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Abstract: Catalytic asymmetric [2 + 4] cycloadditions of 3-vinylindoles with ortho-quinone methides
and their precursors were carried out in the presence of chiral phosphoric acid to afford a series of
indole-containing chroman derivatives with structural diversity in overall high yields (up to 98%),
good diastereoselectivities (up to 93:7 dr) and moderate to excellent enantioselectivities (up to 98%
ee). This approach not only enriches the chemistry of catalytic asymmetric cycloadditions involving
3-vinylindoles but is also useful for synthesizing chiral chroman derivatives.

Keywords: vinylindoles; cycloaddition; ortho-quinone methide; chiral phosphoric acid; asymmet-
ric organocatalysis

1. Introduction

Chiral indole derivatives are ubiquitous in biologically important natural products,
pharmaceuticals and materials [1–5]. In recent years, vinylindoles have been recognized
as versatile reactants for the synthesis of enantioenriched indole derivatives [6,7]. The
3-vinylindoles belong to a class of vinylindoles with multiple reactive sites and are widely
applied in organocatalytic asymmetric cycloadditions and substitutions [8–29].

As shown in Figure 1, 3-vinylindoles exhibit versatile reactivities and participate in
four main types of organocatalytic asymmetric reactions. Namely, 3-vinylindoles act as
dienes in asymmetric [4 + 2] cycloaddition (Figure 1a) [8–12], as mono-olefins in asymmetric
[2 + n] cycloaddition (Figure 1b) [13–23], as electrophiles in asymmetric addition reaction
(Figure 1c) [24–27], and as nucleophiles in asymmetric alkenylation (Figure 1d) [28,29].
Among these reactions, organocatalytic asymmetric [2 + n] cycloaddition of 3-vinylindoles
as mono-olefins has proven to be an important reaction (Figure 1b) to efficiently synthesize
indole-containing heterocycles with optical purity [30,31].
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Figure 1. Profile of organocatalytic asymmetric reactions involving 3-vinylindoles. (a) [4 + 2]
Cycloaddition; (b) [2 + n] Cycloaddition; (c) Addition reaction; (d) Alkenylation reaction. The
asterisk * indicates chiral center.
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Among the organocatalytic asymmetric [2 + n] cycloadditions of 3-vinylindoles, [2 + 4]
cycloadditions using 3-vinylindoles as dienophiles belong to a class of important inverse-
electron-demand Diels−Alder reactions (Figure 2). However, most of these reactions
involve [2 + 4] cycloadditions of 3-vinylindoles with aza-dienes (Figure 2a) [13–15]. By
sharp contrast, organocatalytic asymmetric [2 + 4] cycloadditions of 3-vinylindoles with
oxa-dienes have been sporadically reported in the literature (Figure 2b) [16–18]. The
underdevelopment of this class of reactions could be ascribed to the considerable challenges
encountered in conducting these reactions, which mainly include (1) finding suitable
reaction partners and (2) controlling the regioselectivity (whether 3-vinylindoles act as
mono-olefins or dienes) and enantioselectivity of the cycloaddition reaction.
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To date, there are only three cases of organocatalytic asymmetric [2 + 4] cycloadditions
of 3-vinylindoles with oxa-dienes (Figure 3) [16–18]. In 2011, Zhu’s group realized the
organocatalytic asymmetric [2 + 4] cycloaddition of 3-vinylindoles with chromone-derived
oxa-dienes, generating enantioenriched indole-containing heterocycles (Figure 3a) [16]. In
2019, Zhang and coworkers performed an organocatalytic asymmetric [2 + 4] cycloaddi-
tion of 3-vinylindoles with β,γ-unsaturated α-ketoesters with high enantioselectivities
(Figure 3b) [17]. Very recently, our group reported an organocatalytic asymmetric [2 + 4] cy-
cloaddition of 3-vinylindoles with ortho-hydroxyphenyl-substituted para-quinone methide
derivatives that provides a series of chiral chroman derivatives bearing an indole moiety
(Figure 3c) [18]. Other than these cases, organocatalytic asymmetric [2 + 4] cycloadditions
of 3-vinylindoles with oxa-dienes remain rather limited. Therefore, developing this class of
reactions and overcoming the associated inherent challenges are urgently required.
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To fulfill this task and in continuation of our ongoing efforts in the enantioselective
synthesis of indole-based chiral heterocycles [32–35], we designed a chiral phosphoric
acid [36–44] (CPA)-catalyzed asymmetric [2 + 4] cycloaddition of 3-vinylindoles with
ortho-quinone methides (o-QMs) and their precursors (Figure 4). The o-QMs were selected
as suitable reaction partners because of their high reactivity as oxa-dienes in catalytic
asymmetric cycloadditions [45–63]. Within this design scheme, 3-vinylindoles 1 and o-QMs
2 can be simultaneously activated by CPA via hydrogen-bonding interactions. This dual
activation mode of CPA facilitates regioselective and enantioselective [2 + 4] cycloaddition
between 3-vinylindoles 1 and o-QMs 2, thus affording the chiral indole-containing chroman
derivatives 3.
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Herein, we report the CPA-catalyzed asymmetric [2 + 4] cycloaddition of 3-vinylindoles
with o-QMs and their precursors to afford chiral indole-containing chroman derivatives in
overall good yields (up to 98% yield) and moderate to excellent stereoselectivities (up to
93:7 dr, 98% ee).

2. Results and Discussion
2.1. Organocatalytic Asymmetric [2 + 4] Cycloaddition of 3-Vinylindoles with Sesamol-Derived
o-QMs
2.1.1. Optimization of Reaction Conditions

To test the feasibility of the designed catalytic asymmetric [2 + 4] cycloaddition,
3-vinylindole 1a was reacted with sesamol-derived o-QM 2a in the presence of CPA (R)-
4a at 25 ◦C in toluene (Table 1, entry 1). Catalytic asymmetric [2 + 4] cycloaddition
occurred, as expected, to afford the chiral chroman derivative 3aa in a moderate yield
with excellent diastereoselectivity, albeit with no enantio-control (43% yield, 96:4 dr, 0%
ee). To control the enantioselectivity of this [2 + 4] cycloaddition, a series of CPAs 4
were screened (entries 2–7). The CPA (R)-4c bearing two bulky 3,3′-(1-naphthyl) groups
facilitated the [2 + 4] cycloaddition with the highest enantioselectivity of 66% ee (for the
major diastereomer) among the investigated catalysts (entry 3 vs. entries 1–2 and 4–7),
which could be ascribed to the steric hindrance effect of the 3,3′-disubstituents of CPA in
creating a chiral environment for controlling the enantioselectivity [64,65]. The subsequent
evaluation of a series of representative solvents (entries 8–12) in the presence of CPA
(R)-4c showed that toluene remained the most suitable solvent in terms of controlling the
enantioselectivity (entry 3 vs. entries 8–12).

Next, we investigated the effect of the reaction temperature (Table 2, entries 1–4) and
found 0 ◦C to be the optimal reaction temperature (entry 1 vs. entry 3). Modulating the
molar ratio of the reactants (entries 5–8) revealed that increasing the quantity of sesamol-
derived o-QM 2a improved the yield but decreased the enantioselectivity (entry 3 vs. entries
5–6), whereas increasing the quantity of 3-vinylindole 1a was detrimental to the reaction
(entry 3 vs. entries 7–8). Therefore, the most suitable molar reagent ratio remained 1:1.2.
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Finally, some additives were screened (entries 9–13), and the optimal conditions for this
[2 + 4] cycloaddition were set as shown in entry 12.

Table 1. Screening of catalysts and solvents a.
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Table 2. Further optimization of reaction conditions a.
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ring (entries 1−7), producing chiral indole-containing chroman derivatives 3 in generally 
high yields (53–98%) and moderate to excellent diastereo- and enantioselectivities (75:25 
dr to 89:11 dr, 60–98% ee). Among these o-QMs, 2f–2g bearing para-halogen-substituted 
phenyl groups delivered products 3af–3ag in the highest enantioselectivities of 97–98% 
ee (entries 4–7). Notably, o-QM 2h bearing a heteroaromatic 2-thiophenyl group could 

Entry T (◦C) 1a:2a Additives Yield (%) b Dr c Ee (%) d

1 25 1:1.2 - 67 82:18 66
2 50 1:1.2 - 68 85:15 23
3 0 1:1.2 86 87:13 70
4 −10 1:1.2 79 87:13 62
5 0 1:2 - 95 87:13 59
6 0 1:3 - 97 87:13 57
7 0 2:1 - 85 88:12 63
8 0 3:1 - 81 88:12 64
9 0 1:1.2 3Å MS 88 87:13 61

10 0 1:1.2 4Å MS 89 88:12 63
11 0 1:1.2 5Å MS 86 86:14 62
12 0 1:1.2 MgSO4 81 89:11 72
13 0 1:1.2 Na2SO4 90 87:13 61

a Unless otherwise indicated, the reaction was carried out at a 0.05 mmol scale in toluene (0.5 mL) with additives
(25 mg) for 12 h. b Isolated total yield of the diastereomeric mixtures. c The diastereomeric ratio (dr) was
determined by 1H NMR and HPLC. d The ee value refers to that of the major diastereomer and was determined
by HPLC. The asterisk * indicates chiral center.
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2.1.2. Substrate Scope

After establishing the optimal reaction conditions, we investigated the substrate scope
of the 3-vinylindoles 1 for catalytic asymmetric [2 + 4] cycloadditions with sesamol-derived
o-QM 2a. As shown in Table 3, a variety of 3-vinylindoles 1 bearing different R/R1 groups
underwent [2 + 4] cycloadditions to generate chiral indole-containing chroman derivatives
3 in overall good yields (54–98%) and moderate to excellent stereoselectivities (78:22 dr to
93:7 dr, 55–97% ee). In detail, C5-, C6- and C7-substituted 3-vinylindoles 1b–1f participated
in the [2 + 4] cycloaddition with high yields and moderate enantioselectivities (entries 2–6).
In addition, a series of ortho-, meta- and para-substituted phenyl groups were utilized as R1

groups for the 3-vinylindoles 1, and the corresponding substrates participated in [2 + 4]
cycloaddition with moderate to good results (entries 7–13). Among these 3-vinylindoles,
1l–1m bearing para-substituted phenyl groups (R1) delivered the corresponding products
3la–3ma with the best enantioselectivities (85% ee and 97% ee, entries 12–13). Notably,
these para-substituted substrates 1l–1m displayed a much higher capability in controlling
the enantioselectivity than their ortho- and meta-substituted counterparts (entries 12–13 vs.
entries 7–8 and 10–11), which might be ascribed to the steric effect of the para-substituents.

Table 3. Substrate scope of 3-vinylindoles 1 a.
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Next, the substrate scope of sesamol-derived o-QMs 2 was explored by catalytic
asymmetric [2 + 4] cycloaddition with 3-vinylindole 1a (Table 4). This reaction was clearly
amenable to participation by a series of sesamol-derived o-QMs 2a–2g bearing either
electron-donating or electron-withdrawing groups at different positions of the phenyl ring
(entries 1−7), producing chiral indole-containing chroman derivatives 3 in generally high
yields (53–98%) and moderate to excellent diastereo- and enantioselectivities (75:25 dr to
89:11 dr, 60–98% ee). Among these o-QMs, 2f–2g bearing para-halogen-substituted phenyl
groups delivered products 3af–3ag in the highest enantioselectivities of 97–98% ee (entries
4–7). Notably, o-QM 2h bearing a heteroaromatic 2-thiophenyl group could also be utilized
as a reaction partner to yield the product 3ah with a high enantioselectivity of 87% ee
(entry 8).
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Table 4. Substrate scope of o-QMs 2 a.
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The structures of all products 3 were identified by their NMR, IR and HR MS data, and
the ee value of all products 3 were calculated by their HPLC traces (see the Supplementary
Materials). Although we tried to cultivate the single crystal from enantioenriched products
3, we failed to achieve this goal. So, the absolute configurations of chiral products 3
could not be determined. Nevertheless, when N-methyl-protected 3-vinylindole 1n was
employed as a substrate in the reaction with sesamol-derived o-QM 2a under standard
conditions (Figure 5a), the [2 + 4] cycloaddition occurred to generated product 3na in
a moderate yield and diastereoselectivity (47% yield, 86:14 dr) albeit with an extremely
low enantioselectivity (14% ee). Fortunately, we cultivated the single crystal of product
3na, whose relative configuration was determined to be (trans, trans) by X-ray diffraction
analysis of the single crystal (CCDC 2100427, see the Supplementary Materials) (Figure 5b).
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2.1.3. Theoretical Calculations of the Reaction Pathway and Key Transition States

To elucidate the reaction pathway and the interaction of CPA with the substrates,
we carried out theoretical calculations on the reaction pathway of catalytic asymmetric
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[2 + 4] cycloaddition (see the Supplementary Materials) based on previous mechanistic
studies [66,67]. As exemplified by the formation of product 3ma (Figure 6a), the key
transition states (TSs) and the Gibbs free energy leading to the enantiomers of 3ma were
determined, wherein TS-1 led to the major enantiomer (R,S,R)-3ma and TS-1′ led to
the minor enantiomer (S,R,S)-3ma. DFT calculations revealed that the two bulky 3,3′-
(1-naphthyl) groups and the BINOL scaffold of CPA (R)-4c formed a pocket-like chiral
environment to hold the two substrates of 1m and 2a in a confined orientation. Specifically,
in TS-1, 3-vinylindole 1m was located above o-QM 2a in the chiral pocket of CPA (R)-4c,
wherein the space above 2a was enough to make 1m have little steric effect on other groups.
While in TS-1′, 1m was located below o-QM 2a, wherein the space below 2a was limited,
thus making the phenyl group of 1m have some steric effect on the 1-naphthyl group of
(R)-4c. This steric repulsion made TS-1′ inferior to TS-1, which led to the formation of the
major enantiomer (R,S,R)-3ma.

Molecules 2021, 26, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 6. The asterisk * indicates chiral center. 

It should be noted that the E-configuration of vinylindoles 1 has been retained as 
trans-configuration in products 3 due to a concerted [2 + 4] cycloaddition pathway as il-
lustrated in TS-1. So, the diastereomeric ratio of product 3 reflects the stereoselectivity of 
the two adjacent chiral centers generated by the two individual substrates 1 and 2. 

2.1.4. Large-Scale Synthesis of Product 3aa 
Finally, the catalytic asymmetric [2 + 4] cycloaddition of 1a with 2a was carried out 

on a one mmol scale (Figure 7). The yield and stereoselectivity of this one-mmol-scale 
reaction were at the same level as those of the small-scale reaction (Table 3, entry 1), 
which implied that the catalytic asymmetric [2 + 4] cycloaddition could be scaled up. 

Figure 6. Calculated transition states leading to the enantiomers of 3ma and control experiment. The
asterisk * indicates chiral center.



Molecules 2021, 26, 6751 8 of 22

In TS-1, CPA (R)-4c utilized its O-H group to form a strong hydrogen bond (b1 = 1.461 Å)
with the C=O group of o-QM 2a, but there was no discernible hydrogen-bonding interaction
between CPA (R)-4c and 3-vinylindole 1m. In addition, the calculations suggested that
the [2 + 4] cycloaddition largely occurred via a concerted reaction pathway involving the
formation of two new bonds (b2 = 2.526 Å, b3 = 1.970 Å). However, the longer bond length
of b2 than b3 indicated that b3 (a C-C bond) formed slightly earlier than b2 (a C-O bond),
which is in accordance with the reactivity of 3-vinylindole (based on the nucleophilicity
of the vinyl group). In TS-1′, there were similar interactions between CPA (R)-4c and the
substrates. However, the hydrogen bond (b1′ = 1.520 Å) between (R)-4c and 2a in TS-1′

was weaker than that in TS-1 (b1 = 1.461 Å), which resulted in a significantly higher Gibbs
free energy barrier for the generation of TS-1′ (24.9 kcal/mol) compared to that for TS-1
(19.7 kcal/mol). The calculated difference in the energy barriers for the two transition
states of TS-1′ and TS-1 of 5.2 kcal/mol explained the excellent experimentally obtained
enantioselectivity of 3ma (97% ee).

Very interestingly, in the calculated transition states, there was no discernible hydrogen-
bonding interaction between CPA (R)-4c and 3-vinylindole 1m, which was seldom reported
in CPA-catalyzed reactions involving 3-vinylindoles. To verify this issue, we performed
a control experiment to investigate the role of the NH group in substrate 1m (Figure 6b).
Namely, 3-vinylindole 1o, as N-methyl protected counterpart of 1m, was employed as
a substrate in the [2 + 4] cycloaddition with o-QM 2a under standard conditions, which
smoothly generated product 3oa in a moderate yield of 53% with a good diastereo- and
enantioselectivity (91:9 dr, 83% ee). Compared to the results of product 3ma which was
generated from N-unprotected 3-vinylindole 1m, the yield and the stereoselectivity of
product 3oa were on a similar level, thus supporting the calculated activation mode that
the NH group of 3-vinylindole 1m had no discernible hydrogen-bonding interaction with
CPA (R)-4c.

It should be noted that the E-configuration of vinylindoles 1 has been retained as
trans-configuration in products 3 due to a concerted [2 + 4] cycloaddition pathway as
illustrated in TS-1. So, the diastereomeric ratio of product 3 reflects the stereoselectivity of
the two adjacent chiral centers generated by the two individual substrates 1 and 2.

2.1.4. Large-Scale Synthesis of Product 3aa

Finally, the catalytic asymmetric [2 + 4] cycloaddition of 1a with 2a was carried out on
a one mmol scale (Figure 7). The yield and stereoselectivity of this one-mmol-scale reaction
were at the same level as those of the small-scale reaction (Table 3, entry 1), which implied
that the catalytic asymmetric [2 + 4] cycloaddition could be scaled up.
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2.2. Organocatalytic Asymmetric [2 + 4] Cycloaddition of 3-Vinylindoles with
o-Hydroxybenzyl Alcohols

To expand the substrate scope of this organocatalytic asymmetric [2 + 4] cycloaddition,
we attempted to react 3-vinylindole 1a with o-hydroxybenzyl alcohol 5a as a precursor
of o-QM (Table 5). In the presence of CPA (R)-4a (entry 1), the desired product 6aa was
afforded in a moderate yield, albeit with a low stereoselectivity (51% yield, 67:33 dr, 42%
ee). Then, a series of CPAs (R)-4 were screened. Among these CPAs, (R)-4e, bearing two
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3,3′-(9-anthracenyl) groups, displayed the highest catalytic activity in delivering product
6aa with a better enantioselectivity than the other catalysts (entry 5 vs. entries 1–4 and 6–7),
which could also be ascribed to the steric hindrance effect of the bulky 3,3′-disubstituents
of CPA (R)-4e in controlling the enantioselectivity. Next, different solvents were evaluated
in the presence of (R)-4e, revealing toluene to still be the most suitable solvent (entry 5
vs. entries 8–12). Finally, the reaction temperature was modulated (entries 13–15), and the
optimal reaction conditions were set as shown in entry 14.

Table 5. Optimization of reaction conditions for [2 + 4] cycloaddition of 1a with 5a a.
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2 4b toluene 65 60:40 45
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4 4d toluene 74 68:32 66
5 4e toluene 59 77:23 77
6 4f toluene 65 86:14 35
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10 4e CH3CN 53 69:31 42
11 4e EtOAc trace - -
12 4e acetone trace - -

13 e 4e toluene 63 74:26 72
14 f 4e toluene 61 75:25 79
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a Unless otherwise indicated, the reaction was carried out at a 0.1 mmol scale in a solvent (0.1 mL) at 25 ◦C for
6 h using a 1a:5a molar ratio of 1:1.2. b Isolated total yield of the diastereomeric mixtures. c The diastereomeric
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With the optimal conditions in hand, we investigated the substrate scope of 3-vinylindole
1 in catalytic asymmetric [2 + 4] cycloaddition with the o-hydroxybenzyl alcohol 5a. As
shown in Table 6, this [2 + 4] cycloaddition was amenable to participation by a wide range
of 3-vinylindoles 1 bearing different R/R1 groups. In detail, C5-, C6- and C7-substituted
3-vinylindoles participated in the [2 + 4] cycloaddition with the o-hydroxybenzyl alcohol
5a to generate the chiral indole-containing chroman derivatives 6 in moderate to good
diastereo- and enantioselectivities (75:25 dr to 83:17 dr, 74–82% ee, entries 2–7). In addition,
meta- and para-substituted phenyl groups were found to be suitable R1 groups for the
3-vinylindoles 1, and the corresponding substrates participated in [2 + 4] cycloaddition
with good results (entries 8–9).
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Table 6. Substrate scope of 3-vinylindoles 1 for [2 + 4] cycloaddition with o-hydroxybenzyl alcohol 5a a.
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The asterisk * indicates chiral center.

Then, the substrate scope of o-hydroxybenzyl alcohols 5 was investigated for [2 + 4]
cycloaddition with 3-vinylindole 1a under standard reaction conditions. As shown in
Table 7, the o-hydroxybenzyl alcohols 5b–5c bearing a methyl group or a halogen group
at the C5 position successfully participated in [2 + 4] cycloaddition with 3-vinylindole 1a,
providing products 6ab–6ac in moderate to good diastereo- and enantioselectivities (68:32
dr to 81:19 dr, 73–76% ee, entries 2–3). In addition, aromatic R1 groups with ortho, meta and
para-substituents were successfully employed in the reaction, affording products 6ad–6af
in overall good enantioselectivities (76–81% ee, entries 4–6).

Table 7. Substrate scope of o-hydroxybenzyl alcohols 5 for [2 + 4] cycloaddition a.
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Entry R1/R2 (5) 6 Yield (%) b Dr c Ee (%) d

1 Ph/H (5a) 6aa 61 77:23 79
2 Ph/5-Me (5b) 6ab 73 81:19 76

3 e Ph/5-Br (5c) 6ac 57 68:32 73(60) f

4 p-FC6H4/H (5d) 6ad 59 75:25 76
5 m-MeOC6H4/H (5e) 6ae 80 75:25 79

6 g o-MeOC6H4/4-OMe (5f) 6af 71 90:10 81
a Unless otherwise indicated, the reaction was carried out at a 0.1 mmol scale in toluene (1.0 mL) for 6 h using
a 1a:5 molar ratio of 1:1.2. b Isolated total yield of the diastereomeric mixtures. c The diastereomeric ratio (dr)
was determined by 1H NMR. d The ee value refers to that of the major diastereomer and was determined by
HPLC. e At 0 ◦C for 6 h and then 25 ◦C for 2 h. f The ee value of the minor diastereoisomer. g At 25 ◦C for 2 h. The
asterisk * indicates chiral center.

The structures of all products 6 were identified by their NMR, IR and HR MS data, and
the ee value of all products 6 were calculated by their HPLC traces (see the Supplementary
Materials). The relative configuration of product 6ma was determined to be (trans, cis) by
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a NOE experiment (see the Supplementary Materials) (Figure 8) and comparing the 1H
NMR spectra with that of a similar compound [18].
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3. Materials and Methods

The detailed procedures for the synthesis and characterization of the products are
given in Appendix A section.

4. Conclusions

In summary, we performed catalytic asymmetric [2 + 4] cycloaddition of 3-vinylindoles
with ortho-quinone methides and their precursors in the presence of chiral phosphoric acid.
This approach was used to synthesize a series of indole-containing chroman derivatives
with structural diversity in overall high yields (up to 98%), good diastereoselectivities (up
to 93:7 dr) and moderate to excellent enantioselectivities (up to 98% ee). This approach not
only enriches the chemistry of 3-vinylindole-inolved catalytic asymmetric cycloadditions
but is also useful for the enantioselective synthesis of chiral chroman derivatives.

Supplementary Materials: The following are available online. NMR and HPLC spectra of products
3 and 6, NOE spectrum of product 6ma, X-ray single-crystal data for product 3na, and theoretical
calculations of the reaction pathway.
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Appendix A Experimental Section
1H and 13C NMR spectra were measured at 400 and 100 MHz, respectively. The

solvents used for NMR spectroscopy were acetone-d6 and CDCl3, using tetramethylsilane
as the internal reference. HR MS (ESI) was determined by an HR MS/MS instrument. The
X-ray source used for the single crystal X-ray diffraction analysis of compound 3na was
MoKα (λ = 0.71073), and the thermal ellipsoid was drawn at the 30% probability level.
Analytical grade solvents for the column chromatography were used after distillation, and
commercially available reagents were used as received. Substrates 1 were synthesized
according to the literature method [17]. Substrates 2 and 5 were synthesized according to
the literature method [52,68].
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General procedure for the synthesis of products 3
To the mixture of 3-vinylindoles 1 (0.1 mmol), ortho-quinone methides 2 (0.12 mmol),

catalyst (R)-4c (0.01 mmol), and MgSO4 (50 mg) was added toluene (1 mL). Then, the
reaction mixture was stirred at 0 ◦C for 12 h. After completion of the reaction, which
was indicated by TLC, the reaction mixture was directly purified through flash column
chromatography to afford products 3.

(E)-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-indole (3aa):

Yield: 81% (38.0 mg); 89:11 dr; white solid; m.p. 97.6–99.0 ◦C; [α]D
20 = −19.0 (c 0.76,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.88–7.80 (m, 2H), 7.26–7.22 (m, 5H), 7.20–7.18 (m,
1H), 7.17–7.12 (m, 2H), 7.07 (m, 2H), 7.03–7.00 (m, 1H), 7.00–6.96 (m, 2H), 6.79 (d, J = 2.4 Hz,
1H), 6.77 (s, 1H), 6.56 (s, 1H), 6.16 (d, J = 15.7 Hz, 1H), 6.06–5.96 (m, 1H), 5.92–5.89 (m,
2H), 5.48 (d, J = 10.5 Hz, 1H), 4.01–3.95 (m, 1H), 3.57–3.50 (m, 1H). 13C NMR (100 MHz,
CDCl3) δ 149.8, 147.0, 141.7, 140.9, 137.1, 136.2, 132.8, 131.3, 128.4, 128.3, 128.1, 127.2, 126.4,
126.2, 125.9, 123.3, 122.2, 120.1, 119.8, 116.4, 114.4, 111.2, 108.2, 101.0, 98.8, 76.9, 50.5, 48.2;
IR (KBr): 3419, 3057, 3026, 2894, 1499, 1477, 1264, 1153, 1072, 864 cm−1; (C32H25NO3-H)−

requires m/z 470.1761, found m/z 470.1749; ee: 72%, AD-H, hexane/isopropanol = 70/30,
tR = 11.147 (minor), tR = 30.360 (major).

(E)-5-methyl-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ba):

Yield: 80% (38.9 mg); 83:17 dr; white solid; m.p. 123.2–125.3 ◦C; [α]D
20 = −26.1 (c 0.78,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.68 (s, 1H), 7.61 (s, 1H), 7.30–7.27 (m, 1H), 7.26–7.17
(m, 4H), 7.13–7.06 (m, 3H), 7.05–6.98 (m, 4H), 6.80 (s, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.60 (s,
1H), 6.20–6.16 (m, 1H), 6.09–6.00 (m, 1H), 5.92 (s, 2H), 5.45 (d, J = 10.5 Hz, 1H), 4.02–3.96 (m,
1H), 3.59–3.50 (m, 1H), 2.49 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.8, 147.0, 141.7, 141.1,
137.2, 134.6, 132.8, 131.4, 129.2, 129.0, 128.5, 128.4, 128.3, 128.1, 128.0, 127.2, 126.5, 126.4,
126.3, 126.2, 123.8, 123.5, 119.6, 116.4, 113.7, 110.9, 108.2, 101.0, 98.9, 77.0, 50.3, 48.3, 21.6;
IR (KBr): 3416, 3025, 2895, 1499, 1478, 1425, 1238, 1152, 1037, 748 cm−1; (C33H27NO3-H)−

requires m/z 484.1918, found m/z 484.1890; ee: 55%, IA, hexane/isopropanol = 70/30,
tR = 10.293 (minor), tR = 30.297 (major).

(E)-6-fluoro-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ca):

Yield: 98% (47.8 mg); 86:14 dr; brown solid; m.p. 108.7–110.0 ◦C; [α]D
20 = −27.8 (c 0.96,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.77–7.70 (m, 2H), 7.29–7.26 (m, 1H), 7.25–7.22 (m,
3H), 7.20–7.16 (m, 1H), 7.12–7.06 (m, 2H), 7.06–7.01 (m, 1H), 7.00–6.95 (m, 2H), 6.91–6.84
(m, 2H), 6.78 (s, 1H), 6.73 (d, J = 2.1 Hz, 1H), 6.57 (s, 1H), 6.18 (d, J = 15.5 Hz, 1H), 6.05–5.97
(m, 1H), 5.92–5.89 (m, 2H), 5.43 (d, J = 10.5 Hz, 1H), 4.03–3.95 (m, 1H), 3.53–3.43 (m, 1H);
13C NMR (100 MHz, CDCl3) δ 159.9 (d, J = 236.0 Hz), 149.6, 147.0, 141.8, 140.8, 137.1,
136.1 (J = 12.0 Hz), 132.9, 131.1, 128.4, 128.3, 128.2, 127.3, 126.5, 126.2, 123.7 (d, J = 2.0
Hz), 122.4, 120.9 (d, J = 10.0 Hz), 116.4, 114.5, 108.6 (d, J = 24.0 Hz), 108.2, 101.0, 98.7, 97.5
(d, J = 26.0 Hz), 76.9, 50.7, 48.1; IR (KBr): 3891, 3725, 3421, 1844, 1699, 1239, 1153, 862,
747 cm−1; (C32H24FNO3-H)− requires m/z 488.1667, found m/z 488.1676; ee: 69%, IA,
hexane/isopropanol = 70/30, tR = 9.773 (major), tR = 25.597 (minor).

(E)-6-bromo-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3da):

Yield: 98% (53.8 mg); 91:9 dr; brown solid; m.p. 104.5–105.1 ◦C; [α]D
20 = −18.2 (c 1.08,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.73 (s, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.32–7.26 (m,
2H), 7.25–7.23 (m, 3H), 7.22–7.21 (m, 1H), 7.21–7.16 (m, 1H), 7.12–7.06 (m, 2H), 7.05–7.00
(m, 1H), 6.99–6.93 (m, 2H), 6.78 (s, 1H), 6.71–6.67 (m, 1H), 6.55 (s, 1H), 6.18 (d, J = 15.7
Hz, 1H), 6.05–5.96 (m, 1H), 5.92–5.88 (m, 2H), 5.42 (d, J = 10.5 Hz, 1H), 4.01–3.94 (m, 1H),
3.50–3.41 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 149.5, 147.0, 141.9, 140.7, 137.0, 136.9,
133.0, 131.0, 128.4, 128.3, 127.3, 126.6, 126.2, 124.7, 123.9, 123.1, 121.3, 116.4, 115.8, 114.6,
114.2, 108.2, 101.1, 98.7, 76.8, 50.7, 48.1; IR (KBr): 3801, 3735, 3670, 3421, 1844, 1576, 1670,
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964, 861, 747 cm−1; (C32H24BrNO3-H)− requires m/z 548.0867, found m/z 548.0844; ee:
65%, IA, hexane/isopropanol = 70/30, tR =13.480 (minor), tR = 28.633 (major).

(E)-7-methyl-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ea):

Yield: 91% (44.1 mg); 85:15 dr; brown solid; m.p. 106.3–107.5 ◦C; [α]D
20 = −20.0 (c 0.88,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.71–7.62 (m, 2H), 7.25–7.16 (m, 5H), 7.13–7.04
(m, 3H), 7.04–7.00 (m, 3H), 6.96 (d, J = 7.0 Hz, 1H), 6.82–6.75 (m, 2H), 6.57–6.54 (m, 1H),
6.16 (d, J = 16.6 Hz, 1H), 6.06–5.98 (m, 1H), 5.91 (s, 2H), 5.49 (d, J = 10.5 Hz, 1H), 4.00–3.94
(m, 1H), 3.60–3.50 (m, 1H), 2.35–2.29 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 149.8, 146.9,
141.7, 141.1, 137.1, 135.8, 132.8, 131.3, 128.4, 128.3, 128.2, 127.2, 126.4, 126.2, 125.4, 123.1,
122.7, 120.3, 120.0, 117.8, 116.4, 114.8, 108.2, 101.0, 98.8, 76.8, 50.4, 48.4, 16.5; IR (KBr): 3853,
3751, 3735, 3711, 1734, 1684, 1476, 1152, 1038, 748 cm−1; (C33H27NO3-H)− requires m/z
484.1918, found m/z 484.1893; ee: 59%, IA, hexane/isopropanol = 90/10, tR =55.313 (minor),
tR = 117.610 (major).

(E)-7-fluoro-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3fa):

Yield: 98% (47.9 mg); 88:12 dr; brown solid; m.p. 78.2–79.0 ◦C; [α]D
20 = −30.3 (c 0.96,

acetone); 1H NMR (400 MHz, CDCl3) δ 8.03 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.25–7.14 (m,
5H), 7.12–7.07 (m, 2H), 7.05–7.00 (m, 2H), 7.00–6.96 (m, 2H), 6.91–6.86 (m, 1H), 6.82 (d,
J = 2.4 Hz, 1H), 6.78 (s, 1H), 6.57 (s, 1H), 6.20–6.16 (m, 1H), 6.06–5.97 (m, 1H), 5.92–5.89 (m,
2H), 5.45 (d, J = 10.5 Hz, 1H), 4.03–3.96 (m, 1H), 3.55–3.45 (m, 1H); 13C NMR (100 MHz,
CDCl3) δ 148.4 (d, J = 261.0 Hz), 141.9, 140.7, 137.1, 133.0, 131.1, 128.4 (d, J = 18.0 Hz), 128.3,
127.3, 126.6, 126.2, 124.0, 120.2 (d, J = 6.0 Hz), 116.4, 116.0 (d, J = 3.0 Hz), 115.4, 108.3, 107.1
(d, J = 16.0 Hz), 101.1, 98.8, 76.8, 50.7, 48.2; IR (KBr): 3779, 3702, 3689, 3675, 3567, 1869, 1700,
1559, 1039, 748 cm−1; (C32H24FNO3-H)− requires m/z 488.1667, found m/z 488.1672; ee:
60%, IA, hexane/isopropanol = 70/30, tR = 11.473 (major), tR = 14.520 (minor).

(E)-2-(8-styryl-7-(o-tolyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-indole (3ga):
Yield: 60% (29.2 mg); 93:7 dr; brown solid; m.p. 181.2–182.9 ◦C; [α]D

20 = −63.1 (c 0.58,
acetone); 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 7.6 Hz, 1H), 7.73 (s, 1H), 7.28 (s, 1H),
7.25–7.19 (m, 5H), 7.19–7.09 (m, 4H), 6.96–6.90 (m, 1H), 6.82–6.76 (m, 2H), 6.74–6.70 (m, 1H),
6.60 (s, 1H), 6.13–6.05 (m, 2H), 5.93–5.89 (m, 2H), 5.53 (d, J = 10.1 Hz, 1H), 4.00–3.91 (m,
1H), 3.90–3.83 (m, 1H), 1.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.8, 147.0, 141.7, 139.9,
137.2, 136.2, 132.4, 130.7, 130.0, 128.5, 127.2, 126.2, 126.1, 125.9, 122.9, 122.1, 120.2, 119.7,
116.7, 114.2, 111.2, 108.2, 101.0, 98.8, 77.3, 49.5, 44.9, 20.0; IR (KBr): 3702, 3690, 3676, 1751,
1522, 1240, 1153, 743 cm−1; (C33H27NO3-H)− requires m/z 484.1918, found m/z 484.1896;
ee: 65%, IB, hexane/isopropanol = 90/10, tR = 21.567 (minor), tR = 23.540 (major).

(E)-2-(7-(2-chlorophenyl)-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ha):

Yield: 62% (31.7 mg); 91:9 dr; brown solid; m.p. 195.1–195.6 ◦C; [α]D
20 = −57.9 (c 0.63,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.79 (d, J = 7.0 Hz, 1H), 7.26–7.20 (m,
6H), 7.20–7.17 (m, 1H), 7.16–7.10 (m, 3H), 7.07 (m, 2H), 6.94–6.90 (m, 1H), 6.74 (s, 1H), 6.55
(s, 1H), 6.12–6.07 (m, 2H), 5.90 (s, 2H), 5.62 (d, J = 9.6 Hz, 1H), 4.38–4.27 (m, 1H), 3.91–3.80
(m, 1H); 13C NMR (100 MHz, CDCl3) δ 149.7, 147.1, 141.8, 139.4, 137.2, 136.1, 134.8, 132.6,
130.6, 129.3, 128.5, 127.8, 127.4, 127.3, 127.1, 126.3, 123.1, 122.3, 119.9, 119.6, 116.2, 114.2,
111.1, 108.1, 101.1, 98.8, 75.3, 50.3, 44.7; IR (KBr): 3853, 3676, 3650, 3629, 1685, 1507, 1477,
1037, 745 cm−1; (C32H24ClNO3-H)− requires m/z 504.1372, found m/z 504.1377; ee: 65%,
IA, hexane/isopropanol = 70/30, tR = 10.020 (minor), tR = 27.087 (major).

(E)-2-(7-(2-bromophenyl)-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ia):

Yield: 96% (52.8 mg); 92:8 dr; brown solid; m.p. 185.0–185.4 ◦C; [α]D
20 = −59.3 (c 1.06,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.30–7.27 (m,
4H), 7.25–7.19 (m, 4H), 7.18–7.10 (m, 3H), 7.08 (d, J = 2.4 Hz, 1H), 6.88–6.82 (m, 1H), 6.76 (s,
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1H), 6.56 (s, 1H), 6.18–6.13 (m, 1H), 6.12–6.05 (m, 1H), 5.90 (s, 2H), 5.63 (d, J = 10.3 Hz, 1H),
4.37–4.27 (m, 1H), 3.91–3.82 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 149.7, 147.1, 141.9, 141.1,
137.2, 136.0, 132.7, 132.6, 130.5, 128.5, 128.1, 127.8, 127.3, 126.4, 126.1, 123.3, 122.3, 119.9,
119.7, 116.2, 114.0, 111.2, 108.1, 101.1, 98.8, 75.5, 50.7, 47.6; IR (KBr): 3418, 3055, 2885, 1499,
1477, 1240, 1152, 1037, 965, 744 cm−1; (C32H24BrNO3-H)− requires m/z 548.0867 found
m/z 548.0849; ee: 66%, IA, hexane/isopropanol = 70/30, tR = 10.603 (minor), tR = 29.107
(major).

(E)-2-(8-styryl-7-(m-tolyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-indole (3ja):
Yield: 84% (40.8 mg); 84:16 dr; brown solid; m.p. 148.3–148.6 ◦C; [α]D

20 = −29.2 (c 0.82,
acetone); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 7.4 Hz, 1H), 7.78 (s, 1H), 7.26–7.18 (m,
6H), 7.17–7.11 (m, 2H), 6.98–6.94 (m, 1H), 6.85–6.77 (m, 5H), 6.57 (s, 1H), 6.20–6.16 (m, 1H),
6.06–5.98 (m, 1H), 5.91 (s, 2H), 5.48 (d, J = 10.5 Hz, 1H), 4.00–3.93 (m, 1H), 3.53–3.44 (m,
1H), 2.15 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.8, 146.9, 141.7, 140.9, 137.5, 137.2, 136.2,
132.7, 131.5, 129.0, 128.4, 128.0, 127.2, 126.2, 126.0, 125.4, 123.3, 122.1, 120.0, 119.7, 116.5,
114.4, 111.2, 108.2, 101.0, 98.8, 76.8, 50.4, 48.3, 21.4; IR (KBr): 3801, 3734, 3648, 3587, 1749,
1576, 1521, 1038, 746 cm−1; (C33H27NO3-H)− requires m/z 484.1918, found m/z 484.1905;
ee: 59%, IA, hexane/isopropanol = 70/30, tR = 10.097 (minor), tR = 19.040 (major).

(E)-2-(7-(3-chlorophenyl)-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ka):

Yield: 98% (49.5 mg); 87:13 dr; brown solid; m.p. 160.3–160.9 ◦C; [α]D
20 = −30.5 (c 0.99,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.30–7.27 (m,
2H), 7.26–7.13 (m, 6H), 7.04 (s, 1H), 7.00–6.93 (m, 2H), 6.84–6.80 (m, 2H), 6.77 (s, 1H), 6.56 (s,
1H), 6.22 (d, J = 15.8 Hz, 1H), 6.00 (m, 1H), 5.91 (s, 2H), 5.42 (d, J = 10.5 Hz, 1H), 3.98–3.92
(m, 1H), 3.57–3.49 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 149.7, 147.1, 143.1, 141.9, 136.9,
136.3, 133.9, 133.2, 130.8, 129.4, 128.5, 128.0, 127.4, 126.9, 126.7, 126.3, 125.7, 123.4, 122.3,
119.9, 116.0, 114.0, 111.3, 108.1, 101.1, 98.8, 76.7, 50.4, 48.2; IR (KBr): 3749, 3647, 3617, 3419,
1698, 1683, 1418, 745, 668 cm−1; (C32H24ClNO3-H)− requires m/z 504.1372, found m/z
504.1389; ee: 58%, IB, hexane/isopropanol = 90/10, tR = 24.790 (minor), tR = 26.910 (major).

(E)-2-(8-styryl-7-(p-tolyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-indole (3la):

Yield: 54% (26.0 mg); 78:22 dr; brown solid; m.p. 220.1–221.9◦C; [α]D
20 = −46.2 (c 0.52,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.86–7.79 (m, 2H), 7.28 (s, 1H), 7.25–7.22 (m, 4H),
7.17–7.12 (m, 2H), 7.05–6.97 (m, 1H), 6.87 (s, 4H), 6.79 (d, J = 2.4 Hz, 1H), 6.76 (s, 1H), 6.56 (s,
1H), 6.20–6.16 (m, 1H), 6.05–5.97 (m, 1H), 5.90 (s, 2H), 5.45 (d, J = 10.5 Hz, 1H), 3.97–3.92 (m,
1H), 3.54–3.47 (m, 1H), 2.16 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.8, 147.0, 141.7, 137.9,
137.2, 136.3, 135.8, 132.7, 131.5, 128.9, 128.5, 128.1, 127.2, 126.3, 126.0, 123.4, 122.2, 120.2,
119.8, 116.5, 114.5, 111.2, 108.3, 101.0, 98.8, 77.0, 50.0, 48.3, 21.0; IR (KBr): 3726, 3675, 3649,
3587, 1869, 1670, 1395, 1152, 744 cm−1; (C33H27NO3-H)− requires m/z 484.1918, found m/z
484.1902; ee: 85%, IA, hexane/isopropanol = 70/30, tR = 10.557 (minor), tR = 18.093 (major).

(E)-2-(7-(4-chlorophenyl)-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ma):

Yield: 58% (29.5 mg); 84:16 dr; brown solid; m.p. 85.2–86.0 ◦C; [α]D
20 = −16.7 (c 0.59,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.88 (s, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.30–7.26 (m,
2H), 7.26–7.25 (m, 2H), 7.23–7.11 (m, 4H), 7.06–7.00 (m, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.79
(d, J = 2.5 Hz, 1H), 6.76 (s, 1H), 6.55 (s, 1H), 6.22–6.17 (m, 1H), 6.04–5.95 (m, 1H), 5.91 (s,
2H), 5.40 (d, J = 10.5 Hz, 1H), 3.96–3.90 (m, 1H), 3.58–3.49 (m, 1H); 13C NMR (100 MHz,
CDCl3) δ 149.7, 147.1, 141.9, 139.5, 136.9, 136.4, 133.1, 132.1, 130.9, 129.6, 128.5, 128.4, 127.4,
126.3, 125.7, 123.4, 122.4, 120.1, 120.0, 116.1, 114.1, 111.4, 108.2, 101.1, 98.8, 76.9, 50.0, 48.2; IR
(KBr): 3870, 3711, 3690, 3629, 1844, 1684, 1576, 1395, 745 cm−1; (C32H24ClNO3-H)− requires
m/z 504.1372, found m/z 504.1374; ee: 97%, IA, hexane/isopropanol = 70/30, tR = 11.823
(minor), tR = 20.797 (major).

(E)-5-chloro-1-methyl-2-(7-phenyl-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-
1H-indole (3na):
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Yield:47% (24.2 mg); 86:14 dr; brown solid; m.p. 205.1–205.7 ◦C; [α]D
20 = −11.4 (c 0.48,

acetone); 1H NMR (400 MHz, acetone-d6) δ 7.77 (m, 1H), 7.30–7.23 (m, 6H), 7.20–7.15 (m,
3H), 7.11–7.05 (m, 4H), 6.99–6.94 (m, 1H), 6.71 (s, 1H), 6.43 (s, 1H), 6.24–6.20 (m, 1H),
6.17–6.11 (m, 1H), 5.92 (d, J = 1.8 Hz, 2H), 5.57 (d, J = 10.6 Hz, 1H), 3.65 (s, 3H), 3.62–3.56
(m, 1H); 13C NMR (100 MHz, acetone-d6) δ 149.9, 147.0, 141.7, 141.4, 137.3, 135.5, 132.6,
131.6, 130.3, 129.3, 128.6, 128.4, 128.0, 127.1, 126.2, 126.1, 124.4, 121.3, 119.1, 116.6, 113.1,
110.9, 107.9, 101.0, 98.2, 76.0, 50.4, 48.7, 32.1; IR (KBr): 3868 3852, 3688, 3627, 1791, 1733,
1698, 1521, 1507, 746 cm−1; (C33H26ClNO3-H)− requires m/z 518.1528, found m/z 518.1526;
ee: 14%, IB, hexane/isopropanol = 80/20, tR = 9.320 (major), tR = 9.850 (minor).

(E)-2-(8-(2-methylstyryl)-7-phenyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ab):

Yield: 98% (47.5 mg); 88:12 dr; brown solid; m.p. 203.3–205.0 ◦C; [α]D
20 = −6.0 (c 0.95,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.4 Hz, 1H), 7.77 (s, 1H), 7.34–7.30
(m, 1H), 7.21–7.15 (m, 3H), 7.14–7.09 (m, 4H), 7.09–7.04 (m, 2H), 7.03–7.00 (m, 2H), 6.82 (s,
1H), 6.78 (m, 1H), 6.59 (s, 1H), 6.33 (d, J = 15.5 Hz, 1H), 5.94–5.92 (m, 2H), 5.88–5.80 (m,
1H), 5.52 (d, J = 10.5 Hz, 1H), 4.05–3.98 (m, 1H), 3.60–3.49 (m, 1H), 2.01 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ 149.7, 147.0, 141.7, 141.0, 136.6, 136.2, 135.2, 132.7, 131.5, 130.0, 128.4,
128.2, 127.2, 126.4, 126.1, 126.0, 123.4, 122.2, 120.1, 119.8, 116.5, 114.4, 111.2, 108.1, 101.0,
98.8, 76.8, 50.4, 48.7, 19.5; IR (KBr): 3763, 3668, 3627, 2899, 1732, 1682, 1568, 1479, 1153,
744 cm−1; (C33H27NO3-H)− requires m/z 484.1918, found m/z 484.1894; ee: 62%, AD-H,
hexane/isopropanol = 70/30, tR = 8.893 (minor), tR = 13.527 (major).

(E)-2-(8-(3-methoxystyryl)-7-phenyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ac):

Yield: 98% (49.1 mg); 86:14 dr; brown solid; m.p. 120.9–121.2 ◦C; [α]D
20 = −39.9 (c 0.98,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.3 Hz, 1H), 7.78 (s, 1H), 7.21–7.16
(m, 3H), 7.16–7.15 (m, 1H), 7.11–7.05 (m, 2H), 7.05–6.97 (m, 3H), 6.84 (d, J = 7.8 Hz, 1H),
6.78 (s, 2H), 6.77–6.74 (m, 2H), 6.58 (s, 1H), 6.17–6.12 (m, 1H), 6.07–5.99 (m, 1H), 5.92–5.90
(m, 2H), 5.48 (d, J = 10.5 Hz, 1H), 4.01–3.95 (m, 1H), 3.78 (s, 3H), 3.59–3.49 (m, 1H); 13C
NMR (100 MHz, CDCl3) δ 159.7, 149.8, 147.0, 141.8, 140.9, 138.6, 136.2, 132.7, 131.6, 129.4,
128.3, 128.2, 126.4, 125.9, 123.4, 122.2, 120.0, 119.8, 118.9, 116.3, 114.3, 112.9, 111.5, 111.2,
108.2, 101.0, 98.8, 76.9, 55.2, 50.5, 48.2; IR (KBr): 3904, 3690, 3675, 3421, 1734, 1670, 1522,
1153, 746 cm−1; (C33H27NO4-H)− requires m/z 500.1867, found m/z 500.1868; ee: 63%, IA,
hexane/isopropanol = 70/30, tR = 11.337 (minor), tR = 26.440 (major).

(E)-2-(8-(3-fluorostyryl)-7-phenyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ad):

Yield: 98% (47.9 mg); 85:15 dr; brown solid m.p. 163.6–164.0 ◦C; [α]D
20 = −39.6 (c 0.96,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 7.3 Hz, 1H), 7.78 (s, 1H), 7.23–7.13 (m,
5H), 7.08 (d, J = 7.5 Hz, 1H), 7.06–7.01 (m, 1H), 7.01–6.96 (m, 3H), 6.94–6.85 (m, 2H), 6.77
(m, 1H), 6.74 (s, 1H), 6.58 (s, 1H), 6.16–6.10 (m, 1H), 6.08–5.99 (m, 1H), 5.92 (s, 2H), 5.48 (d,
J = 10.5 Hz, 1H), 4.01–3.95 (m, 1H), 3.58–3.49 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 163.0
(d, J = 244.0 Hz), 149.8, 147.1, 141.8, 140.8, 139.4 (d, J = 7.0 Hz), 136.2, 132.7, 131.8, 131.7,
129.9 (d, J = 9.0 Hz), 128.3, 128.2, 126.5, 125.9, 123.4, 122.2, 122.1, 119.9 (J = 21.0 Hz), 116.0,
114.2, 114.0 (d, J = 21.0 Hz), 112.6 (d, J = 22.0 Hz), 111.2, 108.1, 101.0, 98.9, 76.8, 50.4, 48.2;
IR (KBr): 3869, 3750, 3734, 3587, 1868, 1683, 1521, 1038, 748, 668 cm−1; (C32H24FNO3-H)−

requires m/z 488.1667, found m/z 488.1675; ee: 60%, AD-H, hexane/isopropanol = 70/30,
tR = 11.737 (minor), tR = 49.947 (major).

(E)-2-(8-(4-methoxystyryl)-7-phenyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ae):

Yield: 73% (36.5 mg); 89:11 dr; brown solid m.p. 207.6–207.7 ◦C; [α]D
20 = −47.8 (c 0.73,

acetone); 1H NMR (400 MHz, acetone-d6) δ 9.98 (s, 1H), 7.81 (d, J = 7.7 Hz, 1H), 7.29 (d, J =
8.0 Hz, 1H), 7.23–7.20 (m, 2H), 7.17–7.13 (m, 2H), 7.10 (m, 1H), 7.06–7.00 (m, 4H), 6.96–6.91
(m, 1H), 6.82–6.78 (m, 2H), 6.72 (s, 1H), 6.43 (s, 1H), 6.18–6.12 (m, 1H), 6.01–5.94 (m, 1H),
5.91 (m, 2H), 5.59 (d, J = 10.6 Hz, 1H), 4.01–3.94 (m, 1H), 3.74 (s, 3H), 3.67–3.60 (m, 1H);
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13C NMR (100 MHz, acetone-d6) δ 159.2, 150.1, 147.0, 141.8, 141.5, 136.7, 132.0, 130.0, 129.4,
128.6, 127.8, 127.3, 126.5, 126.0, 124.4, 121.3, 119.7, 118.9, 116.9, 114.1, 113.8, 111.4, 108.0,
101.0, 98.2, 76.6, 54.6, 50.4, 48.7; IR (KBr): 3742, 3720, 3708, 3306, 1574, 1434, 1247, 745,
668 cm−1; (C33H27NO4-H)− requires m/z 500.1867, found m/z 500.1871; ee: 77%, AD-H,
hexane/isopropanol = 80/20, tR = 22.810 (minor), tR = 55.720 (major).

(E)-2-(8-(4-fluorostyryl)-7-phenyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3af):

Yield: 53% (25.9 mg); 75:25 dr; brown solid; m.p. 81.4–82.6 ◦C; [α]D
20 = −53.3 (c 0.52,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.85–7.79 (m, 2H), 7.23 (d, J = 7.7 Hz, 1H), 7.19–7.12
(m, 6H), 7.07 (d, J = 7.5 Hz, 1H), 7.04–7.01 (m, 1H), 6.99–6.96 (m, 2H), 6.95–6.91 (m, 2H), 6.78
(m, 1H), 6.75 (s, 1H), 6.56 (s, 1H), 6.13–6.09 (m, 1H), 5.91 (s, 2H), 5.47 (d, J = 10.5 Hz, 1H),
3.98–3.93 (m, 1H), 3.56–3.49 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 162.1 (d, J = 245.0 Hz),
149.8, 147.0, 141.7, 140.9, 136.2, 133.3, 133.2, 131.6, 131.1 (d, J = 2.0 Hz) 129.1, 128.2 (d,
J = 13.0 Hz), 127.7 (d, J = 8.0 Hz), 126.4, 125.9, 123.3, 122.2, 120.0, 119.8, 116.3, 115.3 (d,
J = 21.0 Hz), 114.3, 111.2, 108.1, 101.0, 98.8, 76.9, 50.5, 48.2; IR (KBr): 3891, 3884, 3734, 3669,
3446, 2970, 1669, 1066, 749, 668 cm−1; (C32H24FNO3-H)− requires m/z 488.1667, found m/z
488.1668; ee: 97%, AD-H, hexane/isopropanol = 70/30, tR = 15.207 (minor), tR = 22.800
(major).

(E)-2-(8-(4-chlorostyryl)-7-phenyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1H-
indole (3ag):

Yield: 57% (28.7 mg); 84:16 dr; brown solid; m.p. 175.7–176.2 ◦C; [α]D
20 = −89.5 (c 0.51,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.85–7.78 (m, 2H), 7.25–7.21 (m, 2H), 7.19 (s, 1H),
7.17–7.15 (m, 1H), 7.14–7.13 (m, 2H), 7.12–7.11 (m, 1H), 7.10–7.05 (m, 2H), 7.04–7.00 (m,
1H), 6.99–6.95 (m, 2H), 6.78 (d, J = 2.5 Hz, 1H), 6.73 (s, 1H), 6.57 (s, 1H), 6.12–6.06 (m, 1H),
6.02–5.94 (m, 1H), 5.92–5.89 (m, 2H), 5.47 (d, J = 10.5 Hz, 1H), 3.99–3.93 (m, 1H), 3.57–3.47
(m, 1H); 13C NMR (100 MHz, CDCl3) 149.8, 147.0, 141.8, 140.9, 136.2, 135.5, 132.8, 132.0,
131.6, 128.5, 128.3, 128.2, 127.4, 126.5, 125.9, 123.3, 122.2, 120.0, 119.8, 116.1, 114.3, 111.2,
108.1, 101.0, 98.8, 76.8, 50.5, 48.2; IR (KBr): 3869, 3688, 3627, 1791, 1683, 1521, 1076, 749,
668 cm−1; (C32H24ClNO3-H)− requires m/z 504.1372, found m/z 504.1379; ee: 98%, IB,
hexane/isopropanol = 70/30, tR = 7.900 (major), tR = 8.993 (minor).

(E)-2-(7-phenyl-8-(2-(thiophen-2-yl)vinyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-
1H-indole (3ah):

Yield: 70% (33.2 mg); 85:15 dr; brown solid; m.p. 216.2–218.0 ◦C; [α]D
20 = −53.9 (c 0.66,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.84–7.79 (m, 2H), 7.25–7.21 (m, 1H), 7.15–7.11 (m,
2H), 7.10–7.06 (m, 3H), 7.04–7.01 (m, 1H), 7.00–6.97 (m, 2H), 6.91–6.87 (m, 1H), 6.79–6.75
(m, 3H), 6.55 (s, 1H), 6.28 (d, J = 15.6 Hz, 1H), 5.92–5.90 (m, 2H), 5.89–5.81 (m, 1H), 5.46
(d, J = 10.5 Hz, 1H), 3.95–3.89 (m, 1H), 3.55–3.47 (m, 1H); 13C NMR (100 MHz, CDCl3) δ
149.8, 147.1, 142.2, 141.8, 141.0, 136.3, 131.1, 128.3, 128.2, 127.2, 126.5, 126.0, 125.9, 125.1,
123.7, 123.4, 122.2, 120.1, 119.8, 116.2, 114.3, 111.2, 108.2, 101.1, 98.9, 76.9, 50.5, 48.2; IR (KBr):
3868, 3851, 3742, 3674, 3565, 1715, 1506, 1265, 1153, 743 cm−1; (C30H23NO3S-H)− requires
m/z 476.1326, found m/z 476.1315; ee: 87%, IB, hexane/isopropanol = 90/10, tR = 22.563
(minor), tR = 24.167 (major).

(E)-3-(7-(4-chlorophenyl)-8-styryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-yl)-1-methyl-
1H-indole:(3oa)

Yield: 53% (27.7 mg); 91:9 dr; white solid; m.p. 183.0–183.7 ◦C; [α]D
20 = −46.6 (c 0.15,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.9 Hz, 1H), 7.25–7.17 (m, 7H), 7.13–7.08
(m, 1H), 7.03 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 8.3 Hz, 2H), 6.73 (d, J = 4.3 Hz, 2H), 6.52 (s,
1H), 6.15 (d, J = 15.7 Hz, 1H), 6.01–5.94 (m, 1H), 5.90 (s, 2H), 5.40 (d, J = 10.5 Hz, 1H),
3.92–3.86 (m, 1H), 3.62 (s, 3H), 3.56–3.49 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 149.7, 147.0,
141.8, 139.6, 137.2, 136.9, 133.0, 132.0, 130.9, 129.5, 128.5, 128.3, 128.0, 127.4, 126.3, 126.2,
121.8, 119.9, 119.4, 116.0, 112.4, 109.4, 108.1, 101.0, 98.8, 76.5, 50.0, 48.5, 32.7; IR (KBr): 3852,
3749, 3648, 2920, 1477, 1238, 1152, 1037, 1013, 742 cm−1; (C33H26ClNO3+H)+ requires m/z
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520.1674, found m/z 520.1668; ee: 83%, AD-H, hexane/isopropanol = 70/30, tR = 9.900
(minor), tR = 10.893 (major).

Procedure for one-mmol-scale synthesis of product 3aa

To the mixture of 3-vinylindole 1a (1.0 mmol), ortho-quinone methide 2a (1.2 mmol), catalyst
(R)-4c (0.1 mmol), and MgSO4 (500 mg) was added toluene (10 mL). Then, the reaction
mixture was stirred at 0 ◦C for 12 h. After completion of the reaction, which was indicated
by TLC, the reaction mixture was directly purified through flash column chromatography
to afford product 3aa in 88% yield (414 mg) with 86:14 dr and 64% ee.

General procedure for the synthesis of products 6

To the mixture of 3-vinylindoles 1 (0.1 mmol), ortho-hydroxybenzyl alcohols 5 (0.12 mmol),
catalyst 4e (0.01 mmol) were added toluene (1 mL). Then, the reaction mixture was stirred
at 0 ◦C for 6 h. After completion of the reaction, which was indicated by TLC, the reaction
mixture was directly purified through flash column chromatography to afford products 6.

(E)-3-(3,4-diphenylchroman-2-yl)-1H-indole (6aa):

Yield: 61% (24.5 mg); 77:23 dr; white solid; m.p. 95.0–97.0 ◦C; [α]D
20 = −169.4 (c 0.26,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.25–7.20 (m,
2H), 7.17–7.08 (m, 5H), 7.07–7.01 (m, 2H), 7.00–6.97 (m, 1H), 6.97–6.92 (m, 2H), 6.91–6.86
(m, 2H), 6.72 (d, J = 7.5 Hz, 2H), 6.59 (d, J = 7.5 Hz, 2H), 5.93 (d, J = 10.7 Hz, 1H), 4.40 (d,
J = 5.2 Hz, 1H), 4.20–4.11 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 154.9, 141.5, 139.6, 136.2,
130.6, 130.2, 129.1, 128.1, 127.5, 126.4, 126.2, 126.1, 124.8, 123.7, 122.2, 120.4, 119.9, 119.8,
116.8, 114.7, 111.2, 71.2, 48.7, 48.1; IR (KBr): 3648, 3566, 1733, 1456, 1418, 1242, 1111, 990, 748,
700 cm−1; (C29H23NO+H)+ requires m/z 402.1853, found m/z 402.1853; ee: 79%, OD-H,
hexane/isopropanol = 95/5, tR = 20.910 (major), tR = 23.560 (minor).

(E)-3-(3,4-diphenylchroman-2-yl)-5-methyl-1H-indole (6ba):

Yield: 50% (20.7 mg); 75:25 dr; white solid; m.p. 84.0–86.0 ◦C; [α]D
20 = −145.2 (c 0.17,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.76 (s, 1H), 7.56 (s, 1H), 7.25–7.20 (m, 1H), 7.18–7.09
(m, 4H), 7.08–7.04 (m, 1H), 7.04–7.01 (m, 1H), 7.00–6.91 (m, 4H), 6.91–6.86 (m, 1H), 6.84 (d,
J = 2.2 Hz, 1H), 6.72 (d, J = 7.3 Hz, 2H), 6.60 (d, J = 7.4 Hz, 2H), 5.90 (d, J = 10.6 Hz, 1H), 4.40
(d, J = 5.3 Hz, 1H), 4.20–4.11 (m, 1H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 154.9, 141.6,
139.7, 134.6, 130.6, 130.3, 129.1, 129.0, 128.1, 127.5, 127.4, 126.4, 126.2, 124.8, 123.8, 120.3,
119.4, 116.9, 114.1, 110.8, 71.2, 48.7, 47.9, 21.6; IR (KBr): 3648, 3566, 2922, 1748, 1558, 1507,
1456, 1242, 750, 668 cm−1; (C30H25NO+H)+ requires m/z 416.2009, found m/z 416.1992; ee:
76%, AD-H, hexane/isopropanol = 70/30, tR = 5.200 (minor), tR = 7.937 (major).

(E)-6-chloro-3-(3,4-diphenylchroman-2-yl)-1H-indole (6pa):

Yield: 72% (31.3 mg); 75:25 dr; white solid; m.p. 112.0–114.0 ◦C; [α]D
20 = −253.5 (c 0.20,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.22 (d,
J = 7.7 Hz, 1H), 7.20–7.10 (m, 4H), 7.09–7.01 (m, 3H), 7.01–6.97 (m, 1H), 6.97–6.87 (m, 3H),
6.86–6.83 (m, 1H), 6.72 (d, J = 7.4 Hz, 2H), 6.55 (d, J = 7.4 Hz, 2H), 5.87 (d, J = 10.9 Hz, 1H),
4.39 (d, J = 5.2 Hz, 1H), 4.14–4.06 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 154.7, 141.4, 139.3,
136.5, 130.6, 130.3, 129.1, 128.2, 128.1, 127.5, 126.5, 126.4, 124.8, 124.6, 124.3, 120.7, 120.6,
116.8, 114.9, 111.1, 71.0, 48.7, 48.3; IR (KBr): 3750, 3724, 3648, 3026, 1488, 1456, 1239, 1216,
752, 705 cm−1; (C29H22ClNO+H)+ requires m/z 436.1463, found m/z 436.1460; ee: 74%,
AD-H, hexane/isopropanol = 70/30, tR = 5.843 (minor), tR = 7.477 (major).

(E)-6-bromo-3-(3,4-diphenylchroman-2-yl)-1H-indole (6da):

Yield: 77% (36.8 mg); 78:22 dr; white solid; m.p. 95.0–97.0 ◦C; [α]D
20 = −203.3 (c 0.28,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.33 (s, 1H),
7.24–7.15 (m, 3H), 7.15–7.10 (m, 2H), 7.05–7.01 (m, 2H), 6.99 (d, J = 7.3 Hz, 1H), 6.97–6.92 (m,
2H), 6.92–6.87 (m, 1H), 6.82 (d, J = 2.1 Hz, 1H), 6.72 (d, J = 7.4 Hz, 2H), 6.55 (d, J = 7.4 Hz,
2H), 5.87 (d, J = 10.9 Hz, 1H), 4.39 (d, J = 5.2 Hz, 1H), 4.13–4.06 (m, 1H); 13C NMR (100 MHz,
CDCl3) δ 154.7, 141.4, 139.3, 137.0, 130.6, 130.3, 129.1, 128.2, 127.5, 126.5, 126.4, 124.9, 124.8,
124.3, 123.1, 121.1, 120.6, 116.7, 115.7, 114.9, 114.1, 71.0, 48.7, 48.3; IR (KBr): 3648, 3566, 1716,
1540, 1507, 1456, 1226, 801, 750, 668 cm−1; (C29H22BrNO+H)+ requires m/z 480.0958, found
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m/z 480.0947; ee: 74%, AD-H, hexane/isopropanol = 70/30, tR = 6.190 (minor), tR = 8.233
(major).

(E)-3-(3,4-diphenylchroman-2-yl)-7-methyl-1H-indole (6ea):

Yield: 53% (21.9 mg); 75:25 dr; white solid; m.p. 92.0–94.0 ◦C; [α]D
20 = −158.6 (c 0.19,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.72 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.25–7.19 (m,
1H), 7.18–7.09 (m, 3H), 7.06–6.98 (m, 4H), 6.97–6.92 (m, 3H), 6.91–6.85 (m, 2H), 6.72 (d,
J = 7.4 Hz, 2H), 6.61 (d, J = 7.4 Hz, 2H), 5.92 (d, J = 10.6 Hz, 1H), 4.39 (d, J = 5.2 Hz, 1H),
4.21–4.11 (m, 1H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 154.9, 141.5, 139.7, 135.8,
130.6, 130.2, 129.1, 128.1, 127.5, 127.4, 126.4, 126.2, 125.6, 124.8, 123.4, 122.7, 120.3, 120.0,
117.5, 116.8, 115.2, 71.2, 48.7, 48.0, 16.5; IR (KBr): 3628, 3587, 3566, 3030, 1868, 1716, 1569,
1558, 749, 668 cm−1; (C30H25NO+H)+ requires m/z 416.2009, found m/z 416.2004; ee: 74%,
AD-H, hexane/isopropanol = 70/30, tR = 5.437 (major), tR = 6.597 (minor).

(E)-7-chloro-3-(3,4-diphenylchroman-2-yl)-1H-indole (6qa):

Yield: 90% (39.2 mg); 82:18 dr; white solid; m.p. 55.0–57.0 ◦C; [α]D
20 = −191.1 (c 0.54,

acetone); 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.25–7.21 (m,
1H), 7.20–7.11 (m, 4H), 7.08–6.99 (m, 4H), 6.99 –6.88 (m, 4H), 6.73 (d, J = 7.2 Hz, 2H), 6.58
(d, J = 7.3 Hz, 2H), 5.91 (d, J = 10.9 Hz, 1H), 4.40 (d, J = 5.1 Hz, 1H), 4.20–4.07 (m, 1H);
13C NMR (100 MHz, CDCl3) δ 154.7, 141.4, 139.3, 133.5, 130.6, 130.3, 129.1, 128.2, 127.6,
127.5, 126.5, 126.4, 124.8, 124.3, 121.6, 120.7, 120.6, 118.6, 116.8, 116.7, 115.9, 71.1, 48.8, 48.2;
IR (KBr): 3648, 3628, 3566, 3420, 1507, 1472, 1339, 1241, 752, 700 cm−1; (C29H22ClNO+H)+

requires m/z 436.1463, found m/z 436.1459; ee: 75%, AD-H, hexane/isopropanol = 70/30,
tR = 5.490 (major), tR = 6.753 (minor).

(E)-7-bromo-3-(3,4-diphenylchroman-2-yl)-1H-indole (6ra):

Yield: 89% (42.7 mg); 83:17 dr; white solid; m.p. 87.0–89.0 ◦C; [α]D
20 = −194.8 (c 0.56,

acetone); 1H NMR (400 MHz, CDCl3) δ 8.04 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 7.6
Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 7.20–7.12 (m, 3H), 7.07–6.94 (m, 7H), 6.93–6.88 (m, 1H),
6.73 (d, J = 7.3 Hz, 2H), 6.58 (d, J = 7.4 Hz, 2H), 5.90 (d, J = 10.9 Hz, 1H), 4.40 (d, J = 5.2 Hz,
1H), 4.20–4.08 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 154.7, 141.4, 139.3, 134.9, 130.6, 130.3,
129.1, 128.2, 127.6, 127.5, 127.3, 126.5, 126.4, 124.8, 124.6, 124.3, 121.0, 120.6, 119.2, 116.8,
116.0, 104.8, 71.1, 48.8, 48.2; IR (KBr): 3648, 3628, 3566, 1868, 1716, 1507, 1456, 1339, 751,
668 cm−1; (C29H22BrNO+H)+ requires m/z 480.0958, found m/z 480.0945; ee: 82%, AD-H,
hexane/isopropanol = 70/30, tR = 5.820 (major), tR = 7.357 (minor).

(E)-3-(3-(3-chlorophenyl)-4-phenylchroman-2-yl)-1H-indole (6ka):

Yield: 72% (31.3 mg); 76:24 dr; white solid; m.p. 93.0–95.0 ◦C; [α]D
20 = −174.8 (c 0.29,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.25–7.19 (m,
2H), 7.19–7.16 (m, 3H), 7.15–7.08 (m, 2H), 7.07–7.01 (m, 2H), 6.99–6.95 (m, 1H), 6.92–6.82
(m, 3H), 6.78–6.70 (m, 2H), 6.57 (s, 1H), 6.44 (d, J = 7.6 Hz, 1H), 5.86 (d, J = 10.7 Hz, 1H),
4.38 (d, J = 5.2 Hz, 1H), 4.17–4.08 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 154.8, 141.7, 141.1,
136.3, 133.2, 130.6, 130.3, 129.2, 128.7, 128.3, 127.6, 127.3, 126.7, 126.5, 125.9, 124.3, 123.7,
122.3, 120.6, 119.9, 119.8, 116.9, 114.3, 111.3, 71.0, 48.5, 48.1; IR (KBr): 3648, 3628, 3566, 3030,
1868, 1748, 1507, 1456, 749, 701 cm−1; (C29H22ClNO+H)+ requires m/z 436.1463, found
m/z 436.1462; ee: 80%, AD-H, hexane/isopropanol = 70/30, tR = 5.337 (minor), tR = 6.787
(major).

(E)-3-(3-(4-chlorophenyl)-4-phenylchroman-2-yl)-1H-indole (6ma):

Yield: 70% (30.5 mg); 78:22 dr; white solid; m.p. 97.0–99.0 ◦C; [α]D
20 = −106.1 (c 0.41,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.26–7.19
(m, 2H), 7.18–7.15 (m, 3H), 7.15–7.07 (m, 2H), 7.07–7.00 (m, 2H), 6.93–6.86 (m, 4H), 6.74
(d, J = 6.9 Hz, 2H), 6.49 (d, J = 8.1 Hz, 2H), 5.86 (d, J = 10.7 Hz, 1H), 4.37 (d, J = 5.2 Hz,
1H), 4.18–4.11 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 154.8, 141.2, 138.1, 136.3, 132.0,
130.6, 130.4, 130.3, 128.3, 127.6, 126.7, 125.9, 124.5, 123.7, 122.3, 120.5, 119.9, 119.7, 116.9,
114.4, 111.3, 71.1, 48.5, 47.7; IR (KBr): 3648, 3628, 3618, 1868, 1716, 1698, 1507, 1456, 748,
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702 cm−1; (C29H22ClNO+H)+ requires m/z 436.1463, found m/z 436.1449; ee: 83%, IA,
hexane/isopropanol = 70/30, tR = 5.587 (minor), tR = 6.463 (major).

(E)-3-(7-methyl-3,4-diphenylchroman-2-yl)-1H-indole (6ab):

Yield: 73% (30.5 mg); 81:19 dr; white solid; m.p. 107.0–109.0 ◦C; [α]D
20 = −167.9 (c 0.37,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 7.78 (s, 1H), 7.23–7.19 (m, 1H), 7.18–7.08
(m, 5H), 7.06–7.02 (m, 1H), 7.00–6.92 (m, 4H), 6.86–6.82 (m, 2H), 6.74 (d, J = 7.5 Hz, 2H), 6.58
(d, J = 7.4 Hz, 2H), 5.91 (d, J = 10.7 Hz, 1H), 4.35 (d, J = 5.2 Hz, 1H), 4.18–4.10 (m, 1H), 2.24 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 152.7, 141.6, 139.7, 136.2, 130.6, 130.4, 129.5, 129.1, 128.9,
127.4, 126.4, 126.2, 126.1, 124.4, 123.7, 122.1, 119.9, 119.7, 116.5, 114.8, 111.2, 71.1, 48.8, 48.3,
20.5; IR (KBr): 3648, 3586, 3566, 1868, 1716, 1496, 1456, 1218, 740, 699 cm−1; (C30H25NO+H)+

requires m/z 416.2009, found m/z 416.1999; ee: 76%, IA, hexane/isopropanol = 70/30,
tR = 6.360 (minor), tR = 9.837 (major).

(E)-3-(7-bromo-3,4-diphenylchroman-2-yl)-1H-indole (6ac):

Yield: 57% (27.1 mg); 68:32 dr;

Major diastereoisomer: white solid; m.p. 81.7–82.0 ◦C; [α]D
20 = −62.5 (c 0.20, acetone); 1H

NMR (400 MHz, CDCl3) δ 8.04 (s, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.23
(d, J = 7.7 Hz, 1H), 7.20–7.11 (m, 3H), 7.07–6.93 (m, 7H), 6.93–6.87 (m, 1H), 6.73 (d, J = 7.3 Hz,
2H), 6.58 (d, J = 7.3 Hz, 2H), 5.90 (d, J = 10.9 Hz, 1H), 4.40 (d, J = 5.1 Hz, 1H), 4.18–4.09 (m,
1H); 13C NMR (100 MHz, CDCl3) δ 155.6, 140.8, 139.2, 136.2, 131.4, 130.5, 129.0, 127.6, 126.6,
126.4, 126.0, 123.9, 123.7, 123.5, 122.3, 121.0, 119.9, 119.8, 119.7, 114.3, 111.3, 71.7, 48.2, 47.8;
IR (KBr): 3647, 2922, 2852, 1732, 1716, 1479, 1456, 1261, 741, 700 cm−1; (C29H22BrNO+H)+

requires m/z 480.0958, found m/z 480.0935; ee: 73%, AD-H, hexane/isopropanol = 70/30,
tR = 5.520 (major), tR = 6.530 (minor).

Minor diastereoisomer: white solid; m.p. 85.5–87.0 ◦C; [α]D
20 = −3.0 (c 0.17, acetone); 1H

NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.40 (s, 1H), 7.23–7.09 (m,
5H), 7.04–6.93 (m, 6H), 6.89–6.75 (m, 5H), 5.60 (d, J = 10.6 Hz, 1H), 4.50 (d, J = 11.1 Hz, 1H),
3.71–3.64 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 155.3, 143.2, 140.4, 136.9, 130.3, 129.1,
128.3, 128.2, 128.1, 127.7, 126.6, 126.5, 126.4, 124.8, 123.8, 123.2, 121.3, 120.8, 116.9, 115.7,
114.8, 114.1, 76.8, 53.1, 50.9; IR (KBr): 3647, 2922, 1575, 1456, 1261, 1214, 1012, 798, 742,
700 cm−1; (C29H22BrNO+H)+ requires m/z 480.0958, found m/z 480.0931; ee: 60%, OD-H,
hexane/isopropanol = 70/30, tR = 6.127 (minor), tR = 7.847 (major).

(E)-3-(4-(4-fluorophenyl)-3-phenylchroman-2-yl)-1H-indole (6ad):

Yield: 59% (24.6 mg); 75:25 dr; white solid; m.p. 105.0–107.0 ◦C; [α]D
20 = −135.0 (c 0.24,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.26–7.21
(m, 2H), 7.18–7.08 (m, 2H), 7.05 (d, J = 8.2 Hz, 1H), 7.03–6.93 (m, 4H), 6.92–6.86 (m, 2H),
6.85–6.77 (m, 2H), 6.69–6.63 (m, 2H), 6.61 (d, J = 7.2 Hz, 2H), 5.87 (d, J = 10.6 Hz, 1H), 4.38
(d, J = 5.2 Hz, 1H), 4.18–4.10 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 161.6 (J = 243.6 Hz),
154.8, 139.5, 137.3 (J = 3.1 Hz), 136.2, 131.9 (J = 7.9 Hz), 130.1, 129.1, 128.3, 127.6, 126.4, 126.1,
124.6, 123.7, 123.1, 122.2, 120.5, 119.8 (J = 7.7 Hz), 116.9, 114.6, 114.3 (J = 21.0 Hz), 111.2, 71.1,
48.0, 47.9; 19F NMR (376 MHz, CDCl3) δ -116.50; IR (KBr): 3648, 3628, 3618, 1771, 1716, 1653,
1488, 1456, 748, 699 cm−1; (C29H22FNO+H)+ requires m/z 420.1758, found m/z 420.1760;
ee: 76%, AD-H, hexane/isopropanol = 70/30, tR = 5.360 (minor), tR = 6.863 (major).

(E)-3-(4-(3-methoxyphenyl)-3-phenylchroman-2-yl)-1H-indole (6ae):

Yield: 80% (34.6 mg); 75:25 dr; white solid; m.p. 92.0–94.0 ◦C; [α]D
20 = −170.3 (c 0.27,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.85 (s, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.25–7.20 (m,
2H), 7.16–7.08 (m, 2H), 7.07–7.05 (m, 1H), 7.05–7.01 (m, 2H), 7.01–6.94 (m, 3H), 6.92–6.86 (m,
2H), 6.74–6.68 (m, 1H), 6.64 (d, J = 7.3 Hz, 2H), 6.38 (d, J = 7.6 Hz, 1H), 6.15 (s, 1H), 5.94 (d,
J = 10.6 Hz, 1H), 4.37 (d, J = 5.2 Hz, 1H), 4.19–4.11 (m, 1H), 3.54 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 158.7, 154.8, 143.1, 139.7, 136.2, 130.2, 129.1, 128.4, 128.2, 127.5, 126.2, 126.1, 124.6,
123.7, 123.1, 122.2, 120.4, 119.9, 119.8, 116.8, 116.1, 114.7, 112.4, 111.2, 71.2, 55.0, 48.7, 48.0;
IR (KBr): 3750, 3648, 3618, 3566, 1583, 1486, 1456, 1241, 744, 702 cm−1; (C30H25NO2+H)+
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requires m/z 432.1958, found m/z 432.1949; ee: 79%, IA, hexane/isopropanol = 70/30,
tR = 5.743 (minor). tR = 6.993 (major).

(E)-3-(6-methoxy-4-(2-methoxyphenyl)-3-phenylchroman-2-yl)-1H-indole (6af):

Yield: 71% (32.7 mg); 90:10 dr; white solid; m.p. 110.0–112.0 ◦C; [α]D
20 = −133.8 (c 0.24,

acetone); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.6 Hz, 1H), 7.78 (s, 1H), 7.21–7.13 (m,
2H), 7.14–7.02 (m, 3H), 6.97 (d, J = 8.9 Hz, 1H), 6.93–6.85 (m, 4H), 6.84 (d, J = 2.1 Hz, 1H),
6.82–6.77 (m, 1H), 6.63–6.55 (m, 3H), 6.53 (d, J = 2.9 Hz, 1H), 5.86 (d, J = 10.5 Hz, 1H), 5.05
(d, J = 5.4 Hz, 1H), 4.15–4.06 (m, 1H), 3.68 (s, 3H), 3.09 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 157.5, 153.4, 149.5, 140.3, 136.2, 131.3, 130.6, 128.8, 127.6, 127.0, 126.2, 125.8, 125.5, 123.6,
122.0, 120.0, 119.9, 119.6, 117.3, 115.0, 114.7, 114.2, 111.1, 109.7, 71.2, 55.7, 54.6, 47.8, 40.0;
IR (KBr): 3648, 3628, 3618, 1868, 1456, 1435, 1238, 1031, 749, 698 cm−1; (C31H27NO3+H)+

requires m/z 462.2064, found m/z 462.2069; ee: 81%, IA, hexane/isopropanol = 70/30,
tR = 5.823 (major), tR = 7.830 (minor).
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65. Čorić, I.; List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 2012, 483, 315–319. [CrossRef]
[PubMed]

66. Greindl, J.; Hioe, J.; Sorgenfrei, N.; Morana, F.; Gschwind, R.M. Brønsted Acid Catalysis Structural Preferences and Mobility in
Imine/Phosphoric Acid Complexes. J. Am. Chem. Soc. 2016, 138, 15965–15971. [CrossRef]

67. Lokesh, N.; Hioe, J.; Gramüller, J.; Gschwind, R.M. Relaxation Dispersion NMR to Reveal Fast Dynamics in Brønsted Acid
Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping. J. Am. Chem. Soc. 2019, 141,
16398–16407. [CrossRef]

68. Luan, Y.; Schaus, S.E. Enantioselective Addition of Boronates to o-Quinone Methides Catalyzed by Chiral Biphenols. J. Am. Chem.
Soc. 2012, 134, 19965–19968. [CrossRef]

http://doi.org/10.3390/molecules200711733
http://www.ncbi.nlm.nih.gov/pubmed/26121398
http://doi.org/10.1021/acs.joc.6b01367
http://doi.org/10.1039/C8CS00274F
http://www.ncbi.nlm.nih.gov/pubmed/29993045
http://doi.org/10.1002/adsc.200900544
http://doi.org/10.1002/anie.201403573
http://doi.org/10.1002/anie.201406587
http://doi.org/10.1002/anie.201500215
http://www.ncbi.nlm.nih.gov/pubmed/25693691
http://doi.org/10.1002/chem.201406044
http://doi.org/10.1021/ol503662g
http://www.ncbi.nlm.nih.gov/pubmed/25611975
http://doi.org/10.1002/anie.201500219
http://doi.org/10.1002/anie.201509247
http://doi.org/10.1002/anie.201700250
http://doi.org/10.1021/acs.orglett.7b00867
http://doi.org/10.1021/acs.orglett.7b01936
http://doi.org/10.1021/acs.joc.8b01425
http://www.ncbi.nlm.nih.gov/pubmed/30028136
http://doi.org/10.1039/C7CC08124C
http://www.ncbi.nlm.nih.gov/pubmed/29210375
http://doi.org/10.1021/acs.orglett.8b01865
http://doi.org/10.1002/anie.201809692
http://www.ncbi.nlm.nih.gov/pubmed/30278112
http://doi.org/10.1002/anie.200705314
http://doi.org/10.1038/nature10932
http://www.ncbi.nlm.nih.gov/pubmed/22422266
http://doi.org/10.1021/jacs.6b09244
http://doi.org/10.1021/jacs.9b07841
http://doi.org/10.1021/ja309076g

	Introduction 
	Results and Discussion 
	Organocatalytic Asymmetric [2 + 4] Cycloaddition of 3-Vinylindoles with Sesamol-Derived o-QMs 
	Optimization of Reaction Conditions 
	Substrate Scope 
	Theoretical Calculations of the Reaction Pathway and Key Transition States 
	Large-Scale Synthesis of Product 3aa 

	Organocatalytic Asymmetric [2 + 4] Cycloaddition of 3-Vinylindoles with o-Hydroxybenzyl Alcohols 

	Materials and Methods 
	Conclusions 
	Experimental Section 
	References

