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Abstract: Adiponectin is the most abundant plasma adipokine, and is well known for its role in
energy homeostasis and cardiac protection. In humans with dilated cardiomyopathy, myocardial
adiponectin protein expression is reduced compared to normal hearts and has been implicated
in the pathology of cardiomyopathy. Serum adiponectin levels are often conflicting, with higher
levels associated with poor survival in humans with congestive heart failure (CHF). We evaluated
adiponectin serum concentrations and myocardial protein expression in dogs with naturally occurring
myxomatous mitral valve disease and CHF. We compared the findings to active and hibernating
brown bears as bears are adapted to endure an extreme period of low cardiac output during their
annual hibernation. Bears exhibited largely the active high-molecular weight (HMW) versus the
low-molecular weight isoforms of myocardial adiponectin (HMW:LMW = 6.3) during both the active
period and hibernation, while healthy dogs exhibited a more balanced mix of isoforms. Dogs with
CHF expressed predominately HMW isoforms of adiponectin (HMW:LMW = 12.5), appearing more
similar to bears. In contrast to humans, serum adiponectin was significantly lower in dogs with
CHF and lowest levels in the severest CHF class. In both dogs and bears, myocardial adiponectin
was expressed independent of circulating adiponectin concentrations, suggesting a local regulatory
mechanism within the heart.

Keywords: low molecular weight adiponectin; high molecular weight adiponectin; chronic valvular
heart disease; endocardiosis; hibernation

1. Introduction

Adiponectin is a primarily adipose tissue-derived cytokine that plays a key role in both metabolic
and cardiac health. Adiponectin is the most abundant plasma adipokine, and is well known for its
role in energy homeostasis and insulin sensitivity [1–3]. It is an essential protein for animals living
in highly seasonal environments which must rely on annually switching from lipogenic to lipolytic
states [4–7]. In contrast to other adipokines, serum adiponectin is inversely related to visceral obesity
in humans [1,8]. Clinically, serum adiponectin concentrations are also inversely related to the risk
of developing type II diabetes and cardiovascular disease, but directly related to decompensated
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congestive heart failure (CHF) [1,8–13]. Thus, these seemingly conflicting results are generating much
interest into the systemic modulatory effects of this adipokine.

Adiponectin regulates metabolism in part by promoting the phosphorylation and activation of
AMP-activated protein kinase (AMPK) via the AdipoR1 receptor in skeletal muscle, adipose, and
endothelial cells where it regulates glucose and lipid metabolism. The AdipoR2 receptor is expressed
primarily in the liver, and its activation leads to increased insulin sensitivity [10,14–16]. The third
adiponectin receptor—T-cadherin—is expressed predominantly in the heart and vasculature, and
produces diverse myocardial and vascular protective effects, such as suppression of myocardial
remodeling, and reduction of reactive oxygen species and pro-inflammatory cytokines [17,18]. There
are multiple oligomeric forms of adiponectin that affect its activity. The isoforms are grouped
into low-molecular weight (LMW, predominately in serum) and high-molecular weight (HMW,
predominantly intracellular) [19,20]. Levels of the HMW isoform have better correlations with
insulin sensitivity than total adiponectin, suggesting that the HMW isoform is the active form [21–25].
T-cadherin exclusively binds with HMW adiponectin. Studies in rodents deficient in T-cadherin
have demonstrated pathologic cardiac hypertrophy, and worsening of inflammation and myocardial
reperfusion injury [17]. Additional studies in animal models have demonstrated that increased
expression of adiponectin can improve systolic function, inhibit protein synthesis, and retard cardiac
remodeling [25–28]. In humans with dilated cardiomyopathy (DCM), myocardial adiponectin protein
expression is reduced compared to normal hearts, and has been implicated in the pathology of
cardiomyopathy [29]. Adiponectin is produced by the myocardium, and is released in proportion to
the extent of left ventricular dysfunction which may in part explain the increased serum levels seen in
humans with CHF [30].

Heart failure is no longer considered to be a single organ disease, but is now seen as a
complex multisystem syndrome involving hemodynamic, neurohormonal, and metabolic alterations.
Adiponectin has recently emerged as an important metabolic component [2,31]; however, interpretation
of serum adiponectin concentration in human heart disease has been conflicting. On one hand, higher
levels of serum adiponectin in the general population are considered healthy and are associated
with reduced risk of diabetes mellitus, insulin resistance, systemic hypertension, and cardiovascular
events [1,13,32–34]. On the other hand, low adiponectin levels are observed in heart disease without
CHF, while the highest concentrations are seen in patients with CHF from any cause and are associated
with poor survival. Along with the knowledge of adiponectin’s reputed beneficial effects on the
heart, this U-shaped relationship of serum adiponectin in cardiac disease has been designated as
“the adiponectin paradox” [34,35]. It is unclear if adiponectin has a negative impact on cardiac
pathophysiology or if levels may rise to mitigate robust neurohormonal and metabolic impairment
in CHF.

We were curious as to the roles of adiponectin in non-human species that manifest cardiac disease
and CHF compared to species that might be considered to endure a natural hemodynamic “stress”
of extremely low cardiac output. We compared naturally occurring canine CHF due to myxomatous
mitral valve disease (MMVD) to hibernating brown bears (Ursus arctos horribilis). The reduction in
cardiac output of these two conditions has been previously well documented. We felt it could be
valuable to contrast native compensatory processes of disease manifestation to a natural physiologic
process, as oftentimes the naturally adaptive response may shed light on the potential mechanisms
underpinning the maladaptive response. Additionally, bears and dogs are close relatives in the
Carnivora clade of mammals, and in general adiponectin appears to be well-conserved across species.
We chose to compare canine MMVD (also known as endocardiosis or chronic valvular heart disease),
as it is the most common acquired heart disease in dogs that presents for management of CHF.
The prevalence of MMVD is high in older smaller breed dogs, with up to 85% showing some evidence
of the disease at necropsy by 13 years of age [36,37]. The cause of MMVD is unknown, but the
age of onset appears to have an inherited component in some dog breeds [38,39]. Bears are well
known for their annual hibernation, where heart rate and cardiac output are reduced to 25% of the
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active season and maintained at this level for 4–6 months without feeding [40–43]. Hibernation is a
natural physiological condition, and thus cardiovascular compensatory adaptations must occur for the
myocardium to remain healthy and efficient during a long period of extremely low cardiac output. We
hypothesized that active HMW myocardial adiponectin would increase in bears during hibernation if
its presence is cardioprotective and associated with an altered myocardial workload. We hypothesized
that myocardial HMW adiponectin would decrease and serum adiponectin would increase in dogs
with CHF, reflecting decompensated CHF status similar to humans. Comparing a natural bradycardic
state in bears that would create cardiac failure in other animals to a pathologic cardiac state in dogs
may highlight adaptive processes.

2. Materials and Methods

2.1. Dogs

Healthy dogs (n = 18) and dogs with CHF (n = 18) were used to assess serum adiponectin. Dogs
were included for sampling in the healthy group if the dog had no reported signs of systemic or
cardiopulmonary illness and had a normal cardiovascular examination. The breeds of dogs included
were: Beagle, Chihuahua (2), Maltese, Miniature Australian shepherd (2), Miniature Dachshund (2),
Norfolk terrier, Pug, and eight mix-breeds. These dogs ranged in age from 4–12 years (mean weight:
8.7 kg). Dogs in the CHF group presented with clinical signs consistent with pulmonary edema and
were ultimately diagnosed with decompensated MMVD by radiography and echocardiography. Dogs
included for sampling in this study were classified into stage C or D (nine in each stage) according
to the guidelines for the diagnosis and treatment of MMVD [36]. The breeds of CHF dogs included
were: American Cocker Spaniel (2), Beagle, Brittany, Brussels Griffon (2), French Bulldog, Maltese (2),
Miniature Schnauzer (2), Pembroke Welsh Corgi, Silky Terrier, Toy Poodle, and four mix-breeds. These
dogs ranged in age from 9–14 years (mean weight: 9.4 kg). Blood samples were collected, spun, and
stored at −80 ◦C.

Canine left ventricular (LV) myocardium was collected from six normal dogs euthanized for
reasons unrelated to this study and six dogs that died or were euthanized due to CHF caused by
MMVD. The normal dogs ranged in age from 4–9 years and were all mixed-breed (mean weight:
14.3 kg).

The normal dogs did not have an echocardiogram performed prior to death, but no gross cardiac
abnormalities were noted on necropsy. The CHF dogs breeds were: Cavalier King Charles Spaniel
(3), Miniature Dachshund, Toy Poodle, and terrier-mix. The CHF dogs ranged in age from 9–14 years
(mean weight: 9.3 kg). All samples were snap frozen in liquid nitrogen within 30 min of death, and then
stored at −80 ◦C until use. Dogs were client-owned, and owner consent was required for all sampling.

2.2. Bears

Sixteen brown bears (Ursus arctos horribilis) were used to assess serum adiponectin (4 males,
12 females). The age range was 2–22 years. All animals were housed at the Washington State University
Bear Research, Education and Conservation Center. The animals were maintained according to the
Bear Care and Colony Health Standard Operating Procedures approved by the Washington State
Institutional Animal Care and Use Committee (Animal Subject Approval Form #3054) based on the
U.S. National Institutes of Health guidelines. Hibernation began in early November, and feeding
resumed the second week of March. Bears hibernated in pairs in unheated pens with continuous access
through a small door to an outdoor area. The dens were monitored with surveillance cameras (Silent
Witness, Surrey, BC, Canada) which confirmed that bears were recumbent for the hibernation period.
Bears were anesthetized with tiletamine HCl/zolazepam HCl (5 mg/kg during the active phase and
2 mg/kg during hibernation) given intramuscularly. Due to the unique seasonal physiology of this
species, blood samples were collected in serum tubes monthly throughout the year, spun and stored
at −80 ◦C within 1 h. Body weights were recorded monthly from April to November in ten bears to
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correlate weight gain with circulating adiponectin levels in this species. Percent monthly weight gain
was recorded to correct for the wide individual variation in size of bears.

Left ventricular (LV) myocardium was collected from 12 grizzly bears (6 male, 6 female)
euthanized for reasons unrelated to this project, generally the completion of ecology-related projects.
The bears were considered healthy at the time of euthanasia. The age range was 3–22 years. Tissue
collection was during active and hibernation periods (n = 6 for each group). The active period
tissue collection was during the months of June, July, and August. The hibernation collection period
was during the months of December and January. All samples were snap frozen in liquid nitrogen
within 30 min of death, and then stored at −80 ◦C until use. All animal protocols were approved
by Washington State University’s Institutional Animal Care and Use Committee (Animal Subject
Approval Form #3054).

2.3. Serum Adiponectin

Circulating adiponectin concentrations were quantified using a Mouse/Rat Adiponectin ELISA
kit (B-Bridge International Inc., Mountain View, CA, USA) that has been previously validated in dogs
and bears [44]. We chose to use one kit/method for both species versus using a canine ELISA kit which
have been validated for dogs but not for bears. Additionally, we avoided using two different test kits,
which could introduce assay variability.

2.4. Western Blot Protocol

Left ventricular free wall myocardium samples were used to evaluate protein levels of adiponectin
by Western Blot. Approximately 150 mg of tissue was frozen in liquid nitrogen and ground to a fine
powder using a mortar and pestle. The tissue was transferred to a 7 mL tissue homogenizer and
allowed to temper in a −20 ◦C freezer for 30 min, then homogenized in 1 mL Pierce IP lysis buffer
with 10 µL Halt Protease Inhibitor cocktail (Thermo Fisher Scientific, Rockford, IL, USA). The tissue
lysate was transferred to a 1.5 mL Eppendorf tube and centrifuged at 13,000 × g at 4 ◦C for 10 min.
The supernatant was collected, and protein concentration determined by the bicinchoninic acid assay
(BCA) method and stored at −80 ◦C until use.

Velocity sedimentation was used to separate the adiponectin isomers as previously described [45].
Five-hundred micrograms of protein was diluted in 10 mM HEPES, pH 8, 125 mM NaCl, and layered
on a 5–20% sucrose gradient in 10 mM HEPES, pH 8, 125 mM NaCl. The gradient was spun on an
ultracentrifuge at 55,000 rpm for 4 h at 4 ◦C. Fractions were removed in 150 µL aliquots (labeled
fractions 1–14), taken from the top of the gradient, and stored at −80 ◦C until use.

Ten microliters of each fraction was added to 6× Laemmli buffer and heated to 95 ◦C for 5 min to
denature the protein. Protein samples were loaded onto a precast gel (12% Tris-HCL ReadyGel, Bio-Rad
Laboratories, Inc., Hercules, CA, USA) along with a protein standard (Precision Plus Protein Standards,
Bio-Rad Laboratories, Inc., Hercules, CA, USA) and run at 150 V for one hour in 1× Tris/Glycine/SDS
(TGS, Bio-Rad Laboratories, Inc., Hercules, CA, USA). The protein was then transferred to 0.2 µm pore
nitrocellulose membrane in 20% methanol in 1× TGS transfer buffer for 3 h at 200 mA. The membrane
was blocked in 5% nonfat dry milk in Tris Buffered Saline with 0.05% Tween 20 (TBS-T) at room
temperature for one hour. The membrane was washed three times for 3 min with TBS-T and primary
antibody 1:1000 rabbit anti-adiponectin (Sigma-Aldrich, St Louis, MO, USA) and 1:1000 anti-adipoR1
(Thermo Fisher Scientific, Rockford, IL, USA) diluted in 1% bovine serum albumin (BSA) in TBS-T was
placed on the membrane and allowed to incubate overnight at 4 ◦C on a rocker. The membrane was
washed five times in TBS-T for 5 min and then allowed to incubate in secondary antibody (1:20,000
Immun-Star Goat anti-rabbit HRP conjugate and 1:10,000 Precision Protein StrepTactin-HRP conjugate,
Bio-Rad Laboratories, Inc., Hercules, CA, USA) diluted in TBS-T at room temperature for one hour
on a shaker. A commercial kit (Immun-Star WesternC Chemiluminescent kit, Bio-Rad Laboratories,
Inc., Hercules, CA, USA) was used according to manufacturer’s instructions for the detection of
secondary antibody. Images were captured using a gel imaging system (ChemiDoc XRS Imager,
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Bio-Rad Laboratories, Inc., Hercules, CA, USA). Band density targeting adiponectin was determined
for fractions obtained from sucrose gradients and plotted for each sample. Fractions 3–6 contained the
LMW isoforms of adiponectin, and fractions 9–12 contained the HMW isoforms (Figure 1).Vet. Sci. 2017, 4, 35 5 of 11 
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Figure 1. Identification of myocardial adiponectin fractions from velocity sucrose gradient
sedimentation in a healthy dog, dog with congestive heart failure (CHF), and an active bear. Fractions
3–6 contain the low-molecular weight form (LMW) and 9–12 contain the high-molecular weight form
(HMW).

2.5. Statistical Analysis

Analysis was performed using commercial statistical software (JMP SAS, Cary, NC, USA). For
serum samples and Western blot samples, statistical analysis was performed using a decision tree.
For paired data (measured on the same animal), the normality of the protein differences was assessed
using the Shapiro–Wilk test. If significant at a level of 0.05, the nonparametric Wilcoxon signed
rank test was used. If not significant, the paired t-test was used. Both tests were conducted to
evaluate differences in protein between hibernating and active bears, and healthy dogs and dogs with
CHF. Paired-samples t-tests have been shown to be appropriate with extremely small sample size,
specifically when the within-pair Pearson coefficient is high [46]. For unpaired data, equal variances
were assessed using Levene’s test, and normality of residuals were assessed using the Shapiro-Wilk
test. If normality was achieved, then a two-sample t-test with either equal variances (Levene’s test not
significant) or unequal variances (Levene’s test significant) was used. If normality was not achieved,
the nonparametric Wilcoxon rank-sum test was used. A p-value of <0.05 was considered significant.
All data are presented as mean ± standard deviation.

3. Results

Mean serum adiponectin concentration was significantly higher in healthy dogs
(12.1 ± 2.9 µg/mL, n = 18) than in dogs with all classes of CHF (8.4 ± 2.6 µg/mL, n = 18,
p = 0.001; Figure 2).

The serum concentration of adiponectin in bears varied seasonally, and was significantly lower
during hibernation (November–February, 2.6 ± 0.8 µg/mL) than during the summer active period
(April–August, 6.5 ± 0.5 µg/mL) (Figure 3). Its concentration increased dramatically in September
(12.1 ± 1.5 µg/mL) after rapid weight gain occurred in August (fall hyperphagia). Adiponectin
declined rapidly in October and November.

Healthy dogs expressed similar myocardial concentrations of HMW (10.8 ± 3.4 µg/mL) and
LMW (9.2 ± 2.9 µg/mL, p = 0.46) adiponectin isoforms, whereas CHF dogs expressed significantly
greater concentrations of HMW isoforms (18.8 ± 2.6 µg/mL, p < 0.001) and significantly lower
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concentrations of LMW isoforms (1.5 ± 0.2 µg/mL, p = 0.005) adiponectin (Figures 4 and 5). The ratio
of HMW:LMW adiponectin expression in the healthy dog myocardium was 1.2, whereas the ratio of
HMW:LMW adiponectin expression in dogs with CHF was 12.5. The increase in myocardial HMW
adiponectin in CHF dogs was contrary to the decreasing circulating serum concentration in this group.
Bears expressed a higher concentration of HMW isoforms in both the active: (19.5 ± 3.8 µg/mL)
and hibernation states (18.9 ± 2.6 µg/mL) relative to LMW isoforms (active: 3.1 ± 1.8 µg/mL,
hibernation: 3.0 ± 1.6 µg/mL, p ≤ 0.0001; Figures 4 and 5), and the ratio of HMW:LMW isoforms
did not change seasonally (p = 0.93). Cardiac adiponectin protein expression was independent of
circulating adiponectin seasonal changes.
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Figure 3. Monthly measurement of serum adiponectin compared to percent weight gain in 16 brown
bears. Adiponectin data presented as means ± SD. The concentration of adiponectin mirrored weight
gain through the active season (April–October) and peaked as rapid weight gain occurred in August
and September. Serum adiponectin was significantly lower during hibernation (November–February)
relative to the summer active period.
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1 
 

 Figure 4. Pooled LMW and HMW fractions of myocardial adiponectin protein in six active bears,
six healthy dogs, and six dogs with congestive heart failure (CHF). Fractions 3–6 contain the LMW
isoforms of adiponectin and fractions 9–12 contain the HMW isoforms. Bears expressed 6.3 times
greater concentration of HMW isoforms relative to LMW isoforms in both active period and hibernation.
Healthy dogs expressed similar amounts of adiponectin isoforms, but dogs with CHF expressed
12 times greater concentrations of the HMW isoforms. * p < 0.0001; ** p = 0.005; t p < 0.001.
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Figure 5. Band density targeting myocardial adiponectin was determined for fractions obtained
from sucrose gradients and plotted for each group. Fractions 3–6 contain the LMW isoforms of
adiponectin and fractions 9–12 contain the HMW isoforms. All bears expressed a higher concentration
of HMW isoforms relative to LMW isoforms of adiponectin, and no significant difference was found
between the active (n = 6) and hibernating bears (n = 6). Healthy dogs (n = 6) expressed similar
myocardial concentrations of LMW and HMW adiponectin isoforms, whereas CHF dogs (n = 6)
expressed significantly greater concentrations of HMW relative to LMW adiponectin.
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4. Discussion

The healthy dog myocardium expressed similar concentrations of HMW versus LMW adiponectin
proteins, while CHF dogs expressed predominately the HMW isoforms (more than 12 times the LMW
isoforms). The CHF dogs mirrored the bears’ myocardial adiponectin expression, as bears exhibited a
predominance of HMW adiponectin in both the active and hibernating seasons (Figures 4 and 5). High
molecular weight adiponectin is the more active form, and could serve as a compensatory response
for myocardial pathology in the dog. Animal model studies have demonstrated that increased
expression of myocardial adiponectin can improve systolic function, inhibit protein synthesis, and
retard cardiac remodeling [25–28]. As such, HMW adiponectin may be compensatory or protective in
dogs with MMVD. In humans with DCM, myocardial adiponectin expression is reduced compared to
normal individuals, independent of serum concentrations, implicating adiponectin in the pathology
of the disease [29]. Since cardiomyocytes synthesize and secrete adiponectin, and blockage of
protein secretion induces upregulation of adiponectin receptors, this suggests the existence of an
auto/paracrine regulation within the heart [29,30]. It is unclear why myocardial adiponectin expression
is increased dogs with CHF due to MMVD compared to the decrease seen in humans. The reason
may be linked to a species-specific physiologic response or due to the different type of cardiac
condition evaluated. Myxomatous mitral valve disease is a condition that causes volume overload and
compensatory eccentric hypertrophy of otherwise normal cardiomyocytes, whereas DCM is a primary
dysfunction of the cardiomyocyte [29,36]. A dysfunctional response may be more likely to result from
primary muscle defect such as DCM.

In addition, adiponectin expression in humans with cardiac disease may be confounded by high
body mass index or type II diabetes, as there are more clear effects on adiponectin in humans with
these conditions than in dogs [1,15,47,48]. High molecular weight adiponectin is also predominately
expressed in the bear. Brown bears may need to maintain HMW adiponectin, as they have dramatically
reduced cardiac output during hibernation, have evolved to accumulate large fat deposits in the fall,
and subsequently switch from a lipogenic to lipolytic state as they enter hibernation [5]. In both the
bear and dog, myocardial adiponectin is expressed independent of circulating adiponectin levels
suggesting a local regulatory mechanism within the heart.

In contrast to humans, dogs with CHF had significantly reduced serum adiponectin concentrations
(Figure 2). It is unknown if the discordance in serum level represents a species-related
difference, a difference in cardiac disease evaluated, increased adiponectin utilization, or perhaps a
decompensatory process. Discrepant studies suggest body condition score and neuter status of dogs
may be important in interpreting serum adiponectin levels. These factors were not accounted for in this
study. Total adiponectin is measured in serum, which consists of mainly the LMW isoform [1,19,20].
Total adiponectin could theoretically decline due to utilization of the HMW isoform and clearance
from the serum, although this has not been evaluated in dogs or humans.

Serum adiponectin in bears mirrored the change in weight gain over the summer months, then
serum levels rapidly declined once hibernation began (Figure 3). The annual requirements for massive
fat accumulation and maintenance of glucose metabolism to survive hibernation imply that adiponectin
is directly related to weight gain and differs from the negative relationship that is found in humans.
The association of adiponectin to percent body fat in active bears has been described [5]. Adiponectin is
then uncoupled with adiposity in bears during hibernation, and marks the switch to insulin resistance,
facilitating a lipolytic state [5]. In winter, bears show some similarity to humans, as very low levels of
serum adiponectin are also used as a marker of insulin resistance in humans [1]. Due to the multiple
metabolic functions of adiponectin (in heart, fat, vascular, liver, and muscle tissue), serum levels are
not likely to be an adequate marker of tissue stores in the heart. We suspect myocardial adiponectin to
be more directly related to cardiac physiology requirements and less affected by peripheral factors.
For example, cardiac expression of adiponectin is maintained during extremely low cardiac output
in hibernation (despite low circulating levels), implying that adiponectin is necessary for cardiac
metabolism during this time. Thus, the upregulation of cardiac HMW adiponectin in the dog could
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suggest that adiponectin is also desirable in CHF due to MMVD. These data underscore the value
of comparative physiology research by highlighting the value of contrasting native compensatory
responses to disease manifestation. This approach could detect potential mechanisms of pathology
or adaptation.

Study Limitations

The authors acknowledge that this is a small study with few numbers of animals, particularly
of myocardial tissues. The diseases and states compared are somewhat different between species
and patho/physiology observed. The proportion of measured serum adiponectin isoforms (LMH vs.
HMW) is unknown, as only total serum adiponectin is measured.
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