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ARTICLE INFO ABSTRACT
Keywords: Aurantii fructus immaturus (AFI) and Magnoliae Officinalis Cortex (MOC) have been used to treat
Aurantii Fructus Immaturus constipation in China for thousands of years. In this study, a mouse model of slow transit con-
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stipation (STC) was established by gavage of loperamide at a dose of 10 mg/kg bw/day for seven
days. Seventy-two mice were randomly allocated to six groups (control, STC model, 3 g/kg AFI +
MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride). A mixed aqueous extract of AFI
and MOC was administered to the STC mice at the corresponding doses from the first day of
modelling. Body weight, faecal water content, gastrointestinal transit time, and intestinal pro-
pulsion rate were evaluated. Serum levels of neurotransmitters and gastrointestinal hormones,
colonic expression of aquaporins (AQP), and interstitial cells of Cajal (ICC) were assessed using
ELISA, immunohistochemistry, and Western blot analysis. The abundance and diversity of the gut
microbiota were analysed by 16S rRNA gene sequencing. The mixed aqueous extract significantly
increased faecal water content and intestinal propulsion rate and shortened gastrointestinal
transit time in STC mice. Furthermore, the administration of AFI and MOC significantly decreased
serum vasoactive intestinal peptide (VIP), nitric oxide (NO), and somatostatin (SS) levels and
increased serum motilin (MTL) levels in STC mice. The protein expression levels of AQP3 and
AQP4 in the colon tissue of STC mice significantly decreased following AFI + MOC treatment,
whereas those of AQP9 significantly increased. Moreover, the AFI + MOC treatment led to an
increase in the number and functionality of ICCs. In addition, the relative abundances of Rumi-
nococcus and Oscillospira increased in response to the administration of AFI + MOC in STC mice.
In conclusion, the mixed aqueous extract of AFI and MOC promoted defaecation and increased
intestinal mobility in STC mice. Its mechanisms of action involve modulatory effects on neuro-
transmitters, gastrointestinal hormones, AQPs, and ICCs. AFI + MOC treatment also improved the
diversity and abundance of the gut microbiota in STC mice, particularly short-chain fatty acid-
producing bacteria, which may play an important role in its beneficial effect on constipation.
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1. Introduction

Slow transit constipation (STC) based the Rome criteria for the disorders of gut-brain interaction is a clinically common functional
disorder of the digestive system [1]. The clinical manifestations of STC include a prolonged decrease in stool frequency, lack of stool
intention, abdominal distension, anorexia, difficulty defaecating, prolonged defaecation time, and granular or bulbous stools. The
clinical management options for STC include conservative medical therapy and surgery, of which conservative treatment is used in the
majority of cases. Although a variety of drugs are available to modulate gastrointestinal (GI) motility, including dopamine receptor
antagonists (e.g. metoclopramide and domperidone), 5-hydroxytryptamine receptor agonists (e.g. cisapride, mosapride, itopride, and
prucalopride), and macrolide antibiotics (e.g. azithromycin and erythromycin), the need for safe and effective medications to regulate
GI motility and effectively treat STC remains. Chinese herbal medicine has a long history of use in the treatment of digestive system
diseases, with particular efficacy demonstrated in the treatment of constipation [2].

The traditional Chinese herbal medicines, Aurantii Fructus Immaturus (AFL; Zhishi in Chinese) and Magnoliae Officinalis Cortex
(MOC; Houpo in Chinese) have been documented in several classic prescriptions for constipation. AFI is the dried, unripe fruit of Citrus
aurantium, which is widely used to relieve flatulence and improve GI digestion [3]. Modern pharmacological studies have found that
AFI has a variety of activities, including anti-inflammatory, antitumour, and intestinal microbiota regulatory activities [4,5]. The
water decoction of AFI has been reported to significantly enhance the frequency of isolated rabbit intestinal smooth muscle con-
tractions. Furthermore, in silico analysis predicted that the flavonoids in AFI were the main active ingredients targeting the GI system
[6]. Naringin, naringenin, and neohesperidin are the three most abundant flavonoid components in AFI [7]. MOC, the dried stem bark
of Magnolia officinalis, is commonly used in traditional Chinese medicine (TCM) to treat abdominal distension and oedema [8]. MOC
has been reported to have pharmacological effects on the digestive, nervous, cardiovascular, and cerebrovascular systems, as well as
antibacterial, antitumour, analgesic, anti-inflammatory, and antioxidant effects [9]. Phytochemical studies have demonstrated that
the main components of MOC are phenols, including magnolol and honokiol, which have been reported to improve gastric emptying
and exhibit intestinal propulsive activity [10]. Magnolol is nontoxic, but its gastrointestinal absorption is poor, with an oral
bioavailability of only 4.9 % [11]. Honokiol also has minimal toxicity; intravenous administration of honokiol showed a rapid rate of
distribution and absorption with slower elimination [12]. The mixed aqueous extract of AFI and MOC has been used to treat defae-
cation problems in China for more than 2000 years and is now widely used as an important ingredient in TCM prescriptions for
constipation treatment [13,14]. In light of the TCM theory and the findings presented above, therapeutic effects of AFI and MOC on
STC can be expected.

However, the pathophysiological mechanisms underlying STC remain unclear. It is now generally accepted that the abnormal
expression of neurotransmitters and GI hormones, abnormal expression of aquaporins (AQP) in intestinal epithelial cells, and
reduction and dysfunction of interstitial cells of Cajal (ICC) play important roles in the pathogenesis of STC [15-17]. Peristalsis in the
GI tract is caused by smooth muscle contractions, which are regulated by the enteric nervous and endocrine systems. Several neu-
rotransmitters and GI hormones, including cholecystokinin (CCK), motilin (MTL), vasoactive intestinal peptide (VIP), and
glucose-dependent insulinotropic peptide (GIP) exert regulatory effects on gut motility [18]. ICCs are mesenchymal cells found within
the muscle layers of the alimentary tract. They act as mediators in the communication between the autonomic nervous system and the
smooth muscles of the GI tract. Their function is to initiate and transmit slow waves in the GI smooth muscle, which is considered to be
their primary physiological role [19]. AQPs are a family of water channel proteins distributed in the intestinal epithelial cells that play
an important role in controlling faecal water content and are associated with the development of constipation [20]. To date, thirteen
types of AQPs (AQP0-AQP12) have been identified in mammals, and several AQPs are aberrantly expressed in STC mice, including
AQP3, AQP4, AQP8, and AQP9 [21,22]. Moreover, as research on the brain-gut axis has increased over the past few years, that the
intricate link between the pathogenesis of constipation and gut microbiota dysbiosis has become increasingly evident [23].

In this study, the mixed aqueous extract of AFI and MOC was administered to mice with loperamide-induced STC. To verify the
overall effect of the mixed aqueous extracts of AFI and MOC on STC mice, we measured the changes in body weight, faecal water
content, gastrointestinal transit time, and intestinal propulsion rate. To investigate the potential mechanisms of AFI and MOC in STC
treatment, we assessed the serum levels of several neurotransmitters and hormones, including VIP, nitric oxide (NO), somatostatin
(SS), and MTL, the colonic expression of AQP3, AQP4, and AQP9, and the number and function of ICCs in the colon tissues of STC mice.
The abundance and diversity of the gut microbiota were analysed using 16S rRNA gene sequencing. Our results confirmed that mixed
aqueous extracts of AFI and MOC promoted defaecation and enhanced intestinal mobility in STC mice. Its mechanism of action in-
volves the modulation of neurotransmitters, GI hormones, AQPs, ICCs, and gut microbiota. This study provides a scientific basis for the
clinical application of AFI and MOC in the treatment of STC, and the subsequent exploration of their active components.

2. Materials and methods
2.1. Preparation of aqueous extract

AFI was purchased from Suzhou Tianling Chinese Medicine Decoction Pieces Co., Ltd. (Batch No. 210906). MOC was purchased
from Jiangsu Yabang Chinese Medicine Decoction Pieces Co., Ltd. (Batch No. 21110801). The mixed aqueous extract of AFI and MOC
(1:1 mass ratio) was prepared using a traditional aqueous extraction method [24]. The detailed steps were as follows: The dried crude
herbs of AFI and MOC were pulverised, and then 30 g of each herb was weighed and thoroughly mixed. The mixed powder was
decocted in distilled water (500 mL) for 2 h and then passed through a 2 mm stainless-steel sieve to retain most of the solids. Sub-
sequently, the remaining liquid was sterile-filtered (0.22 pm) and made up to 50 mL with distilled water to achieve a final
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concentration of 1.2 mg/mL. The aqueous extract was stored at 4 °C. Before use, the aqueous extract was dissolved in distilled water to
obtain the desired concentrations.

2.2. Constituent analysis of aqueous extract

The constituent analysis of the mixed aqueous extract of AFI and MOC was conducted using ultra-high-performance liquid chro-
matography with mass spectrometry (UHPLC-MS). After centrifugation at 13,000 rpm for 15 min, 400 pL of the supernatant was dried
and redissolved in 200 pL of 70 % methanol. Chromatographic separation was performed using an Exion LC system (AB Sciex, USA). A
Waters Acquity UHPLC HSS T3 column (2.1 x 150 mm, 1.8 pm) was used at a temperature of 35 °C. Mobile phase A was water with 0.1
% formic acid (v/v) and mobile phase B was acetonitrile [25]. The gradient was optimised as follows: 0-5 min from 3 % to 8 % B, 5-11
min from 8 % to 30 % B, 11-20 min from 30 % to 80 % B, 20-21 min from 80 % to 95 % B, and 21-27 min at 95 % B, then returned to
the initial ratio of 3 % B, and maintained for an additional 10 min for re-equilibration. The injection volume for all samples was 2 pL.
An X500B Q-TOF mass spectrometer (AB Sciex, USA) equipped with an electrospray ionisation source (Turbo Ionspray) was used for
high-resolution detection. MS detection was performed in both the negative and positive ion modes. The mass spectrometer param-
eters were as follows: gas1 and gas2, 55 psi; curtain gas, 35 psi; heat block temperature, 550 °C; ion spray voltage, —4.5 kV in negative
mode and 5.5 kV in positive mode; declustering potential, 60 V; collision energy, +35 V; and the collision energy spread was £15 V.
The mass range was set to m/z 100-1250.

2.3. Animals

Seventy-two male C57BL/6 mice, aged 6-8 weeks and weighing 20 + 2 g, were purchased from Cavans Experimental Animal Co.
(Changzhou, China; licence number: SCXK (Su) 2021-0010). All mice were housed in a barrier-level environment at the Wuxi People’s
Hospital Laboratory Animal Centre. The temperature and humidity of the housing environment were maintained at 24-26 °C and
50-70 %, respectively, with a 12-h light/12-h dark cycle. All experimental procedures were approved by the Ethics Committee of Wuxi
Hospital Affiliated to Nanjing University of Chinese Medicine and conducted in accordance with the 3R principles for the use of
laboratory animals.

2.4. Study design

According to a report by Nair and Jacob [26], the dose conversion ratio between humans and mice is 1:9. In clinical practice, the
recommended dosage for both AFI and MOC is 10 g/day for a 60-kg man. Consequently, the dosage levels for mice were determined to
be 3, 6, and 12 g/kg bw/day, corresponding to the low-, medium-, and high-dose categories, respectively. Mosapride is a prokinetic
serotonin receptor 4 (5-HT4) agonist that is used to treat constipation by enhancing GI motility [27]. The STC model was established by
administering loperamide (Xian Janssen Pharmaceutical Ltd., China) via gavage at a dose of 10 mg/kg bw/day, as previously reported
[28]. Seventy-two mice were randomly divided into six groups. The treatment groups were as follows: control, STC model, 3 g/kg AFI
+ MOGC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride (positive control). After one week of acclimatisation, mice in all
groups, except the control group, were administered loperamide by gavage for seven consecutive days. From the first day of modelling,
the three AFI + MOC groups were intragastrically administered the appropriate dose of the mixed aqueous extract of AFI and MOC
once per day. The mice in the mosapride group were administered mosapride (Guangdong Anno Pharmaceutical Ltd. China) intra-
gastrically at a dose of 2.5 mg/kg bw/day, and the mice in the control and STC model groups received equal amounts of saline.

2.5. General condition observation and weight measurement

The general condition of the mice was observed daily, including assessment of their mental state, activity levels, drinking water
consumption, and stool characteristics. The weights of mice were recorded daily at fixed times.

2.6. Measurement of faecal water content, GI transit time, and intestinal propulsion rate

On the seventh day after modelling, 36 mice (six per group) were randomly selected from each group and individually housed in
cages with free access to food and water. Following the methods of a previous study [29], faecal samples were collected within 6 h and
then dried in an oven at 60 °C for 12 h. The formula for calculating faecal water content was as follows: faecal water content (%) =
(faecal weight before drying - faecal weight after drying)/faecal weight before drying x 100 %. Following the completion of faecal
collection, all of the above mice were administered 200 pL of carbon solution via gavage, after which they were permitted to resume
their normal food and water intake. The carbon solution was prepared in accordance with previously published methods and
comprised 5 % carbon and 10 % gum Arabic [30]. GI transit time was defined as the interval between the administration of the carbon
solution and the passage of the first black stool. On the eighth day after modelling, the mice were subjected to a 12-h fast with access
only to water. Subsequently, 200 pL of the above carbon solution was gavaged. After 20 min, the mice were euthanised by cervical
dislocation and the small intestine from the pylorus to the ileocecal valve was removed as quickly and completely as possible. The total
length of the small intestine and propulsive distance of the carbon solution in the intestine were measured in a tension-free state. The
intestinal propulsion rate was calculated using the following formula [31]: Intestinal propulsion rate = carbon solution propulsion
distance/total length of the small intestine x 100 %.
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2.7. Sample collection

On the eighth day following modelling, the remaining mice (six per group) were subjected to a 12-h fast. After isoflurane
anaesthesia, blood was collected via cardiac puncture. Subsequently, the mice were sacrificed via cervical dislocation. The caecal
contents were then collected, snap-frozen, and stored at —80 °C. Colonic tissues were collected and divided into two portions. One
portion was immediately frozen at —80 °C, whereas the remaining portion was fixed with a 4 % paraformaldehyde solution. The
collected blood was centrifuged at 4 °C and 3000xg for 10 min to obtain serum, which was subsequently stored at —20 °C for further
testing.

2.8. Immunohistochemistry

After a 48-h incubation period in a 4 % paraformaldehyde solution, the colon tissue was embedded in paraffin and sectioned at a
thickness of 4 pm. Colon tissue sections were dewaxed, incubated with 3 % hydrogen peroxide to inactivate endogenous peroxidase,
and sealed with 5 % bovine serum albumin (Gibco, USA) for 1 h. The sections were incubated overnight at 4 °C with an anti-c-Kit
antibody (1:3000, ab256345, Abcam, UK) and then incubated at 37 °C with a secondary antibody (1:100, sc-2357, Santa Cruz, USA).
The colour reaction was developed using a 3,3-diaminobenzidine solution and counterstained with haematoxylin. Sections were
observed using an Olympus CX-43 microscope (Olympus, Tokyo, Japan).

2.9. Engyme-linked immunosorbent assay

The frozen serum was gradually warmed for dissolution. Serum levels of NO, SS, VIP, and MTL were quantified using enzyme-
linked immunosorbent assay (ELISA) kits (Shanghai Enzyme-Linked Biotechnology Co., Ltd., China) following the manufacturer’s
instructions. The absorbance was measured at 450 nm using a microplate reader (BioTek, USA).

2.10. Western blot analysis

Freshly frozen colon tissues were homogenised in radioimmunoprecipitation assay (RIPA) buffer (Beyotime Biotechnology, China)
containing 1 % protease inhibitor (Beyotime Biotechnology, China) and 1 % phosphatase inhibitor (Beyotime Biotechnology, China).
The homogenate was centrifuged at 4 °C and 12,000xg for 20 min, after which the protein supernatant was collected. Protein con-
centration was measured using a BCA Protein Assay Kit (Pierce, USA). The protein samples were mixed with 5 x loading buffer
(Beyotime Biotechnology, China), boiled at 95-100 °C for 10 min, and then stored at —20 °C for further detection. Protein (30 pg) was
loaded onto a 12 % sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel (Beyotime Biotechnology, China) and
transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore, UK). After blocking with the QuickBlock blocking buffer
(Beyotime Biotechnology, China) for 1 h, the membranes were subsequently incubated overnight with primary antibodies, including
anti-AQP3 (1:500, AF5222, Affinity Biosciences, China), anti-AQP4 (1:1000, ab259318, Abcam, UK), anti-AQP9 (1:100, sc-74409,
Santa Cruz, USA), anti-stem cell factor (SCF) (1:200, sc-13126, Santa Cruz, USA), anti-c-Kit (1:1000, ab256345, Abcam, UK), and
anti-a-tubulin (1:200, sc-5286, Santa Cruz, USA), all at 4 °C on a shaking table to ensure uniformity of incubation. After three washes
with Tris-buffered saline with Tween-20 (TBST), the membranes were incubated with the appropriate secondary antibodies, namely
anti-mouse IgG antibody (1:1000, 7076, CST, USA) and anti-rabbit IgG antibody (1:2000, sc-2357, Santa Cruz, USA), for 1 h at room
temperature. Protein bands were visualised using a ChemiScope 3500 Mini Imaging System (Clinx Science Instruments, China).

2.11. 16S rRNA gene-based microbial community analysis

Total genomic DNA was extracted from the mouse caecal contents using an Omega Soil DNA Kit (M5635-02; Omega Bio-Tek, USA)
in accordance with the manufacturer’s instructions. The V3-V4 regions of the 16S rRNA genes were amplified by polymerase chain
reaction (PCR) using the primers 338F and 806R. The PCR amplicons were purified using VAHTSTM DNA Clean Beads (N411-01,
Vazyme, China) and quantified using the Quant-iT PicoGreen dsDNA Assay Kit (P7589, Invitrogen, USA). Subsequently, the amplicons
were sequenced on an [llumina NovaSeq platform using a NovaSeq 6000 SP Reagent Kit (500 cycles). The read length was 2 x 250 bp.
Microbiome bioinformatics analysis was conducted using QIIME2 software (V2019.4) and R package (V3.2.0). The raw sequences
were filtered, denoised, and merged, and chimaeras were removed using the DADA2 plugin [32]. Non-singleton amplicon sequence
variants (ASV) were aligned using MAFFT [33] and were used to construct a phylogeny using Fasttree2 [34]. Alpha diversity analysis
(Chaol, observed species, Shannon, and Simpson) was performed to analyse the species diversity and richness of each sample. Beta
diversity analysis (PCoA) was performed to investigate the structural variation in microbial communities across samples. Linear
discriminant analysis (LDA) effect size (LEfSe) assessment was performed to detect differentially abundant taxa across the groups.

2.12. Statistical analysis

All data are presented as mean =+ standard deviation (SD). Statistical differences between multiple groups were analysed using one-
way analysis of variance (ANOVA). Statistical differences between two independent groups were analysed using Student’s t-test.
Differences were considered statistically significant at P < 0.05.
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3. Results
3.1. Constituent analysis of AFI and MOC aqueous extract

The chemical composition of the mixed aqueous extract of AFI and MOC was analysed using UHPLC-MS. A total of 62 components
were identified, including 24 flavonoids, 9 alkaloids, 5 lignans, 5 limonoids, 6 phenylethanoid glycosides, 5 phenylpropanoids, and 8
other components. A total of 34 compounds were derived from AFI and 29 from MOC. The chromatograms of the labelled base peaks in
negative and positive ion modes are shown in Fig. S1. Detailed information on these compounds is provided in Table S1.

3.2. Effects of AFI + MOC treatment on body weight, faecal water content, GI transit time, and intestinal propulsion rate in STC mice

In this study, all the mice survived until sacrifice. The body weight of mice in the STC model group was significantly decreased (P
<0.05) on day 7 after modelling compared to baseline (day 0). Furthermore, the body weights of the mice in the three AFI + MOC dose
groups, as well as in the mosapride group, demonstrated a declining trend following modelling (Fig. 1A). Faecal water content was
significantly lower in the STC model group than in the control group (P <0.01). Faecal water content was significantly increased (all P
<0.01) in the 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride groups compared to that in the STC model group (Fig. 1B). The
GI transit time in the STC model group was significantly longer than that in the control group (P <0.001). GI transit time was
significantly reduced (both P <0.01) in the 6 g/kg AFI + MOC and 12 g/kg AFI + MOC groups compared with that in the STC model
group (Fig. 1C). The intestinal propulsion rate in the STC model group was significantly lower than that in the control group (P
<0.001). The intestinal propulsion rates were significantly increased (all P < 0.05) in the 3 g/kg AFI + MOC, 6 g/kg AFI + MOC, 12 g/
kg AFI + MOC, and mosapride groups compared to the STC model group (Fig. 1D). These results demonstrate that the administration of
AFI + MOC was efficacious in promoting defaecation and improving intestinal motility in STC mice.

3.3. Effects of AFI + MOC treatment on serum VIP, SS, NO, and MTL in STC mice

The serum concentrations of VIP, SS, and NO were significantly higher (all P <0.001) in the STC model group, and the serum
concentrations of MTL were significantly lower than those in the control group. However, the serum concentrations of VIP, SS, and NO
were significantly decreased (all P <0.01) in the 3 g/kg AFI + MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride groups
compared to those in the STC model group, whereas the serum concentrations of MTL were significantly increased (P < 0.01)
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MOC: Magnoliae Officinalis Cortex; STC: slow transit constipation; VIP: vasoactive intestinal peptide; SS: somatostatin; NO: nitric oxide; MTL: motilin.

(Fig. 2A-D).

3.4. Effects of AFI + MOC treatment on ICCs in STC mice

The number of ICCs in intestinal tissue was assessed by immunostaining for c-Kit. As illustrated in Fig. 3A, the number of c-Kit-
positive cells in the colonic muscle layer was lower in the STC model group than in the control group. The number of c-Kit-positive cells
was higher in the 3 g/kg AFI + MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride groups than in the STC model group.
Western blot analysis demonstrated that the protein expression of c-Kit and SCF was significantly decreased (both P <0.001) in the
STC model group compared to the control group and that of c-Kit and SCF was significantly increased (all P < 0.05) in the 3 g/kg AFI +
MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride groups compared to the STC model group (Fig. 3B-D).

3.5. Effects of AFI + MOC treatment on the expression of AQP3, AQP4, and AQP9 proteins in colon tissues of STC mice

The protein expression levels of AQP3 and AQP4 were significantly increased (both P <0.05), and AQP9 expression was signifi-
cantly decreased (P <0.05) in the colon tissues of the STC model group compared to those in the control group. The protein expression
levels of AQP3 and AQP4 were significantly decreased (all P < 0.05) in the colon tissues of the 6 g/kg AFI + MOC, 12 g/kg AFI + MOC,
and mosapride groups compared to those in the STC model group. The protein expression level of AQP9 was significantly increased
(both P < 0.05) in the 6 g/kg AFI + MOC and 12 g/kg AFI + MOC groups compared to the STC model group (Fig. 4A-D).

3.6. Effect of AFI + MOC treatment on the gut microbiota in STC mice

The caecal contents of mice in the control, STC model, and 12 g/kg AFI + MOC groups were used for 16S rRNA gene-based mi-
crobial community analysis. The ASV numbers in the control, STC, and 12 g/kg AFI + MOC groups were 8,176, 3,828, and 6,540,
respectively (Fig. 5A). Alpha diversity analysis (Chaol and Observed species) demonstrated that species diversity was significantly
lower (both P <0.05) in the STC model group than that in the control group (Fig. 5B). Alpha diversity analysis (Shannon and Simpson)
demonstrated that species diversity was significantly higher (both P < 0.05) in the 12 g/kg AFI + MOC group than in the STC model
group (Fig. 5B). Beta diversity analysis (PCoA) demonstrated that the overall taxonomic composition of the control and 12 g/kg AFI +
MOC groups exhibited structural proximity to each other, but both were distinct from the STC model group (Fig. 5C). Differences in the
gut microbiota profiles across the groups were analysed at different taxonomic levels. The results demonstrated that, at the phylum
level, Firmicutes constituted the largest proportion, and its relative abundance was higher in the STC model group than in the control
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group. The relative abundance of Firmicutes was lower in the 12 g/kg AFI + MOC group than in the STC model group (Fig. 5D). At the
class level, Clostridia, Bacteroidia, and Erysipelotrichi collectively accounted for >75 % of all microbial species. The relative abun-
dances of Clostridia and Bacteroidia were lower, whereas that of Erysipelotrichi was higher, in the STC model group than in the control
group. The relative abundance of Clostridia and Bacteroidia increased, whereas that of Erysipelotrichi decreased in the 12 g/kg AFI +
MOC group compared to the STC model group (Fig. 5E). At the order level, the microbiota community was primarily composed of
Clostridiales, Bacteroidales, Erysipelotrichales, Lactobacillales, and Desulfovibrionales, and their relative abundance was influenced
by the administration of AFI and MOC (Fig. 5F).

Fig. 6A shows the top 50 average abundances at the genus level. We found that the relative abundance of Ruminococcus and
Oscillospira was significantly lower in the STC model group than in the control group, whereas they were markedly upregulated by AFI
+ MOC treatment (Fig. 6B and C). In addition, the relative abundances of Allobaculum and Turicibacter were significantly higher in the
STC model group than in the control group, whereas they were markedly downregulated by AFI + MOC treatment (Fig. 6D and E).
These results indicate that the mixed aqueous extract of AFI and MOC ameliorated the gut microbiota imbalance in STC mice to exert
its beneficial effects.

4. Discussion

The pathophysiological mechanisms of STC are complex and involve numerous factors, including defects or dysfunction of the
central nervous system and enteric nervous system, aberrant secretion of neurotransmitters and GI hormones, aberrant expression of
AQPs in the intestinal epithelium, reduction and dysfunction of ICCs, and alterations in the gut microbiota and associated metabolites
[35] Chinese herbal medicine has been used to treat constipation for thousands of years in China. Two of the most commonly pre-
scribed medications for constipation, AFI and MOC, have been documented in numerous classic prescriptions [13,14]. In our study, the
administration of a mixed aqueous extract of AFI and MOC resulted in a significant increase in faecal water content and intestinal
propulsion rate in STC mice. Furthermore, the GI transit time in STC mice was significantly shortened after AFI + MOC treatment.
These results indicated that the mixed aqueous extract of AFI and MOC had ameliorative effects on STC. Therefore, we investigated the
mechanisms underlying their beneficial effects on STC.

Neurotransmitters and GI hormones regulate intestinal muscle contraction and peristalsis. Alterations in these factors are strongly
correlated with the onset of constipation [36]. Neurotransmitters and GI hormones are typically classified as excitatory or inhibitory,
based on their distinct physiological functions. Many studies have demonstrated that the levels of VIP, NO, and SS are elevated in
loperamide-induced STC models, which is consistent with our findings [30,37,38]. VIP is an important inhibitory neurotransmitter in
the enteric nervous system. It exerts its physiological effects by binding to its specific receptors, including vasoactive intestinal peptide
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receptor 1 (VPAC1) and VPAC2, which can relax the GI smooth muscle and reduce intestinal peristalsis [39]. NO is another important
inhibitory neurotransmitter catalysed by nitric oxide synthase (NOS) [40]. NO increases intracellular cyclic guanylate (cGMP) levels
by activating soluble guanylate cyclase (sGC), which in turn activates protein kinase G (PKG), leading to calcium reabsorption, smooth
muscle relaxation, and intestinal motility [41]. In addition, co-localisation of VIP and NOS has been observed in myenteric neurones of
the GI tract in several species. It has been hypothesised that VIP may induce the release of NO, and NO may promote the secretion of
VIP [42]. SS is an inhibitory hormone secreted by D cells in enteric neurones and exhibits a potent inhibitory effect on GI hormone
release and GI motility [36]. MTL is an important GI hormone that can promote GI motility and increase the contractility and tone of
the GI tract [43]. The results of our study indicated that the mixed aqueous extract of AFI and MOC significantly decreased the levels of
serum VIP, NO, and SS and increased serum MTL levels in loperamide-induced STC mice, indicating that AFI + MOC treatment has a
modulatory effect on neurotransmitter and GI hormone secretion in STC mice.

ICCs are a type of interstitial cells widely distributed in the muscular layer of the GI tract. They are considered pacemaker cells of GI
motility because of their function in initiating and transmitting slow waves of GI smooth muscle [19]. The distribution of ICCs
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throughout the human colon has been reported to be relatively uniform and the number and volume of ICCs in all segments of the colon
were significantly lower in patients with STC than in healthy controls [15,44]. ICCs are typically identified by the expression of c-Kit,
which binds to the extracellular ligand, SCF. When SCF dimerises, the structure of the c-Kit monomer changes, leading to homo-
polymerization and automatic phosphorylation of amino residues on the cell membrane. The activation of the SCF/c-Kit pathway plays
a critical role in ICC survival and function of ICCs [30]. An in vivo study reported that the blockade of c-Kit resulted in the disap-
pearance of ICCs and loss of slow-wave activity in the intestines of mice. In contrast, topical application of SCF restored the number of
ICCs and the electrical rhythm of the intestine [45]. Our findings demonstrate that the number of ICCs and protein expression of c-Kit
and SCF in the colon were significantly elevated following AFI + MOC treatment in STC mice, suggesting that the mixed aqueous
extract of AFI and MOC may enhance intestinal transport function by increasing the number and functionality of ICCs.

AQPs are a family of membrane channel proteins that facilitate selective transport of water across membranes and play a pivotal
role in human water metabolism [16]. Constipation is usually associated with abnormal water metabolism in the intestine, which is
manifested by reduced water content in the faeces. In the present study, loperamide administration resulted in a reduction in faecal
water content in STC mice, accompanied by an increase in AQP3 and AQP4 protein expression, and a decrease in AQP9 protein
expression in the colon. Several studies have reported that AQP3 is highly expressed in the human colonic villous epithelial cells.
Furthermore, AQP3 immunostaining in these cells was more intense in the apical membranes than basolateral membranes [46].
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Several studies have demonstrated that a decrease in faecal water content is associated with an increase in colonic AQP3 protein
expression in constipation models. These findings suggest that AQP3 plays an important role in regulating intestinal water transport
and faecal water content [36,47]. AQP4 is present in the basement membranes of crypts and epithelial cells [48]. Wang et al. observed
that patients with higher AQP4 expression were more likely to have dry and hard stools [49]. Consequently, they proposed that
increased AQP4 expression may accelerate colonic water absorption, which may be a pivotal event in STC pathogenesis. AQP9 is an
aquaglyceroporin with broad permeability to water molecules and various neutral solute molecules, including glycerol, urea, polyols,
purines, and pyrimidines [50]. AQP9 is involved in colonic mucosal secretions and plays a role in mucosal protection, bowel lubri-
cation, and defaecation. Reduced AQP9 expression may result in decreased mucus secretion by goblet cells, which can lead to con-
stipation [21]. Our findings indicate that the administration of a mixed aqueous extract of AFI and MOC resulted in a reduction in
AQP3 and AQP4 expression and an increase in AQP9 expression in the colon of STC mice, which contributed to an increase in faecal
water content, thereby promoting defaecation.

Over the past decade, many studies using 16S rRNA-based gut microbiota assays have demonstrated a strong association between
gut microbiota and disease onset [51-54]. Our results demonstrated that the administration of AFI + MOC to STC mice led to an
increase in the relative abundances of Ruminococcus and Oscillospira. Ruminococcus is one of the most important participants in the
utilisation and degradation of carbohydrates and other indigestible plant fibres in the gut [55,56]. As an anaerobic bacterium,
Ruminococcus plays a pivotal role in the production of short-chain fatty acids (SCFAs), including butyrate, acetate, and propionate [57].
SCFAs serve not only as primary energy sources for colonic epithelial cells, but also regulate their physiological functions [58]. Recent
studies have demonstrated that SCFAs are involved in the pathogenesis of constipation by affecting intestinal motility [23].
Furthermore, SCFAs can stimulate G protein-coupled receptors (GPCRs), including GPR42, which was recently identified as a func-
tional GPCR that modulates Ca®* channel flux [59]. SCFAs can also influence the synthesis of 5-HT, thus affecting colonic motility
[60]. Soret et al. demonstrated that butyrate enhanced the excitability of choline acetyltransferase-positive neurones in a mono-
carboxylate transporter 2-dependent manner, thereby improving colonic transit [61]. Oscillospira also produces SCFAs and previous
research has suggested that it can produce butyrate and propionate [62]. Furthermore, Oscillospira stimulates mucus production by
cupped cells, maintains the integrity of intestinal epithelial cells, and mitigates inflammatory damage to colonic tissues [63].
Consequently, we suggest that the regulatory effects of AFI and MOC on the aforementioned SCFA-producing bacteria in the gut may
be related to their therapeutic effects on STC; however, this requires further investigation.

5. Conclusion

In conclusion, the results demonstrated that the mixed aqueous extract of AFI and MOC promoted defaecation and improved in-
testinal mobility in STC mice. Its mechanism of action involves the regulation of neurotransmitters, GI hormones, AQPs, and ICCs.
Furthermore, AFI + MOC treatment improved the diversity and abundance of the gut microbiota, particularly SCFA-producing bac-
teria, in STC mice. The results of our study confirm the therapeutic effects of the mixed aqueous extract of AFI and MOC on STC and
provide a scientific basis for the clinical application of AFI and MOC in the treatment of STC.
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