11 0.12 9.10E-03 0.16 0.13 0.13 0.11 0.11 2.00E-03
cg14344486 Body 0.70 0.70 8.80E-02 0.60 0.72 1.50E-10 0.75 0.73 0.72 0.70 0.60 1.80E-04
cg14688342 Body 0.48 0.43 3.30E-04 0.42 0.43 3.30E-01 0.42 0.42 0.43 0.43 0.42 9.30E-01
cg15692229 Body 0.73 0.86 2.20E-16 0.85 0.86 7.40E-01 0.86 0.86 0.85 0.86 0.84 1.30E-01
cg16488565 Body 0.54 0.62 4.90E-10 0.63 0.62 3.60E-02 0.51 0.60 0.61 0.63 0.61 5.70E-04
cg16589260 Body 0.76 0.79 1.70E-03 0.79 0.79 5.40E-01 0.74 0.81 0.79 0.79 0.78 8.40E-02
cg17319788 Body 0.85 0.81 3.60E-01 0.80 0.82 3.30E-01 0.79 0.81 0.83 0.82 0.68 2.70E-10
cg17389149 Body 0.86 0.85 8.70E-01 0.86 0.85 2.30E-02 0.83 0.82 0.84 0.86 0.86 2.40E-02
cg18071865 Body 0.58 0.61 3.30E-03 0.63 0.61 9.40E-02 0.51 0.59 0.60 0.63 0.64 8.80E-04
cg18452131 Body 0.83 0.79 2.70E-04 0.79 0.79 5.50E-01 0.71 0.78 0.78 0.80 0.76 2.10E-02
cg18809076 Body 0.79 0.79 5.10E-02 0.71 0.80 1.00E-09 0.78 0.82 0.80 0.78 0.65 3.70E-10
cg20041612 Body 0.70 0.64 2.60E-01 0.60 0.65 7.80E-03 0.55 0.62 0.66 0.64 0.60 1.50E-01
cg20062492 Body 0.79 0.73 1.30E-06 0.73 0.72 1.50E-01 0.64 0.72 0.72 0.74 0.72 2.30E-02
cg20706768 Body 0.75 0.78 5.20E-04 0.78 0.78 9.20E-01 0.67 0.78 0.77 0.79 0.81 1.20E-04
cg20773588 Body 0.74 0.78 5.60E-04 0.79 0.78 5.10E-02 0.61 0.77 0.77 0.80 0.73 9.00E-04
cg21681212 Body 0.60 0.74 4.90E-14 0.72 0.74 7.70E-02 0.68 0.73 0.73 0.74 0.71 8.70E-02
cg21808635 Body 0.77 0.83 6.00E-06 0.84 0.83 3.70E-01 0.71 0.83 0.82 0.83 0.86 2.70E-04
cg21901928 Body 0.73 0.75 5.60E-03 0.74 0.75 3.70E-01 0.66 0.72 0.74 0.76 0.74 3.80E-02
cg22427313 Body 0.68 0.69 1.00E-01 0.68 0.69 6.00E-01 0.65 0.64 0.66 0.71 0.69 9.90E-04
cg23757825 Body 0.88 0.84 1.70E-01 0.82 0.85 5.80E-03 0.76 0.81 0.85 0.85 0.80 7.80E-03
cg25311271 Body 0.09 0.10 3.00E-03 0.10 0.11 6.10E-02 0.14 0.11 0.11 0.10 0.09 1.30E-03
cg25815893 Body 0.82 0.80 2.00E-01 0.81 0.80 4.80E-02 0.73 0.78 0.80 0.81 0.77 1.80E-02
cg26055062 Body 0.68 0.76 1.70E-08 0.68 0.77 1.70E-05 0.73 0.78 0.76 0.76 0.72 4.90E-01
cg26277197 Body 0.41 0.39 1.10E-01 0.31 0.40 6.00E-09 0.51 0.43 0.41 0.37 0.28 3.30E-08
cg27598340 Body 0.95 0.85 4.20E-03 0.88 0.84 2.00E-01 0.65 0.77 0.83 0.87 0.84 2.30E-02
cg27637738 Body 0.48 0.53 2.70E-02 0.42 0.54 1.70E-07 0.51 0.60 0.49 0.55 0.48 4.30E-05
ch.7.1264585R Body 0.12 0.11 2.50E-02 0.11 0.11 7.70E-01 0.10 0.11 0.11 0.11 0.10 8.20E-01
cg08428266 3’UTR 0.82 0.78 1.30E-03 0.78 0.77 1.10E-01 0.67 0.77 0.76 0.79 0.78 3.20E-03
August 2021 | Volume 11 | Artic
(Somatic copy number variation type: -2, shallow deletion; -1, diploid; 0, normal; 1, gain; 2, amplification). CpG sites in bold values indicate located in the EGFR promoter region. The
p-values in bold values indicate statistical differences (p < 0.05).
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FIGURE 2 | KM curves of EGFR CpG sites. (A) Kaplan-Meier analysis regarding overall survival in patients with LUAD stratified according to EGFR methylation
survival rate of LUAD patients based on the EGFR mutation group and the EGFR wild-type PDL1 high expression group.
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A
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D
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FIGURE 3 | KM curves of EGFR CpG sites. Kaplan-Meier analysis of the overall survival rate of LUAD patients based on the KRAS mutation group (A), KRAS wild-
type group (B), smoking group (C) and the non-smoking group (D).
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Overall, similar to the above results, the b values of CpG sites
located in the EGFR promoter region were negatively correlated
with the mRNA and protein levels of EGFR in both the EGFR
mutant and KRAS mutant groups, while the CpG sites of the
gene body showed the opposite effect. Interestingly, we found a
higher correlation, both positive and negative, in the EGFR
mutant group compared to the EGFR wild-type group. In
contrast, this correlation was lower in the KRAS mutation
group than in the KRAS wild-type group.

EGFR Methylation and Expression Are
Associated With Immune Cells Infiltration
Immune cells from a variety of species are known to infiltrate the
tumor microenvironment (27). We explored the association
between EGFR methylation levels and the infiltration levels of 8
immune cells and 2 stromal cells of MCPcounter. Based on the
median EGFR integrated methylation level, we divided the LUAD
samples into hypermethylated and hypomethylated EGFR
groups. The results showed that the EGFR hypermethylation
group was associated with increased infiltration of T cells, CD8 T
cells, cytotoxic lymphocytes, B lineage, NK cells, monocytic
lineage, and fibroblasts (Figure 5A). Moreover, the immune
score, stromal score and estimate score of ESTIMATE were
higher in the EGFR hypermethylated group than those of the
hypomethylated group (Figure 5B). We found a positive
association between EGFR promoter hypermethylation and
the infiltration of T cells, CD8 T cells, cytotoxic lymphocytes,
Frontiers in Oncology | www.frontiersin.org 8
B lineage, NK cells, monocytic lineage, endothelial cells and
fibroblasts, while EGFR body hypermethylation had lower
infiltration of the above immune cells (Figure 5C). To further
examine this scenario, we found that EGFR promoter
hypermethylation had higher immune scores (p<0.001), a
marker of total immune infiltration (Figure 5D). The
association between EGFR methylation and the IFN-signature
was also investigated. Increased mRNAs of the main IFN-
signature genes (IFNG, STAT1, STAT2, JAK2) were found to
be linked to extensive promoter hypermethylation and gene body
hypomethylation (Figure 5E).

Validation of CpG Site Methylation by
qMSP in External Cohorts
We evaluated the relationship between CpG sites and clinical
information, such as T staging, N staging and cancer states. As
shown in Figure 6, the increase in the methylation b value of
cg02166842 was significantly correlated with the T stage (T1 vs
T2, T1 vs T3) (p=0.027, p=0.025 respectively) (Figure 6A),
N stage (N0 vs N2) (Figure 6B), (p=0.035) and with tumor
status (p=0.032) (Figure 6C). The methylation b value of
cg02316066 was positively correlated with the T stage (T1 vs
T3, T1 vs T4, T2 vs T3) (p=0.0049, p=0.019, p=0.032
respectively) (Figure 6D), while the methylation b value of
cg03046247 was positively correlated with the T stage (T1 vs
T2, T1 vs T3, T1 vs T4, T2 vs T3,T2 vs T4) (p=0.026, p=0.0011,
p=0.0038, p=0.049, p=0.028 respectively) (Figure 6E) and
A

B

C

FIGURE 4 | The correlation of EGFR CpG sites methylation and mRNA and protein expression of EGFR in LUAD. (A) Correlation analysis between DNA methylation
levels of 49 EGFR CpG sites and mRNA and protein expression of EGFR in the TCGA LUAD cohort. (B, C) Correlation analysis between DNA methylation levels of
49 EGFR CpG sites and mRNA and protein expression of EGFR in EGFR and KRAS status groups of TCGA LUAD cohort. CpG sites labeled in red are located in
the EGFR promoter region and in black in the gene body region.
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N stage (N0 vs N2) (p=0.0068) (Figure 6F). To determine whether
there was a difference in the methylation levels of cg02316066,
cg03046247 and cg02166842 between LUAD tissue and adjacent
tissues, we collected 20 pairs of tissue specimens. Consistent with
the TCGA database results, cg02316066 showed hypermethylation
levels and cg02166842 showed hypomethylation in LUAD
(Figures 6G, H). Ten OS-related CpG sites showed high
correlation coefficients towards each other indicating a high
degree of co-methylation (Figure 6I). We noted that cg02316066
and cg03046247 were strongly associated with multiple types of
clinical profiles and LUAD prognosis, and there was also a high
degree of co-methylation between cg02316066 and cg03046247. In
the TCGA cohort, the cg02316066 and cg03046247 Pearson
Frontiers in Oncology | www.frontiersin.org 9
correlation coefficient was 0.76 (p<0.001) (Figure 6J) and,
consistent with this, in our validation cohort the correlation
coefficient was 0.56 (p<0.001) (Figure 6K).
DISCUSSION

So far, EGFR is a consensual factor that promotes cancer
progression and the development of EGFR-TKIs has
dramatically changed the therapeutic landscape for patients
with non-small cell lung cancer (28). However, the rapid
occurrence of clinical drug resistance hinders patient survival
(8). TKIs or monoclonal antibodies targeting EGFR can block the
A B

D

E

C

FIGURE 5 | The correlation of EGFR CpG sites methylation and immune cells infiltrates and IFN-g signature in LUAD. (A) The landscape of immune infiltration in
LUAD according to the median EGFR methylation level by MCPcounter. (B) ESTIMATE scores in LUAD according to the median EGFR methylation level. (C–E)
Correlation analysis between DNA methylation levels of 49 EGFR CpG sites and immune infiltration, ESTIMATE scores, IFN-g signature in the TCGA LUAD cohort.
CpG sites labeled in red are located in the EGFR promoter region and in black in the gene body region. ****P < 0.0001, ns, not significant.
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infiltration of immunosuppressive cells and improve the
antitumor response in NSCLCs, indicating that combining
EGFR-targeted therapy with immune checkpoint inhibitors is a
viable alternative for combination immunotherapy (29).

Epigenetic variations are being gradually investigated, and
they are now changing the idea that malignant lesions depend
entirely on genetic expressions to develop (30). DNA
methylation, which is largely responsible for gene silencing and
chromatin formation, is by far the most studied epigenetic
regulatory mechanism (31). Methyl groups are covalently
bound to cytosine during DNA methylation to generate 5-
methylcytosine (5mC) (32). Furthermore, DNA methylation is
chemically stable, can be tested separately, and has strong
biomarker potential (33) . Methylat ion quantitat ive
measurement of small samples (microanatomical cells,
biopsies) is often performed in the clinic. These are the
advantages of using methylation as a biomarker (34, 35).

To establish the various levels of methylation sites of EGFR in
LUAD, we collected RNA-seq results and Illumina
HumanMethylation450K from TCGA. We meticulously
Frontiers in Oncology | www.frontiersin.org 10
investigated DNA methylation at the EGFR 49 CpG sites. We
correlated EGFR methylation with transcription and protein
expression in LUAD tissues. Our results indicate that DNA
methylation in the promoter and gene body regions resulted in
strong epigenetic regulation of EGFR. In the LUAD TCGA cohort,
hypomethylation of the promoter region was negatively associated
with increased mRNA and protein expression, while
hypomethylation in the gene body was nearly always positively
correlated with EGFR expression. This strong epigenetic
regulation of EGFR is present not only in the different
mutational states of EGFR but also in the KRAS mutant and
wild-type groups, and interestingly, mutations in EGFR enhance
this epigenetic regulation of EGFR, while mutations in KRAS
attenuate this property. Some studies have revealed that EGFR and
KRAS mutations are mutually exclusive in lung adenocarcinoma
(36), the mechanisms of which need to be investigated in more
depth. These methylation defects can eventually affect the clinical
characteristics and prognosis of LUAD patients.

Mutations in the Furin-like and Pkinase-Tyr domains were
shown to be predictive indicators of effective TKI therapy for
A B D

E F G

I

H

J K

C

FIGURE 6 | The relationship of EGFR CpG sites DNA methylation levels and clinicopathologic parameters. (A) Association of cg02166842 DNA methylation levels
with T stage. (B) Association of cg02166842 DNA methylation levels with N stage. (C) Association of cg02166842 DNA methylation levels with cancer status.
(D) Association of cg02316066 DNA methylation levels with T stage. (E) Association of cg03046247 DNA methylation levels with T stage. (F) Association of
cg03046247 DNA methylation levels with N stage. (G) DNA methylation levels of cg02316066 in normal and LUAD samples. (H) DNA methylation levels of
cg02166842 in normal and LUAD samples. (I) Correlation heat map of DNA methylation levels at 10 OS-associated CpG sites. (J) Association between the DNA
methylation of cg02316066 and cg03046247 in the TCGA LUAD cohort. (K) Association between the DNA methylation of cg02316066 and cg03046247 in external
validation cohort.
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NSCLC (37–39), with slightly longer survival as compared to
standard combination chemotherapy (40, 41). Different EGFR
mutations have various benefits, and those that inhibit EGFR
kinase activity can benefit from EGFR-targeted therapy (42, 43).
In LUAD patients with an EGFR mutant phenotype, we found
that most (19/26) CpG sites were hypomethylated and six of
these were predictors for a good prognosis. There was a negative
correlation between SCNV and DNAmethylation at sites in CpG
islands, and conversely, a positive correlation between sites in the
CpG ocean of EGFR (26/31).

T cells, CD8 T cells, cytotoxic lymphocytes, B lineage, NK cells,
monocytic lineage, and fibroblasts were found to be infiltrated
more frequently in tissues that presented EGFR hypermethylation.
Also, the immune score, stromal score and estimate score were
higher in the EGFR hypermethylated group than those in the
hypermethylated group. The non-inflammatory tumor
microenvironment (TME) in EGFR-mutated NSCLCs is
abundant in Treg cells and macrophages, with the latter releasing
chemokines that attract more Treg cells in the inflammatory TME
(44). EGFR-TKI therapy facilitates CD8+ T cell recruitment and
prevents Treg cell infiltration in the TME in EGFR-mutated
tumors in vivo (45). Therefore, we evaluated the relationship
between EGFR methylation and an IFN-g signature. Wide-
spread promoter hypermethylation and body hypomethylation
were strongly associated with increased IFN-g signature. In vitro
studies have shown that blocking EGFR with antibodies or kinase
inhibitors facilitate the secretion of chemokines (CCL2, CCL5, and
CXCL10) in HNSCC cells and keratinocytes when IFN and tumor
necrosis factor (TNF) are stimulated (46).

In summary, our research shows that EGFR participates in
the epigenetic regulation of LUAD through DNA methylation.
DNA methylation of EGFR shows unique clinical characteristics
and immunogenicity. Our research provides a theoretical basis
for further assessment of EGFR DNA methylation, which can be
used as a biomarker to predict the prognosis and immune
mechanisms of LUAD.
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