
Individualized Machine-learning-based Clinical Assessment
Recommendation System

Devin Setiawan1, Yumiko Wiranto2, Jeffrey M. Girard2, Amber Watts2, Arian Ashourvan2

1 The University of Kansas, Department of Electrical Engineering and Computer Science, 1415
Jayhawk Blvd. Lawrence, KS 66045

2 The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd. Lawrence, KS 66045

Abstract
Background: Traditional clinical assessments often lack individualization, relying on
standardized procedures that may not accommodate the diverse needs of patients, especially in
early stages where personalized diagnosis could offer significant benefits. We aim to provide a
machine-learning framework that addresses the individualized feature addition problem and
enhances diagnostic accuracy for clinical assessments.
Methods: Individualized Clinical Assessment Recommendation System (iCARE) employs
locally weighted logistic regression and Shapley Additive Explanations (SHAP) value analysis to
tailor feature selection to individual patient characteristics. Evaluations were conducted on
synthetic and real-world datasets, including early-stage diabetes risk prediction and heart failure
clinical records from the UCI Machine Learning Repository. We compared the performance of
iCARE with a Global approach using statistical analysis on accuracy and area under the ROC
curve (AUC) to select the best additional features.
Findings: The iCARE framework enhances predictive accuracy and AUC metrics when
additional features exhibit distinct predictive capabilities, as evidenced by synthetic datasets 1-3
and the early diabetes dataset. Specifically, in synthetic dataset 1, iCARE achieved an accuracy
of 0·999 and an AUC of 1·000, outperforming the Global approach with an accuracy of 0·689
and an AUC of 0·639. In the early diabetes dataset, iCARE shows improvements of 1·5-3·5% in
accuracy and AUC across different numbers of initial features. Conversely, in synthetic datasets
4-5 and the heart failure dataset, where features lack discernible predictive distinctions, iCARE
shows no significant advantage over global approaches on accuracy and AUC metrics.
Interpretation: iCARE provides personalized feature recommendations that enhance diagnostic
accuracy in scenarios where individualized approaches are critical, improving the precision and
effectiveness of medical diagnoses.
Funding: This work was supported by startup funding from the Department of Psychology at the
University of Kansas provided to A.A., and the R01MH125740 award from NIH partially
supported J.M.G.'s work.
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1. Background

Clinical assessment is the ongoing process of gathering information about a patient and
constructing an increasingly comprehensive conceptualization of their health and needs (e.g., for
diagnosis, prognosis, or treatment planning). A critical task in clinical assessment is selecting the
next piece of information to collect about the patient to maximize information gain. Given the
unique nature of each patient's condition, it is essential to recognize that there are often no
one-size-fits-all solutions. This need for personalization is especially high when symptom
presentation and treatment effectiveness are heterogeneous across individuals; examples include
oncology, psychiatry, and the treatment of chronic diseases such as diabetes, cardiovascular
disease, and neurodegenerative disorders.1–3 We can also find an example from the study of
dementia where the informativeness of APOE ε4 as one of the best predictor of dementia varies
by race.4–6 Although useful, achieving personalization in clinical practice is challenging.
Personalization requires massive data, raising privacy concerns and the potential misuse of
sensitive information.7 In this paper, we will discuss how the framework of individualized feature
selection from machine learning (ML) can be used to efficiently guide the task of personalization
in clinical assessment.

Feature selection is the process of identifying and prioritizing the most relevant and informative
input variables (i.e., features) that will optimize model performance, interpretability, and
generalization while minimizing model complexity and overfitting.8 Overfitting occurs when a
model becomes too complex, capturing noise in addition to the signal, which causes it to fail to
generalize to unseen data (e.g., novel patients or new observations of known patients). It is
important to reduce overfitting so that the model performs well in real-world scenarios.9 This is
usually achieved by using popular techniques like sequential forward selection (SFS) or
backward elimination, which iteratively add or remove features to see their effect on model
performance.10–13 However, these traditional techniques lack individualization, resulting in every
patient being given the same recommendation. Personalized feature selection, on the other hand,
places patients at the center of the decision-making process, taking into account each individual
patient's unique characteristics and recognizing that different patients may need different
thresholds for diagnosis.14 This problem definition aligns with the aim of personalized clinical
assessment recommendations, where the goal is to tailor the choice of the next test based on the
unique characteristics of each patient.

Recent studies in individualized feature selection have begun to address this gap by developing
methods that personalize the selection of features based on individual patient data. For instance,
a study on wearable electroencephalogram (EEG) monitoring platforms uses linear discriminant
analysis (LDA) and the least absolute shrinkage and selection operator (LASSO) method to
select discriminative features tailored to each subject's seizure patterns.15 However, this approach
does not focus on dynamic and iterative feature addition and is highly specific to EEG data.
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Additionally, an unsupervised personalized feature selection framework tailors feature selection
to each instance in high-dimensional data.16 However, our objective is to tackle a supervised
individualized feature selection problem. Additionally, a framework employing fixed prediction
models, local feature explainers, and ensembles of imputed samples provides flexible risk
estimation for samples with missing features.17 This framework relies heavily on imputations and
uses a single fixed prediction model. On the other hand, we want to create a framework that
provides an individualized model directly without the need for imputations or a singular
prediction model.

We propose a general framework that recommends which features to obtain next for each patient,
promoting a more accurate diagnosis through personalization. Taking inspiration from locally
weighted learning, iCARE leverages patient-specific data to tailor the selection of clinical
assessments for individualized healthcare recommendations used in diagnosis.18–20 Our approach
utilizes a locally weighted model tailored to each patient, which was analyzed using a feature
explainer, to dynamically adapt feature selection strategies based on each patient's unique
characteristics. The iCARE framework relies on three main components: (1) a sample weight
calculation module, (2) an ML model trained on weighted samples, and (3) a feature explainer
for the generated models. We analyzed the framework using synthetic datasets to show its
personalization capability and also compared it with a traditional approach on both synthetic and
real-world datasets. We hypothesized that our framework would provide more accurate
diagnoses than the traditional approaches.

2. Methods

2.1. Framework Architecture
Figure 1 provides an overview of the architecture of our iCARE framework. The architecture
consists of an input processing module identifying missing features of incoming patients. A
similarity calculation module is then used to calculate similarity scores between incoming
patients and patients in the pool of known cases. This pool of known cases comprises labeled
data, which includes values for predictive features such as age, sex, and test results, along with
an outcome label indicating whether the individual is sick or not sick. It can be created from any
data source representing known past cases with relevant features. Using these weights, a
weighted logistic regression is trained using the pool of known cases. The weights assigned to
each sample reflect its relevance to the novel patient's profile, allowing for personalized model
training. The trained model is then analyzed using Shapley Additive Explanations (SHAP) to
quantify the importance of individual features in the locally trained logistic regression model.21

SHAP values are based on cooperative game theory in which a prediction is broken down to
show how each feature influenced the outcome of a model. Finally, the feature recommendation
module will take the explanations and produce a recommendation. It evaluates whether the
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feature is present in the patient's initial feature set. If any significant feature is missing, the
framework recommends its inclusion to further enhance predictive accuracy.

(1) 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 = 1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(2) 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
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(3) 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑚𝑎𝑥(𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)

Figure 1: Architecture of the iCARE framework. Data were obtained from an incoming
patient (I), and weights were generated for the pool of known cases in the Similarity Calculation
Module (II). Using these sample weights, we generate a weighted logistic regression model for
an incoming patient (III). SHAP values are then generated using a SHAP explainer for all the
subjects in the pool of known cases (IV). The Feature Recommendation Module will then gather
all the individual SHAP values and produce a recommendation if there is a missing feature that
can be recommended to the patient (V).

2.2. Experimental Design
Figure 2 provides an overview of the experiment to compare the performance of the iCARE
recommendation against a global feature recommendation (i.e., Global) strategy. Initially, we
define a set of initial features using the least important feature. The dataset was split into a pool
of known cases and test cases. With the procedure applied before, the test cases will have only
the initial features, simulating conditions where patients don’t have all the informative features.
From here, we generated a global recommendation and an individualized recommendation. The
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global recommendation is done by training a logistic regression on the pool of known cases and
analyzing it with SHAP. The feature with the highest SHAP value is selected for
recommendation. On the other hand, the individualized recommendation uses the iCARE
framework. We then evaluate the recommendation and repeat this process 100 times.

To evaluate the recommendations, we append the pool of known cases and a single case with the
recommended feature value from the initial dataset. We then train a logistic regression using the
pool of known cases and predict the outcome for the single case using the model. In addition to
this, we also define the locally weighted (LW) procedure, which just uses a weighted logistic
regression on this step instead of a regular logistic regression. We repeat this process until all test
cases receive the predicted outcome. We then collect this prediction and calculate the accuracy
and AUC (Area Under the Receiver Operating Characteristic Curve) metrics. These metrics were
then averaged over 100 iterations.

This experiment was repeated using a different number of initial features. We selected the least
informative feature as it represents a realistic scenario where incoming patients will more likely
have less informative features. This iterative approach allowed us to assess the impact of the
model performance across the various frameworks on different initial available features.
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Figure 2: Experimental workflow to evaluate the iCARE framework. The figure above
highlights the main experimental workflow to evaluate the iCARE framework against traditional
global feature selection. This workflow produces two distinct approaches to generating
recommendations, as shown by the Global (i.e., global feature selection) and iCARE (i.e.,
individualized feature selection) split in part I. In addition, there are two distinct approaches to
training the inference model, as shown in part II, where the logistic regression model can be
trained with or without sample weights (i.e., LW or no LW). This produces four approaches:
Global, Global+LW, iCARE, and iCARE+LW.

2.3. Dataset
We evaluate our framework with both synthetic and real-world datasets. The synthetic datasets
were created to simulate ideal and non-ideal scenarios. The real-world datasets utilized in this
study were obtained from the UCI Machine Learning Repository, specifically the early-stage
diabetes risk prediction and heart failure clinical records.22,23 We provide the code to generate the
synthetic dataset, as well as the details on preprocessing steps for real-world datasets in the
supplementary materials.

2.4. Statistical Analysis
We performed t-tests (⍺=0.05) on the accuracy and AUC to assess the statistical significance of
the performance differences between the four frameworks. To account for familywise error and
reduce the risk of Type I errors, we applied Holm-adjusted p-values to the results of these
multiple comparisons. Using Holm-adjusted p-values provides a more conservative and reliable
measure of statistical significance compared to the standard p-values obtained from the t-test.

3. Findings and Interpretation

3.1. Reasoning Process of the Framework
The iCARE framework is grounded in the principle of localized learning and feature importance
analysis to generate personalized clinical recommendations. A locally weighted logistic
regression model trained using weighted patient samples from the repository of known cases
focuses on learning similar patients. Due to this, iCARE will excel in scenarios where patients
with similar profiles benefit from similar recommendations. Given an incoming patient with
available features and a selection of potential features to be recommended, iCARE will be able to
recommend the best feature given that the available features are informative of the predictiveness
of the added features. For example, if in the dataset, groups of people aged below 50 benefit
from additional feature A, and those above 50 benefit from additional feature B, iCARE will be
able to capture this information from age (i.e., available feature) and recommend the appropriate
feature (i.e., feature A or B) to an incoming patient that will give the best information gain.
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We created synthetic datasets 1-3 to simulate ideal scenarios and confirm our hypothesis on the
reasoning process of iCARE. Synthetic dataset 1 represents the most ideal scenario,
characterized by two additional features exhibiting predictive power over different regions of the
initial features value space, as shown in Figure 3. Conversely, synthetic dataset 2 illuminates the
necessity for sample-weighted inference (as indicated by LW) when confronted with non-linear
predictive regions highlighted in Figure 424,25. Furthermore, synthetic dataset 3 serves as a
testament to the robustness of our framework, particularly in scenarios involving overlapping
regions on the initial features value space that can be seen in Figure 5.

Figure 3: Synthetic dataset 1. Two 2D scatter plots displaying the relationship between the
initial feature (x-axis) and the added feature (y-axis). The red dots represent negative samples
(e.g., sick patients), while the blue dots represent positive samples (e.g., healthy patients). The
left plot depicts added Feature 1, exhibiting predictive power for Initial Feature < 0·5, while
random noise is observed in the shaded area above Initial Feature > 0·5. The right graph
illustrates added Feature 2, demonstrating predictive power for Initial Feature > 0·5, with
random noise observed in the shaded area below Initial Feature < 0·5.
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Figure 4: Synthetic dataset 2. Two 2D scatter plots, similar to Figure 3, showcase the
relationship between the initial feature (x-axis) and the added feature (y-axis). The red dots
represent negative samples (e.g., sick patients), while the blue dots represent positive samples
(e.g., healthy patients). Notably, the predictive area in this dataset exhibits a non-linear pattern,
suggesting a more complex relationship between the features.

Figure 5: Synthetic dataset 3. 2D scatter plots resembling Figure 3, depicting the relationship
between the initial feature (x-axis) and the added feature (y-axis). The red dots represent
negative samples (e.g., sick patients), while the blue dots represent positive samples (e.g.,
healthy patients). Notably, the left graph demonstrates predictive power for X < 0·7, while the

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.24.24310941doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.24.24310941
http://creativecommons.org/licenses/by-nd/4.0/


right graph showcases predictive power for X > 0·3. The green-shaded region highlights an
overlapping area (0·3 < X < 0·7) where both features possess equal predictive power.

We created synthetic Datasets 4-5 to simulate hypothetical non-ideal scenarios. Synthetic Dataset
4, depicted in Figure 6, simulates a non-ideal scenario where both additional features are equally
useful (i.e., the available feature does not give information about the predictiveness of the
additional features). Notably, both the left and right graphs showcase identical predictive regions.
This visualization emphasizes scenarios where both features share the same predictive power in
the same region. In synthetic dataset 5, represented in Figure 7, we created a scenario where only
one additional feature out of the rest is useful. This visualization emphasizes scenarios where one
feature dominates others regarding predictive strength. The iCARE framework is expected to
have similar performance to a global feature selection, highlighting no added benefit from
personalization.

Figure 6: Synthetic dataset 4. Scatter plots depicting the relationship between the initial feature
and the added feature, resembling the format of Figure 3. Notably, both the left and right graphs
illustrate identical predictive regions.
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Figure 7: Synthetic dataset 5. Each scatter plot represents a different feature's predictive power.
The first scatter plot demonstrates strong predictive capability, while the other two plots depict
features with limited predictive utility. This visualization underscores the scenarios where one
feature overpowers the other features.

3.2. Performance on Synthetic Dataset
In Figure 8, we provide the comparison between the different approaches on the synthetic
datasets 1-3. In synthetic dataset 1, where two additional features exhibit predictive power over
distinct regions, the iCARE frameworks are expected to perform significantly better than the
Global frameworks. As expected, we obtain statistically significant (⍺=0.05) differences in
iCARE versus Global metrics and iCARE+LW versus Global+LW metrics using t-test, with the
iCARE performing better than its Global counterpart, confirming the framework's capability to
provide the best recommendation when additional features' predictive capabilities are clearly
distinguishable given the initial feature values. Similarly, in synthetic dataset 2, characterized by
non-linear predictive regions, the iCARE frameworks, especially when incorporating locally
weighted inference (LW), are expected to outperform their non-LW counterparts. Statistical
significance (⍺=0.05) across all comparisons can be found on our t-test, notably for iCARE
versus iCARE+LW and Global versus Global+LW metrics, unseen in synthetic datasets 1 and 3.
Furthermore, in synthetic dataset 3, featuring overlapping regions with identical predictive power
for both features, both iCARE frameworks are expected to perform slightly better than the
Global framework. The actual results align with this expectation, demonstrating the framework's
ability to make accurate recommendations even in cases where features exhibit similar predictive
capabilities. Similar to synthetic dataset 1, statistical significance (⍺=0.05) can be observed on
our t-test when comparing iCARE with the Global framework. These results confirm the
hypothesis of our framework's ability to give the best recommendation in cases where the
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additional features' predictive capabilities can be clearly distinguished, given the initial feature
values.

Figure 8: Performance summary of Synthetic Dataset 1 - 3. Comparison of accuracy (left) and
area under the curve (AUC) (right) across three synthetic datasets. Each bar group represents a
dataset, with values indicated for both global and local weighted metrics. For Dataset 1, the
accuracy stands at 0·689, 0·667, 0·999, 0·999 with an AUC of 0·639, 0·814, 0·999, 1·0. In
Dataset 2, the accuracy stands at 0·551, 0·767, 0·632, 0·891 with an AUC of 0·584, 0·850,
0·687, 0·953. Dataset 3 accuracy stands at 0·914, 0·894, 0·998, 0·998, along with an AUC of
0·888, 0·974, 0·996, 0·998. This comparison highlights variations in performance across the
different synthetic datasets that represent ideal scenarios.

In Figure 9, we provide the comparison between the different approaches on the synthetic
datasets 4-5. For synthetic dataset 4, characterized by features sharing the same predictive power
in the space of the initial feature value, we expected little to no difference when comparing
iCARE versus Global frameworks. The actual outcome confirms this expectation, as both
iCARE and Global frameworks exhibit similar performance. Similarly, for synthetic dataset 5,
where there is only one useful feature, we expected a similar outcome to synthetic dataset 4. As
predicted, the actual results show little variation between iCARE and Global frameworks. We
observed some variances in performance; however, this can primarily be attributed to the use of
locally weighted inference (i.e., LW) rather than inherent differences in the iCARE framework
itself.

Furthermore, synthetic datasets 4 and 5 revealed no statistical significance for comparisons
between iCARE and iCARE+LW versus Global and Global+LW metrics, which aligned with our
hypothesized outcomes. The complete result of the statistical test can be seen in Table 1. These
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findings further confirm the hypothesis of our framework's ability to give the best
recommendation in cases where the additional features' predictive capabilities can be clearly
distinguished, given the initial feature values.

Figure 9: Performance summary of synthetic dataset 4 - 5. Comparison of accuracy (left) and
area under the curve (AUC) (right) across Synthetic Datasets 4 and 5. Each bar group represents
a dataset with performance metrics for both global and iCARE. For dataset 4, accuracy values
obtained were 0·747, 0·810, 0·738, 0·792, and AUC values obtained were 0·781, 0·805, 0·764,
0·787. For dataset 5, accuracy values obtained were 0·811, 0·740, 0·774, 0·742, and AUC values
obtained were 0·790, 0·815, 0·799, 0·811. These results reveal two distinct scenarios where
iCARE learning fails to substantially improve global learning regarding feature addition and
inference.

Table 1: Statistical Test Results of Synthetic Dataset 1 - 5

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

iCARE
vs

Global

0·310
***

0·360
***

0·082
***

0·103
***

0·084
***

0·108
***

-0·009 -0·017 -0·036
**

0·009

iCARE
+LW vs
Global+
LW

0·332
***

0·186
***

0·124
***

0·102
***

0·104
***

0·023
***

-0·018 -0·018 0·002 -0·004
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iCARE
vs

iCARE
+LW

0·000 -0·001 -0·259
***

-0·266
***

0·000 -0·002 -0·054
***

-0·023 0·032
**

-0·013

Global
vs

Global+
LW

0·022 -0·176
***

-0·217
***

-0·267
***

0·021
*

-0·087
***

-0·064
***

-0·025 0·071
***

-0·025

The table shows the differences in accuracy (ACC) and area under the curve (AUC) metrics
among different approaches. Specifically, it compares iCARE versus Global, iCARE+LW versus
Global+LW, iCARE versus iCARE+LW, and Global versus Global+LW. Statistical significance
is denoted by * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. The p-values used for testing
the statistical significance above are the Holm-adjusted p-values to correct for multiple
comparisons.

3.3. Performance on Real-World Dataset
In extending our evaluation to real-world scenarios, we scrutinize the performance of our
framework on datasets representative of clinical contexts. Specifically, we assess its effectiveness
in predicting outcomes in early diabetes and heart failure datasets, leveraging a range of
personalized recommendations of features to enhance predictive accuracy and AUC metrics. In
the experiment on the early diabetes dataset using three initial features, we observe that
personalization leads to increased Accuracy and AUC, as seen in Figure 10. The superiority of
iCARE models is shown to be statistically significant, as shown in Table 2. The three initial
features that were used in this experiment are age, gender, and obesity status. Using a global
approach, the feature that is recommended the majority of the time is polydipsia (i.e., excessive
thirst; 75/100 iterations). It suggests that, on average, polydipsia might be more informative
across the entire population when combined with age, gender, and obesity status. However, when
using iCARE, two features are recommended: Polyuria (Frequent Urination) and Polydipsia. On
average, Polyuria is recommended for 68% of patients, and Polydipsia is recommended for 32%
of patients. The prominence of the Polyuria recommendation suggests that Polyuria might
provide more relevant or discriminative information for certain patients. Polydipsia and Polyuria
are both classic symptoms of diabetes.26,27 The framework’s recommendation pattern suggests
variability in symptom presentation and importance among different patients. The higher
recommendation of Polyuria suggests that for many patients, this symptom may be an earlier or
more pronounced indicator of diabetes than Polydipsia.
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Figure 10: Early Diabetes dataset performance summary. This figure illustrates the mean
performance of the early diabetes dataset on different feature spaces on accuracy and AUC
metrics, with global and local perspectives represented by blue/orange and green/red lines,
respectively. Error bars at each data point represent the standard deviation from the mean. The
line graphs the maximum number of features towards the ceiling, represented by the purple line.
The ceiling model represented an ML model trained on all features.

Table 2: Early Diabetes Dataset Performance Statistical Test

3 6 9 12 14

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

iCARE
vs

Global

0·037
***

0·030
***

0·020
***

0·025
***

0·018
***

0·011
**

0·011
**

0·008
**

0·014
**

0·009
**

iCARE
+LW
vs

Global
+LW

0·033
***

0·031
***

0·025
***

0·013
***

0·007 0·011
***

0·010
*

0·008
**

0·011
**

0·007
**

iCARE
vs

iCARE
+LW

0·020
***

0·009
*

0·003 -0·039
***

-0·015
**

-0·028
***

-0·011
*

-0·009
***

-0·016
***

-0·011
***
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Global
vs

Global
+LW

0·017
***

0·009
*

0·008 -0·051
***

-0·025
***

-0·028
***

-0·012
**

-0·010
**

-0·019
***

-0·013
***

The table shows the differences in accuracy (ACC) and area under the curve (AUC) metrics
among different approaches applied to the early diabetes dataset, where the first row represents
the number of initial features. Statistical significance is denoted by * for p < 0.05, ** for p <
0.01, and *** for p < 0.001. The p-values used for testing the statistical significance above are
the Holm-adjusted p-values to correct for multiple comparisons.

In contrast, the iCARE framework does not yield substantial benefits on the heart failure dataset,
as shown in Figure 11. We observed overlapping error bars in both accuracy and AUC metrics
across different feature spaces in this dataset. In some instances (e.g., accuracy for the number of
features = 4), iCARE models even underperform compared to their Global counterparts,
highlighting the limitations of the approach in specific contexts. The statistical test in Table 3
shows that this difference in performance is statistically significant. This finding highlights a
similar outcome to synthetic dataset 4, where it shows no added benefit when the additional
features to be recommended have no distinct predictive capabilities, as well as synthetic dataset
5, where only one additional feature is useful as seen in synthetic dataset 5.

Figure 11: Heart failure dataset performance summary. This figure presents a comprehensive
overview of mean accuracy and AUC metrics across various feature spaces on the heart failure
dataset, offering insights into global and local perspectives depicted by blue/orange and
green/red lines, respectively. Error bars show the standard deviation, while convergence towards
the maximum features underscores notable trends.
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Table 3: Heart Failure Dataset Performance Statistical Test

2 4 6 8

ACC AUC ACC AUC ACC AUC ACC AUC

iCARE
vs

Global

0·001 -0·005 -0·007 -0·016 0·001 0·019 -0·002 0·007

iCARE+
LW vs
Global+
LW

0·008 0·032
***

-0·028
***

-0·007 0·014 0·029
**

0·001 0·007

iCARE
vs

iCARE+
LW

0·001 -0·002 0·016 -0·014 -0·006 -0·025
*

0·006 0·006

Global
vs

Global+
LW

0·008 0·036
***

-0·005 -0·005 0·006 -0·015 0·009 0·007

The table shows the differences in accuracy (ACC) and area under the curve (AUC) metrics
among different approaches applied to the heart failure dataset, where the first row represents the
number of initial features. Statistical significance is denoted by * for p < 0.05, ** for p < 0.01,
and *** for p < 0.001. The p-values used for testing the statistical significance above are the
Holm-adjusted p-values to correct for multiple comparisons.

4. Discussion

4.1. Importance of Sample Weighing
Sample weighing was utilized in the sample calculation model to create a weighted logistic
regression model. This weighted model emphasizes patients with characteristics similar to those
of incoming patients. The weighing strategy allows SHAP to be locally sensitive to the context
of the current incoming patient, enabling feature importance rankings to be customized to the
individual context rather than global trends. Sample weights have previously been used to
address various challenges. For instance, a recent study proposed a weighted undersampling
scheme for Support Vector Machines (SVM) to improve classification performance in dealing
with imbalanced data sets.28 This method assigned different weights to the majority of samples
based on their distance to the hyperplane, akin to how iCARE assigns weights based on patient
similarity. Another research study focused on personalized diagnosis for Alzheimer's Disease,
utilizing subject-specific classifiers iteratively refined through reweighting of training data.29
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Although not aimed at addressing the feature recommendation problem, the rationale for
employing sample weighting remains relevant, as it serves to prioritize key subjects. Overall,
incorporating sample weights in iCARE enables personalized feature rankings that can navigate
diverse patient populations and complex clinical scenarios.

4.2. SHAP as Feature Importance Measure
Within the iCARE framework, SHAP values play a pivotal role in selecting the most important
features for personalized feature addition. We use SHAP to quantify the importance of individual
features within the locally trained logistic regression model. By assigning importance values to
each feature for a specific prediction, SHAP facilitates understanding the factors influencing the
model's output. In the context of iCARE, SHAP integration with a weighted classifier presents a
novel approach to personalized feature recommendation. This combination allows for the
prioritization of features based on their impact on the current patient's prediction. While SHAP
has been previously employed to measure feature importance, its integration within the
framework of a weighted classifier for personalized recommendation distinguishes iCARE as a
novel and impactful approach to healthcare decision support systems.30

4.3. Preliminary Examination of Dataset
As shown in the experiment, not every dataset requires personalization. The heart failure dataset
in our experiment does not benefit from our iCARE framework. We used two procedures to
determine whether a dataset is suitable for personalization. The fastest dataset analysis method is
to use SHAP value analysis on a ceiling model. If the analysis reveals multiple important
features that contribute to the model's predictions, it suggests that the dataset may benefit from
personalization. While the presence of multiple important features increases the likelihood of
benefiting from personalization, it does not guarantee it. Another approach involves leveraging a
pool of known cases to cross-validate the performance of the personalized model, similar to how
we test our framework. While this method is slower compared to SHAP value analysis, it
directly assesses the performance of personalized models through statistical testing on
performance metrics accuracy and AUC values. This method confirms whether personalization is
beneficial and allows us to predict how much performance gain can be expected from
personalization.

4.4. Limitations and Future Directions
The iCARE framework has several limitations. First, it currently lacks a mechanism to determine
whether a dataset warrants personalized feature recommendation automatically. This reliance on
a naive dataset evaluation approach necessitates multiple experimental iterations, which may not
be feasible in all scenarios. Future work could focus on developing robust criteria or indicators to
assess the need for personalization more efficiently. Second, iCARE involves training a locally
weighted model for every incoming patient, which may not be suitable for machine learning
models requiring extensive training time or scenarios necessitating numerous rapid inferences.
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iCARE also requires a pool of known cases with a complete set of features to provide
individualized feature recommendations. Lastly, iCARE assumes that the initial features
available are informative of the predictive space for potential additional features, an assumption
that may not always hold true. Future research should explore methods to comprehensively
assess the informativeness of initial features to enhance the framework's effectiveness.
Addressing these limitations and advancing research in these directions could further enhance the
capabilities and applicability of the iCARE framework, ultimately contributing to improved
personalized clinical assessments and decision-making in healthcare settings.

5. Conclusion

The iCARE system addresses the challenge of personalized feature selection in clinical
assessments by dynamically tailoring the selection of clinical tests based on each patient's unique
characteristics. The framework excels over a global feature selection framework in predictive
accuracy, especially in cases where the initial features are informative of the predictiveness of
the added features. Although personalization might not be needed in all cases, iCARE provides a
flexible framework that can be applied using other machine learning algorithms. We believe that
with further testing, this general framework can be applied in various fields, extending its utility
beyond clinical assessments.
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