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The role of extracellular traps (ETs) in the innate immune response against pathogens is
well established. ETs were first identified in neutrophils and have since been identified in
several other immune cells. Although the mechanistic details are not yet fully understood,
recent reports have described antigen-specific T cells producing T cell extracellular traps
(TETs). Depending on their location within the cutaneous environment, TETs may be
beneficial to the host by their ability to limit the spread of pathogens and provide protection
against damage to body tissues, and promote early wound healing and degradation of
inflammatory mediators, leading to the resolution of inflammatory responses within the
skin. However, ETs have also been associated with worse disease outcomes. Here, we
consider host-microbe ET interactions by highlighting how cutaneous T cell-derived ETs
aid in orchestrating host immune responses against Cutibacterium acnes (C. acnes), a
commensal skin bacterium that contributes to skin health, but is also associated with acne
vulgaris and surgical infections following joint-replacement procedures. Insights on the
role of the skin microbes in regulating T cell ET formation have broad implications not only
in novel probiotic design for acne treatment, but also in the treatment for other chronic
inflammatory skin disorders and autoimmune diseases.
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INTRODUCTION

The skin is the largest organ in the body, and it provides an effective physical and immune barrier
between the internal and external environment. As the skin is under constant assault from physical,
chemical and biological threats, disturbance of this barrier can manifest as inflammatory skin
diseases, such as atopic dermatitis and acne vulgaris. Contributing to the healthy skin barrier is a
collection of diverse skin microbiota, which blanket the skin’s surface and populate the hair follicles,
helping to promote skin homeostasis, immune defense and education of host immune cells (1, 2).
Hair follicles penetrate deep into the dermis and contain a diverse population of commensal bacteria
in comparison to the skin surface (1, 2). Although the hair follicle is an immune-privileged site, it
may serve as an important site for interactions between bacteria and host T cells, particularly in
acne, wherein the epithelium of the follicles and sebaceous glands are breached. In the healthy state,
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little is known about the potential for bi-directional movement of
immune cells, including T cells from the dermis through the
intact follicular epithelium to contact luminal bacteria. This
interaction between immune cells and the diverse skin bacteria
may contribute to both skin homeostasis and/or disease.

Human skin contains abundant populations of memory abT
cells, antigen presenting cells (APCs), natural killer cells, gd T
cells, and innate lymphoid cells (3). Effector and memory T cells
within the skin coordinate immune responses against microbes.
However, inappropriate T cell activation against innocuous or
autoantigens can lead to chronic skin inflammatory disorders. In
this review, we focus on the immune responses mediated by skin-
resident TH17 cells that develop in response to Cutibacterium
acnes (C. acnes), a bacterium that has been associated with acne
vulgaris. We discuss the antimicrobial capacity of these cells in
acne resolution and/or inflammation (4). The etiology and
pathogenesis of acne vulgaris is briefly discussed, followed by
the CD4+ T cell responses against C. acnes and their ability to
form extracellular traps (ETs) in response to microbial threats.
On this basis, mechanisms of T cell extracellular trap (TET)
formation are proposed and the dual nature of ET formation in
acne and select skin diseases is detailed, with a focused discussion
on the specific factors that may contribute to host protection
versus exacerbation of disease. We highlight new perspectives
into how healthy skin commensals are critical to the instruction
of our immune system and how T cell-derived–antimicrobial
molecules may provide new therapeutic strategies in our overall
defense against pathogens. The elucidation of subcellular events
leading to TET formation may generate novel therapeutic
strategies that target both the innate and adaptive immune
system in order to ameliorate skin diseases.
ETIOLOGY AND PATHOGENESIS
OF ACNE

Acne vulgaris is a chronic inflammatory disorder of the
pilosebaceous unit (PSU) that most commonly occurs during
adolescence but may linger into adulthood (5–8). In most
cases, this skin disease is characterized with an array of
lesions, which consist of comedones, papules, pustules, and
nodules that are concentrated on the face, back, or chest. While
the course of acne progression may be limited in most patients,
the aftereffects can be life-long, with physical scars and
psychological impairment, especially in adolescents (9). The
pathogenesis of acne involves several factors, and at least four
factors have been identified. These key factors include: follicular
epidermal hyperproliferation, sebum production, C. acnes (in
italics), and inflammation/immune response. Each of these
processes are interrelated and can be influenced by both
hormones and the immune response (9–15).

Current evidence supports the notion that acne lesions begin
with the formation of the microcomedo with subsequent
development into clinically detectable lesions and scarring, in
the most severe cases. Follicular epidermal hyperproliferation
contributes to microcomedo formation. During lesion
Frontiers in Immunology | www.frontiersin.org 2
development, the microcomedo expands with a densely packed
layer of keratin, and there is increased sebum production that
supports bacteria growth within the PSU. Eventually this
ballooning effect causes the walls of the follicles to rupture
leading to extrusion of keratin, sebum, and bacteria into the
surrounding dermis, triggering a rapid inflammatory response.
The predominant cell type present within 24 hours of rupture is
the lymphocyte. CD4+ T lymphocytes are present around the
ruptured PSU, while CD8+ T cells are found within the
perivascular region. One to two days after the comedo is
ruptured, neutrophils become the main cell type surrounding
the ruptured microcomedo (9–15), further amplifying
skin inflammation.

It is generally accepted that acne does not occur without
sebum. Sebaceous gland activity increases during puberty in
response to androgens (16). The anaerobic and lipophilic
microenvironment of the PSU favors the growth of C. acnes
over other skin microbes. Sebum, the lipid-rich fluid of sebaceous
glands, serves as the primary nutrient source for C. acnes.
Breakdown of sebum triglycerides into free fatty acids by C.
acnes contributes to the inflammatory response (17, 18).

C. acnes also contributes to skin inflammation through
activation of the immune response. C. acnes-induced secretion
of proinflammatory cytokines from monocytes involves Toll-like
receptor 2 (TLR2) (19), which is expressed on macrophages
surrounding the PSU and in the epidermis of inflammatory acne
lesions (19, 20). In addition, C. acnes induces IL-1b secretion and
inflammasome activation via NLR family pyrin domain
containing 3 (NLRP3) and caspase-1 in monocytes and
sebocytes (21–23). The antimicrobial peptides, cathelicidin, and
histone H4 can also be secreted locally in response to C. acnes.
Histone H4 secreted by sebocytes exerts direct microbial killing,
while cathelicidin interacts with components of the innate
immune system within the acne microenvironment, such as
psoriasin and beta-defensins, all of which contribute to the
direct killing of C. acnes (24, 25).
CD4+ T CELLS IN THE SKIN

In the periphery, naive CD4+ T cells undergo differentiation into
distinct T cell lineages upon interaction with APCs and the
influence of specific cytokines. These distinct lineages play a
major role in mediating immune responses mainly through the
secretion of specific cytokines and antimicrobial molecules. The
CD4+ T cells perform multiple functions ranging from the
activation of innate immune cells, B cells, cytotoxic T cells, as
well as other non-immune cells. They also play a critical role in
the quelling of immune reactions (26).

Traditionally, the CD4+ T cell subset lineages have been
classified based on the cytokines they produce expression of
characteristic transcriptional factors (TFs). Based on this
classification, CD4+ T cells have been designated into T-
helper-1 (TH1), T-helper 2 (TH2), T-helper 17 (TH17),
follicular helper T cells (Tfh), induced T-regulatory cells
(iTregs), regulatory type 1 cells (Tr1), and T-helper 9 cells
June 2022 | Volume 13 | Article 900634
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(TH9) (27–33). In recent years, the diversity of TH subsets has
increased in complexity and the designation of TH subsets
beyond TH1, TH2 and TH17 cells remains a subject of intense
debate as the traditional classification system fails to account for
TH cells that are involved in the induction of various pathologies.
Of note, the emergence of novel technologies has enabled the
simultaneous measurement of several cytokines at once along
with other markers such as TFs, chemokine receptors and
integrins at the single cell level, making it impossible to
categorize TH cells based on a dominant cytokine or even a
family of cytokines (34). The new proposed paradigm
reorganizes and expands the TH universe based on the help
these cells provide to the actual cell targets, rather than on the
transient expression of certain cytokines and TFs (35). The
debate on taxonomy to capture the complexity and diversity of
TH cells is described elsewhere (35–37).

Functionally, TH17 cells produce IL-17, IL-22 and IL-26 and
play an important role in the clearance of extracellular bacteria
and fungi from epithelial surfaces (38–40). TH17 cells are an
important component of T cell immunity as patients with loss-
of-function mutations in genes coding for IL-17, IL-17 receptor
and/or the transcriptional factor RORgt have been shown to
suffer from recurrent infections of the skin, nails, and mucosal
surfaces. IL-22 can cooperate with IL-17 to activate epithelial
cells to produce antimicrobial peptides (41–43). Finally, IL-26 is
a cationic antimicrobial protein that kills extracellular bacteria by
creating pores on the bacterial membrane (39). Like other TH17
cell cytokines, IL-26 is highly expressed in the skin lesions of
psoriatic patients (44), colonic lesions in patients with
inflammatory bowel disease (45, 46) and in the synovial fluid
of individuals with rheumatoid arthritis (47, 48). A risk locus
containing IL26 and single-nucleotide polymorphisms within the
IL26 gene region have been associated with multiple sclerosis
(49), highlighting the fact that IL-26 may be involved in driving
TH17 cell–associated inflammatory activity.

IL-17 is a key cytokine involved in the recruitment, activation
and migration of neutrophils to sites of inflammation (50, 51).
Recruitment of neutrophils not only results in the phagocytosis
and clearance of microbes, but can also result in tissue
destruction. Similar to neutrophils, TH17 cells may also
contribute to host defense and/or tissue damage as a result of
uncontrolled TET activation and release. We envisage a scenario
where an appropriate and timely decline of TH17 responses
within the dermis may be required to minimize tissue injury or
damage. In essence, this decline in TH17 response may be
achieved by a shift toward production of cytokines such as IL-
10 by TH17 cells. It is therefore likely that, in the steady-state,
skin resident TH17 cells may have the capacity to adjust their
cytokine profiles and secrete a combination of cytokines such as
IL-26 and IL-10 that together can help dampen the inflammation
and simultaneously time aid in combatting diverse skin
pathogens, such as Staphylococcus aureus (S. aureus) and C.
acnes, as needed. Thus together, with other innate immune cells,
rapid cytokine secretion and TET formation may represent an
efficient local host defense for controlling pathogenic microbes
on the skin.
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The components of both the innate and adaptive immune
system have been demonstrated to play a part in the
inflammatory responses that are observed during acne
pathogenesis. Notably, in an elegant histological study of acne
lesions, Norris et al. demonstrated that lymphocytes were the
predominant cell types, with CD4+ T cells being among the cells
that were detected within the early inflammatory infiltrate
surrounding acne lesions (15). Polymorphonuclear neutrophils
(PMNs), were increasingly evident at 24 and 72h and were linked
to the disruption of the PSU. Follow up studies from our group
and others further demonstrated that both TH1 and TH17
associated cytokines such as IFN-g and IL-17 were prominent
in acne lesions (4, 52, 53), and may contribute to either the
inflammatory and/or to antimicrobial activity observed in acne.
In early lesions, therefore, it is likely that antimicrobial activity
may be driven by T cell-derived cytokines, that ultimately lead to
bacterial lysis. The release of microbial components upon
bacterial lysis may also lead to direct activation of the innate
immune response, further enhancing inflammation. Moreover,
TH17 cells recruit neutrophils, which in inflamed lesions,
infiltrate around hair follicles and phagocytose C. acnes (54).
Additionally, neutrophils can also release reactive oxygen species
(ROS) and lysosomal enzymes that may further exacerbate acne
disease (55–57). The proposed mechanisms by which immune
cells interact with each other within an acne lesion are
summarized in Figure 1.

This review focuses on the antimicrobial subpopulation of
TH17 cells (AMTH17), whose antimicrobial capacity were
discovered using C. acnes as a model organism. Moreover, our
recent advances in TH17 cell research have reshaped the concept
of immunomodulatory CD4+ T cells and have shown that direct
antimicrobial activity by AMTH17 subpopulations requires ET
formation, which may be critical for pathogen clearance within
the cutaneous environment (60).
TH17 DIFFERENTIATION

TH17 cells express the transcription factor RAR-related orphan
receptor-gt (RORgt), and are induced by IL-6, TGFb and IL-1b.
The differentiation of the TH17 lineage has also been shown to be
distinct from that of TH1 and TH2 cells. TH17 cells are induced
by signal transducer and activator of transcription 3 (STAT3)
and RORgt working synergistically with one another (61). The
transcription factor, forkhead box P3 (FOXP3), is the negative
regulator of RORgt and TH17 programming. FOXP3 maintains
tolerance by inducing Regulatory T cells (Tregs) differentiation
via STAT6 and downregulating differentiation of TH17 cells (62).
However, the TH17/Treg balance is shifted in favor of TH17 when
proinflammatory cytokines, such as IL-1b, IL-6 and IL-21, are
present. TGFb is a critical cytokine required for TH17
differentiation. TGFb not only induces the differentiation of
TH17 cells in conjunction with IL-6 in mice and IL-1b in
humans, but also independently orchestrates the differentiation
of naïve CD4+ T cells into Tregs (63, 64). Exposure of naïve
CD4+ helper T cells to TGFb/IL-1b and IL-6 results in the
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inhibition of FOXP3 and subsequent RORgt activation, thus
initiating TH17 differentiation and programming (63, 65–67).
RORgt activation therefore promotes both the expression of IL-17
and IL-23 receptor (68). Interestingly, we have demonstrated that C.
acnes stimulates the expression of both RORgt and RORa in
peripheral blood mononuclear cells (PBMCs) suggesting that C.
acnes contributes to TH17 differentiation (4, 69). In addition, we and
others have demonstrated that IL-23, by itself, does not induce the
development of TH17 cells from naïve CD4+ helper T cells, but
instead IL-23 is important in the maintenance and survival of TH17
cells (70–72). IL-21, which belongs to the IL-2 family of cytokines,
further amplifies TH17 cell differentiation and stabilizes the
development of TH17 cells in cooperation with Transforming
growth factor B (TGFB) in an IL-6-independentmanner (61, 73–75).

As highlighted above, TGFb is critical for TH17
differentiation, but it also influences TH17 biological functions.
Different isoforms of TGF have also been shown to induce
distinct phenotypic functions in TH17 cells. As an example, in
the absence of IL-23, the combination of TGFb1 and IL-6-
induced TH17 cells did not cause experimental autoimmune
encephalomyelitis (EAE), but TGFb3-induced TH17 cells were
highly pathogenic (76). TH17 cells, themselves, exhibit high
phenotypic and functional plasticity, which suggests that these
Frontiers in Immunology | www.frontiersin.org 4
cells can transdifferentiate into other T cell subsets that are
dependent on the inflammatory context (77–79).

In summary, TH17 cell differentiation and regulation is
mediated by a tightly controlled complex of cytokine and
transcription factors, all of which results in both pathologic
and/or non-pathologic immune effector functions.
DIVERSITY OF C. ACNES STRAINS AND
INFLUENCE ON TH17 DIFFERENTIATION

Similar to other bacterial species, C. acnes possesses phenotypic
and genotypic diversity (70), and the influence of this diversity at
the strain level and its connection to either healthy skin or acne is
unclear (80). As observed in other human diseases, recent typing
of C. acnes strains revealed that not all strains are pathogenic.
Certain C. acnes strains were associated with acne, while others
were associated with healthy skin (80–84). Strains of C. acnes also
show differences in their pathogenic potential and secretome
profiles (85–87), as they differ in their ability to induce human b-
defensins, influence cell growth, and activate both innate and
adaptive components of the immune system (88–92).
FIGURE 1 | Inflammatory and antimicrobial pathways in acne vulgaris. Multiple interconnected innate and adaptive immune pathways contribute to skin inflammation
associated with acne. C. acnes is the pre-dominant organism in the sebaceous region of the skin. Dysbiosis of the skin microbiome, C. acnes colonization or a disrupted
homeostasis can upregulate the production of pro-inflammatory cytokines by skin-resident APCs such as dendritic cells, including high levels of IL-1b, IL-6, IL-8, IL-12p70,
and TGFb. Cytokines such as IL-6 and TGFb induce naive T cells to differentiate into effector TH17 cells, whereas IL-12 drives a TH1 differentiation program. C. acnes strains
within the pilosebaceous unit can also influence CD4+ T cell differentiation; C. acnes strains-associated with healthy skin promote the differentiation of naïve T cells into IL-
10-producing AMTH17 cells whereas acne-associated strains promote the development of a non-antimicrobial TH17 subpopulation (n-AMTH17). IL-8, IL-17, IL-26, LL-37 and
TET production by immune cells within acne lesion promote neutrophil recruitment and increased antimicrobial activity. Expression of defensins can also drive antibacterial
action. On the other hand, NET/TET release and formation of LL-37/RNA and/or IL-26/DNA complexes can activate both myeloid and plasmacytoid DCs leading to the
production of proinflammatory cytokines that further promote inflammation (39). mtDNA can also activate the cGAS-STING pathway and production of type I IFNs (58, 59).
C. acnes can also activate TLR2 receptor expression on macrophages and subsequent secretion of IL-1b and IL-18 secretion in an inflammasome-mediated fashion. IFN-g
release by TH1 cells further drives the inflammatory responses within acne lesions. In addition, proinflammatory conditions exist when IFN-g-producing TH1 cells are exposed
to TNF-a and IL-12. APC, Antigen presenting cell; TGFb, Transforming growth factor- Beta; pDC, plasmacytoid dendritic cell; IFN-g, Interferon gamma; TLR, Toll-like
receptor; mDC, myeloid dendritic cell; cGAS-STING, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Created with Biorender.com.
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We have demonstrated that C. acnes strains differentially
modulate the fate of TH17 cells (70). Some healthy-skin
associated C. acnes strains induce TH17 subpopulations that
produce the anti-inflammatory cytokine IL-10, thus
downregulating their pathogenic functions (70, 93). TH17 cells
in the gut mucosa have also been shown to transdifferentiate to
IL-10-producing regulatory T cells (Tr-1 cells), a process
seemingly reliant on aryl hydrocarbon receptor (AhR) and
TGFb (40, 94). The ability of TH17 cells to secrete IL-10 has
also been reported following treatment with TNFa inhibitors
(95). IL-10 production by TH17 cells has been suggested to be
under the regulation of several transcription factors, such as c-
Maf and Aiolos (94, 95). In contrast, the majority of acne-
associated C. acnes strains induce TH17 subpopulations with a
pro-inflammatory phenotype that produce IL-17 and IFN-g
(70, 96).
CD4+ T CELL–MEDIATED KILLING OF
TARGET CELLS

CD4+ T cell–mediated killing of target cells is well described in
the literature, but the extent to which TH1 and TH17 CD4+ T
subsets mediate antimicrobial activity is unknown (60, 97). In the
case of the TH17 cells, their role in pathologic inflammation and
disease is well-defined (73, 98), yet it is unclear what
distinguishes the inflammatory TH17 cells elicited by
pathogens from those within the PSU or the inner layers of the
dermis that are induced by commensals. Two subpopulations of
TH17 cells that are functionally different were demonstrated to
simultaneously reside within the gut microenvironment during
pathogen-induced inflammation. In particular, commensal
filamentous bacteria within the gut were shown to induce
TH17 cells that were non-inflammatory and homeostatic in
nature. In contrast, Citrobacter rodentium, a model pathogen
for gastrointestinal human disease research, induced TH17 cells
that were highly inflammatory and feature a distinct cytokine
profile that likely contributes to pathogenic intestinal pathologies
(99). Similar to gut microbes, acne-associated and healthy-
associated strains of C. acnes differentially regulate CD4+ T cell
responses to induce TH17 cells that secrete either IL-17 and IFN-
g (pro-inflammatory) or IL-17 and IL-10 (anti-inflammatory)
respectively (70). We and others revealed that C. acnes induce IL-
17 and IFN-g in CD4+ T cells, and that IL-17-secreting cells are
visualized within the perifollicular infiltrates of acne lesions,
which is consistent with the fact that TH17 cells may
contribute to both the inflammatory and/or antimicrobial
responses during acne progression (4, 52, 100).

More recently, while studying the antimicrobial mechanisms
involved in TH17 cell–mediated killing of bacteria, we identified a
subpopulation of TH17 cells that expressed and secreted multiple
antimicrobial proteins. These findings were strengthened by the
observation that this antimicrobial subpopulation, termed
“AMTH17”, released histone-rich T cell extracellular traps (TETs)
in conjunction with other antimicrobial proteins that entangled
and killed C. acnes and other bacteria (60). This observation
Frontiers in Immunology | www.frontiersin.org 5
suggested that AMTH17-mediated killing of bacteria is likely to
be a general feature that is essential for the homeostatic control of
bacterial colonization. By contrast, a separate subpopulation of
TH17 cells that were induced by acne-associated strains did not
exhibit antibacterial activity (n-AMTH17) against Gram-positive
and Gram-negative bacteria.
TH17 AND EXTRACELLULAR TRAPS

Secretion of extracellular traps loaded with DNA is likely an
ancient, conserved function of the innate immune system (101).
The discovery and observation that neutrophil extracellular traps
(NETs) trapped and killed bacteria changed our collective
thinking of the role of these cells in host defense mechanisms,
above and beyond the traditional function of microbe
phagocytosis cytokine, secretion and antimicrobial peptide
release (102). Now, we know that ETs are part of the arsenal of
several immune cells including basophils, mast cells, eosinophils,
macrophages, and TH17 cells (60, 103–112).

The first observations of lymphocytes extruding DNA were
made in 1972. It was difficult to dissect the contribution of
extruded DNA in immunity, and it took close to 50 years of
intensive investigation for researchers to identify the lymphocyte
populations that were capable of releasing ETs. Taking advantage
of the fact that NETs are formed in patients with systemic lupus
erythematosus (SLE), Rocha Arrieta et al. discovered that both B
and T cells had the ability to secrete DNA into the extracellular
microenvironment in response to SLE serum and other
inflammatory stimulants. These extracellular DNA were not
considered as ETs since this study did not evaluate the
proteins associated with DNA (113). Focusing on T cells, work
by Costanza and colleagues further showed that following
activation, murine CD4+ T cells were able to extrude DNA
fibers that they termed, “threads” (114). This release of DNA
“threads” from CD4+ T cells was also shown to be dependent on
mitochondrial ROS (114). However, the responsible T cell subset
remained unknown. From the work of our lab, we demonstrated
that TH17 cells extrude fibrous DNA threads coated with
antimicrobial molecules that trap bacteria. We termed these
threads TETs (60).

As previously reported, ETs are released by different immune
cells and these ETs entrap not only Gram-positive/negative
bacteria and group A streptococci, but also pathogenic fungi
(60, 103–111, 115). Importantly, we observed that C. acnes can
induce the AMTH17 cells, which upon activation are able to
extrude TETs: fibrous DNA structures that are strikingly
decorated with histones and antimicrobial molecules. TETs
released by AMTH17 cells form interlaced structures in the
extracellular space and entangle C . acnes (60). After
entrapment, most of the C. acnes were killed (60). However, it
is important to highlight that some bacteria species, such as
Streptococcus pneumoniae, have developed strategies to evade
capture and killing by repelling cationic antimicrobial peptides
(CAMPs) found within ETs or by degrading the DNA backbone
of ETs with enzymes such as, DNases (115–117). DNase
June 2022 | Volume 13 | Article 900634
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treatment inactivates TETs and renders them ineffective,
suggesting that DNA is required for TET structure and
function. During acne pathogenesis, disruption of the PSU
allows for the entry of C. acnes into the dermis, which initiates
an inflammatory response. Using confocal microscopy, we
visualized TETs in vivo in biopsy specimens from acne lesions,
observing the colocalization of fibrous structures composed of
DNA and histone H2B in proximity to CD4+ T cells secreting IL-
17 (60). The potential receptors on T cells that mediate
interactions with bacteria leading to TET induction are
currently unknown (Figure 2).
HISTONES AND EXTRACELLULAR TRAPS

Our findings were the first to demonstrate that AMTH17 cells
make TETs loaded with histones H2B and H4 and that these
AMTH17 cells secrete molecules, which could kill different
bacterial strains (60). Through confocal imaging of acne
lesions, we were able to detect TETs that were loaded with
histones H2B, suggesting that ETs may play an important role in
the clearance and elimination of pathogens within the
extracellular matrix during acne disease progression (60). In
unstimulated AMTH17 cells, we discovered that core histones,
such as H2A, H2B, H3 and H4, had similar levels of expression.
However, in TETs, H2B and H4 were found in higher
concentrations than H2A and H1, and antibodies to histones
H2B and H4 led to 60% reduction in TET-mediated bacterial
killing (60). Similarly, neutralizing antibodies against core
histones H2A and H2B interfered with NET-mediated bacterial
killing and elimination of bacteria, further highlighting the
importance of histones (102). Since ETs and histones in NETs
and TETs can mediate injurious effects, a fine balance is needed
Frontiers in Immunology | www.frontiersin.org 6
between the host defense benefits and adverse effects that can be
orchestrated by ETs (60, 118).

The antibacterial activity of histones is well documented, with
first reports of antibacterial activity of histones and histone-like
proteins originating in 1942 (119). Four core histones (H2A,
H2B, H3, and H4) form an octamer, around which DNA enfold
within nucleosomes (120). Apart from being part of the
nucleosome structures, these core histones also play an
important role in protecting the host epithelial surfaces from
microbial invasion (120). Histones are predominant in the ETs of
neutrophils, eosinophils, basophils, macrophages and other
innate immune cells (102, 121–123). Pioneering studies by
Hirsch et al. demonstrated the antimicrobial effect of arginine-
rich histones against bacteria (124). Subsequent studies,
including ours, have also shown that lysine-rich histones have
bactericidal activity (60, 120). Lysine-rich histones, such as
histones H2A and H2B, are highly expressed on the placental
epithelial surface and have been suggested to be important in
providing fetal protection against in utero microbial infection
(125). Additionally, histones H2A and H2B are also effective in
the neutralization of endotoxin, a major structural component of
Gram-negative bacterial cell walls, and an important virulent
factor during microbial colonization (24). From our work, H2B-
loaded TETs released by the AMTH17 cells are antimicrobial
against C. acnes, E. coli, Pseudomonas aeruginosa, and S. aureus
(60). Furthermore, AMTH17 cells also released granulysin.
Importantly, histone H2B gene expression is highly correlated
with granulysin activity, which was consistent with the observed
antimicrobial action. However, how this increased antimicrobial
response is activated in vivo is unknown (120). While histone H3
exhibits antibacterial activity against both E. coli and S. aureus,
less is known about its antibacterial actions on other bacteria
(24). Histone H4 mediates antimicrobial activity through
FIGURE 2 | Inducers and potential receptors that activate the release of extracellular traps in immune cells and the associated skin diseases. Extracellular traps
were first identified in neutrophils, and later, this phenomenon was detected in several other immune cells. Although there exists some overlap, inducers and
receptors vary widely. Activation of immune cells by microbes, CpG-C, cytokines, immune complexes, parasites and MSU crystals can initiate the release of
extracellular traps. Receptors on immune cells (Effectors) that have been identified and demonstrated to interact with inducers of extracellular trap formation are
shown. Mechanisms by which ET formation are initiated in various effector cells vary and any dysregulation of each cascade can be pathological. Skin diseases
associated with dysregulated extracellular trap formation are highlighted. FcgRs, Receptors for the constant region of IgG immunoglobulin; TLR, Toll-like
receptor; C5a, Complement component 5a; C3, Complement component 3; TSLPR, Thymic stromal lymphopoietin receptor; FcϵRI, High affinity IgE; BCR, B
cell receptor; STING, Stimulator of interferon genes; MSU, Monosodium urate; CpG-C, Synthetic short single-stranded DNA molecules made of cytosine
triphosphate deoxynucleotide. Created with Biorender.com.
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disruption of the cell membrane. Human sebocytes, the cells
comprising sebaceous glands, can release H4, which is
bactericidal against C. acnes (24). We observed the expression
of the arginine-rich histone H4 in AMTH17 cells (60) and the
antibacterial activity of H4 could be intensified by free fatty acids
found on acne skin (24).
FORMATION OF EXTRACELLULAR TRAPS
(ETS) BY NEUTROPHILS

Immune cells are able to fight pathogens using various modes of
action. They can secrete antibacterial proteins stored in granules,
phagocytose microbes and then kill them intracellularly by
antibacterial proteins or reactive oxygen species, or form and
release ETs. The most well-characterized cells to secrete ETs are
neutrophils (NETs). In addition to their phagocytic function,
neutrophils utilize NETs for extracellular microbial killing (102).
Different mechanisms are involved in NET formation. Generally,
NET formation is a cell-destructive process, during which
disassembly of nuclear material and disintegration of
intracellular organelle membranes occur. After rupture of the
plasma membrane, release of DNA, granular and cytoplasmic
proteins (e.g. MPO and elastase) can facilitate extracellular
killing of various pathogens, such as bacteria and fungi.
Importantly, microbes and microbial components can induce
NET formation (102, 116, 126–131). These inducers include
bacteria or their structural components, such as lipoteichoic acid,
lipopolysaccharides and bacterial breakdown products (132).
PROPOSED MECHANISMS OF ET
RELEASE BY B AND T LYMPHOCYTES

The first reported descriptions of lymphocyte-derived ETs
demonstrated that both T and B cells secreted DNA following
stimulation with SLE serum and other inflammatory stimuli
(113, 133). The treatment with anti-IgM + lipopolysaccharides
(LPS), which mimics stimulation of B cells under physiological
conditions, initiated the release of DNA into the extracellular
milieu, which suggests that ET release by B cells occurs in vivo
(113). With regard to B cells, immune complexes can induce
FcgRIIB activation independent of BCR-specific antigen binding
(134, 135). Immune complexes can similarly mediate BCR cross-
linking and induce downstream signaling pathways, promoting
the secretion of ETs. DNA produced by ionomycin-stimulated
peripheral blood B cells had high molecular weight, with no
observed random or internucleosomal fragmentation that is
observed in necrosis or apoptosis, respectively (136). Thus, B
cell released DNA has similar characteristics to NETs (137, 138).
Notably, the overall purity of B cell preparation was 80%, and
therefore future work should examine the composition of the
DNA extruded into the extracellular environment by B cells. The
identification of proteins including histone composition or
citrullination status will further help define the B cell-derived
ETs (113).
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ET formation in CD8+ T lymphocytes has been well
characterized (139). Koh et al. demonstrated that upon
activation of CD8+ T cells with a-CD3/CD28, these cells
released ETs that they termed lymphocyte extracellular traps
(LETs). LETs were shown to be morphologically different from
CD4+ T cells-induced ETs as they appeared as long thin
filaments that connected neighboring cells together. In
contrast, CD4+ T cell-derived ETs formed a diffused patterns
that appeared as a halo. Importantly, released LETs were loaded
with CD107a+ cytotoxic vesicles that could kill distant target
cells. The downside of this cytotoxic mechanism was that LETs
release by CD8+CD107a+ T cells was associated with increased
inflammatory infiltrates and subsequent severe disease in
patients with cutaneous and mucosal leishmaniasis, suggesting
that LETs could drive disease pathology within leishmania
lesions. However, this study did not identify the CD8+ T cell
subpopulations that were responsible for LET release (139).

Costanza et al. demonstrated that activated human and
mouse CD4+ T cells produce extracellular DNA, which they
termed, T helper-released extracellular DNAs or threads (114).
However, the responsible T cell subset also remained unknown.
Using RNA-seq and functional analysis of CD4+ TH17 cells, we
demonstrated that AMTH17 cells, but not the n-AMTH17, TH1 or
TH2 cells, released TETs that trap bacteria (60). After
entrapment, most of the bacteria were killed (60). Further, T
cell-derived DNA strands contained both mitochondrial and
nuclear DNA, suggesting that both are involved in the process of
TET formation (60, 114). Further exploration to determine
whether the formation of TETs (TETosis) resembles vital
(involving vesicular exportation or mitochondrial DNA) or a
suicidal process is needed. However, it is plausible that several
mechanisms contribute to the release of DNA traps by CD4+ T
cells. These mechanisms are discussed below.
VITAL TETOSIS

Contrasting prior studies detailing the mechanisms of NETosis
as a process that required several hours, we noted that C. acnes-
stimulated TET formation in AMTH17 cells occurred within just
30 min (60). These TETs were likely induced by the recognition
of bacteria or bacterial products. Using confocal microscopy, we
demonstrated that activated AMTH17 formed TETs comprised of
DNA decorated with histones, proteases and cytosolic proteins.
These proteins ensnared bacteria, as well as provided large
concentration of antimicrobial molecules, such as granulysin,
that assist in trapping and killing of bacteria. This phenomenon
has also been reported in neutrophils, as neutrophils that release
NETs remained impermeable to SYTOX Green, suggesting that
their structure remained intact. In neutrophils, vital NETosis has
clearly been demonstrated by Pilsczek et al. as a process that
involves vesicles of DNA budding off from the nuclear envelope,
and delivered out of the cells without membrane perforation
(140). Likewise, TH17 cells also remain structurally intact after
TET formation, although additional studies are required to
elucidate the precise mechanisms involved in vital TETosis.
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However, based on the similarities with NETs, we envisage a
process where bacteria induce TET release through an initial
blebbing event that is followed by substantive protrusions of the
nuclear envelope. This is followed by transient detachment of the
blebs/vesicles and transport of the vesicles through the cytoplasm
and subsequent release of the DNA-loaded ETs in vitro and in
vivo (133, 140–142). As a result, this proposed mechanism
preserves the structural integrity of the T cell plasma
membranes (Figure 3). It still remains unclear whether a TH17
cell that has ejected (parts of its) DNA is still viable and capable
of performing T cell function, such as antigen recognition,
immunomodulation, and cytokine secretion.
VITAL TET FORMATION:
MITOCHONDRIAL DNA

ETs produced in response to bacterial invasion have been shown
to contain nuclear DNA as their critical structural component
(143–146). However, other studies have reported ETs are
composed of mitochondrial DNA (mtDNA) suggesting that
the mitochondria can be involved in the process of vital ET
formation and inflammatory response (147) (Figure 4). For
example, GM-CSF primed neutrophils, upon stimulation via
TLR4 or complement receptor 5a, produced ETs comprising of
only mtDNA. In addition, in vivo, NETs containing mtDNA are
seen in the serum of individuals post-trauma (148) and after
orthopedic surgery (143). mtDNA-facilitated NET formation
appears to be ROS-mediated (147). Interestingly, Yousefi et al.
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found ROS was essential for the release of mtDNA-NETs as
mtDNA-NET formation was blocked when a ROS production
inhibitor (diphenyleneiodonium) was used (147). However, the
exact molecular mechanism of mtDNA-ET release is not fully
understood in both neutrophils and lymphocytes. Whether
mtDNA is involved in TH17-mediated TET formation remains
to be determined.

mtDNA is a dominant driver of systemic inflammatory
response after injury (143, 149, 150). It is recognized as an
“alarmin” (151) that can stimulate the innate immune system at
physiological concentrations. Free mtDNA from tissue and
necrosis following injury or mtDNA-NETs could possibly re-
activate neutrophils and other cells within the acne
microenvironment through TLR2 and generate further ET
production (19, 152). ET formation from neutrophils occurs
through activation of TLR4 by another alarmin, more
specifically, the high-mobility group box protein 1
(HMGB1) (153).

A recent study demonstrated a clear link between Severe acute
respiratory syndrome associated coronavirus (SARS-CoV)-
induced tissue damage in the skin and lungs of COVID-19
patients to the activation of the cyclic GMP-AMP synthase
(cGAS- stimulator of interferon genes (STING) pathway and
type I IFN signaling (58, 59). SARS-CoV-2 infection caused
disruption of mitochondrial homeostasis in lung epithelial and
vascular endothelial cells, leading to the accumulation of
mtDNA. Both the mtDNA and DNA released from dying cells
subsequently activated the cGAS-STING pathway and led to the
secretion of type I IFNs and pro-inflammatory cytokines that
further promoted hyperinflammation and tissue damage. This
FIGURE 3 | Proposed mechanism of vital TET formation in acne. In the pilosebaceous follicles, C. acnes strains trigger antigen presenting cells to secrete cytokines
that induce naïve T cells to differentiate into distinct T cell subsets. Upon induction, AMTH17 cells can further be activated by bacterial ligands, PMA and other stimuli.
TCR-ligand binding induce the formation of vesicles containing DNA. Blebbing of T cell nuclear envelope, vesicular exportation and exocytosis of vesicles containing
DNA generate extracellular traps while preserving the integrity of the cell. As a result, AMTH17 cells retain conventional functions of viable T cells such as cytokine
secretion. In vitro, we have observed that AMTH17 cells release TETs as early as 30 minutes after stimulation with C. acnes. Both the released TETs and IL-17 can
recruit neutrophils to inflamed acne lesions. TETs trap C. acnes and are also loaded with antimicrobial molecules, including granulysin and histone H2B, H3 and H4
that kill bacteria. Created with BioRender.com.
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study clearly demonstrated that infections that disrupt
mitochondrial function can lead to immunopathology.
Whether the observed mtDNA was released by the process of
vital ET formation is unknown. Additionally, the mechanisms
and detrimental responses that might be induced by mtDNA
and/or damaged DNA released from dying sebocytes and other
cells within a disrupted PSU microenvironment in acne lesions
are yet to be elucidated. Therefore, it is reasonable to speculate
that mtDNA release by neutrophils, TH17 cells and other
immune cells during chronic inflammation and/or after tissue
injury could feed into a vicious cycle of immune activation. Such
a vicious cycle could exacerbate the chronic inflammatory
responses that are observed in acne (Figure 1).
SUICIDAL TETOSIS

In neutrophils, suicidal NETosis is frequently initiated by ligand
binding to neutrophil TLRs and receptors for IgG-Fc,
complement or cytokines (102, 154, 155). Release of NETs was
initially proposed to require the complete rupture of the
neutrophil, a process that was termed NETosis (137). As such,
NETosis is a cell death process, unlike apoptosis and necrosis,
that relies on the generation of ROS by reduced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, via PKC and
Raf-MEK-ERK signaling pathways (156–160).

Whether overstimulation of T cells with C. acnes can
lead to suicidal/lytic TETosis in T cells within the acne
microenvironment is currently unclear. Further investigations
Frontiers in Immunology | www.frontiersin.org 9
into the signaling pathways involved in TETosis are required. As
has been observed in neutrophils, we speculate that the
mechanisms by which TETs are formed will depend on the
stimulus and the duration of the stimulation.

It has also been reported that S100A9-deficient neutrophils
that are induced by S. aureus produce more mitochondrial
superoxide, resulting in the release of NETs through suicidal
NETosis. Increased suicidal NETosis failed to improve
neutrophil removal of S. aureus in isolation. Rather, enhanced
macrophage trapping and killing of bacteria was mediated by
increased phagocytosis and the direct action of antimicrobial
peptides (161). It has, therefore, been proposed that accelerated
NET formation can be an immune-mediated mechanism that
can amplify the antibacterial activity of macrophage (161).
However, it is important to highlight that various pathogens
such as S. aureus have developed survival mechanisms involving
the secretion of nucleases and DNAses that allow them to evade
and uncouple cooperation among immune cells through ET
degradation (161). Our proposed mechanism of suicidal
TETosis is illustrated in Figure 5 and may likely resemble
NETosis as previously described (156–160).
THE DUALITY OF EXTRACELLULAR TRAPS

Accumulation, incomplete removal, and improper localization of
ETs can promote inflammation and cellular damage during
infections and sterile inflammatory conditions (122). Although
TETs are an important component of the host antimicrobial
FIGURE 4 | Proposed mechanism for mitochondrial vital TET formation. In B cells, CpG-C activation initiates the ejection of full-sized mtDNA that is free of histones
(133). Free mtDNA enters the extracellular space in a web-like configuration, independent of TLR-9 activation. Following mtDNA ejection, the cell membrane is
preserved, and the number of mitochondria remain unaffected. The cycle is repeated upon CpG-C re-stimulation and mtDNA release is an active process. Whether
bacterial ligands can also induce ETs composed of mtDNA in T cells warrants further investigation. mtDNA, mitochondrial DNA; TLR, Toll-like receptor; ATP,
Adenosine triphosphate; CpG-C, Synthetic short single-stranded DNA molecules made of cytosine triphosphate deoxynucleotide. Created with BioRender.com.
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response against extracellular pathogens, we cannot preclude the
possibility of TETs contributing to pathology. In psoriasis, NETs
promote TH17 induction as part of the pathophysiology of the
disease (162). Additionally, correlation of presence of NET-
associated DNA with pathology has been implicated in other
inflammatory skin diseases (Figure 2). Still, exploration of
whether these observations are true, and whether C. acnes–
induced TETs are part of the inflammatory cascade observed
in acne is currently unclear (102, 163). In addition, it is plausible
that the combined activity of CAMPs and histone-loaded TETs
can lead to reduction of bacteria load within the PSU of acne
patients. Further studies are needed to identify whether TETs are
a double-edged sword in acne pathogenesis.

In summary, ETs have been implicated in diseases related to
tissue injury: impaired wound healing, autoinflammation,
autoimmunity, and tumor metastasis, highlighting their
contributory role in numerous dermatological pathologies.
Some select pathologies are discussed below.
ETS IN TISSUE INJURY AND
WOUND HEALING

Initially, it was proposed that ETs serve a protective function for
the host by controlling infections. During pathogen invasion, these
ETs can capture and degrade invasive microbes (164). However,
additional studies have revealed that dysfunctional release and
Frontiers in Immunology | www.frontiersin.org 10
clearance of ETs can harm the host and contribute to disease
(Figure 2). Structural components of ETs (i.e. decondensed DNA
skeleton tangled with histones and granules) can function as
damage associated molecular patterns (DAMPs), inciting
additional tissue and organ injury (165–168). For example, the
overabundance of histones decorating DNA filaments of traps
promotes platelet aggregation and platelet dependent thrombin
generation, resulting in disruption of circulation (159).
Fur thermore , NETs are assoc ia ted wi th enzymes ,
myeloperoxidase (MPO) and elastase, that activate the immune
system. When overexpressed, both enzymes can damage the
epithelial barrier of the lung (169). Additional research is
needed to elucidate whether TETs are associated with similar
peroxidase and protease enzymes and whether these enzymes
contribute to TET-induced tissue damage.

Degradation of the DNA backbone of ETs triggers the release
of antibacterial proteins and upregulates inflammatory cytokines,
such as type I interferon, IL-17, and IL-8 (170–173). While
hyperinflammation is important for fighting infections, after
injury, hypoinflammation is needed during tissue healing and
repair (174). Therefore, overabundance of TETs during repair is
counterproductive, unless there is continued need for protecting
against inadvertent infections. In the case of acne, overabundance
of TETs may be associated with hyperinflammation and tissue
damage, contributing to acne scarring. It is plausible that skin
conditions associated with aberrant wound healing, such as
keloids, may be related to dysregulated TET formation and
FIGURE 5 | Proposed mechanism for suicidal TETosis. Similar to neutrophils, we propose that upon activation of TLR and receptors for IgG-Fc, complement or cytokine
receptors on T cells, calcium is released from the endoplasmic reticulum into the cytoplasm. Higher levels of calcium within the cytoplasm, promote the activity of protein
kinase C (PKC). This further induces the assembly of both the membrane-bound and cytosolic subunits of NADPH oxidase (phagocytic oxidase, PHOX) into functional
complexes. This is followed by the release of reactive oxygen species (ROS), that causes the granules and the nuclear envelope to rupture. Following rupture both the
nuclear and cytoplasmic contents are able to mix. Enzymes associated with the nucleus and the cytoplasm go on to degrade the linker histone H1, further processes the
core histones (H2A, H2B, H3 and H4) and amplify the decondensation of chromatin. These events eventually lead to the rupture of the plasma membrane and the TETs
are released into the extracellular space (160). The release of TETs can lead to T cell death and the loss of viable T cell functions such as antigen recognition and cytokine
release. Enzymes that may mediate the proposed molecular processes are not known. Created with BioRender.com.
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removal, but evidence on TET formation in keloids is
currently lacking.
ETS IN AUTOINFLAMMATION
AND AUTOIMMUNITY

Prior research demonstrates that NET components activate
APCs, which present self-antigens to corresponding
lymphocytes, leading to autoreactivity. Presence of ETs within
the extracellular environment has been observed in various
autoimmune diseases, including psoriasis, rheumatoid arthritis,
and systemic lupus erythematosus (SLE) (175–177). In psoriasis,
NETs, their citrullinated histones and antigens stimulate
immunocompetent cells to produce antibodies against
cytoplasmic antigens (ANCAs) and antibodies against nuclear
antigens (ANAs) (175, 176). These antibodies act against
neutrophil-associated enzymes and activate neutrophils to
release more NETs (178). Autoantigens released by NETs
become the target of successive antibodies perpetuating the
development of autoimmune disease. In addition, abnormal
NET formation and inefficient degradation can also initiate
and/or facilitate autoimmune diseases (144, 169, 175, 176,
179). In SLE, ANCAs and ANAs lead to the generation of
immune complexes and chronic activation of plasmacytoid
dendritic cells (169). The inappropriate release of intracellular
autoantigens during apoptotic cell removal caused continual
production of autoantibodies; this cycle is considered the key
pathogenic mechanism in SLE (154, 169). By binding DNA and
cathelicidin (LL-37) of NETs, autoreactive antibodies form
autoantibody-DNA/LL-37 complexes, which can be detected
by other immune cells as a signal to “sustain” the autoimmune
response (154). A relationship between inadequate NET
degradation and SLE development has also been proposed
(169). The ability to degrade NETs increased during SLE
remission but decreased during relapse (176). Moreover,
patients with increased SLE severity had higher NET antibody
levels. In SLE, non-degraded NETs activate components of the
complement system, such as C1q, which breaks down NETs. The
opsonization of NETs and/or inhibition of DNase I activity were
hypothesized to be responsible for this process (176). Thus, the
continued presence and mis-regulated degradation of NETs
contribute to the autoimmunity.
ETS IN CANCER

Identification of ETs in blood and solid tumors of animals and
humans suggests that traps play a role in cancer. However, there
exists conflicting evidence as to whether ETs serve as pro- or
anti-tumoral factors (180, 181). For example, studies on NETs
have shown that several NET components, such as MPO,
proteinases, and histones are cytotoxic, whereas other studies
have proposed that NETs promote metastasis (182–184). By
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increasing the concentration of LPS and upregulating the
complement component, C3a, NETs induce more coagulation
and tumorigenesis, further feeding into a positive-feedback loop
that favors a pro-tumorigenic phenotype (185–187). These
potential oncological mechanisms have been described for
neutrophils but have yet to be studied in T cells. Given the
crucial role of T cells in cancer, exploration of TETs in cancer is
an exciting topic of interest.

Murine models demonstrate that ETs contribute to skin
cancer and inflammation-mediated skin tumor cell growth
(188, 189). NETs contribute to adverse reactions in murine
melanoma models, regardless of whether they are spontaneous
or immunotherapy-induced (190). In melanoma studies, IL-8
and type I IFNs act as potential therapeutic targets associated
with NETs (191–193).

TETs have not been investigated in cutaneous cancers, such as
cutaneous T-cell lymphomas (CTCL). For example, there is no
evidence regarding ET production in Sézary syndrome (SS), an
aggressive and rare leukemic form of CTCL (194). The
chemokine CXCL8 is highly expressed in CTCL skin lesions
and can act in concert with IL-8 and IL-17 to facilitate the
priming and recruitment of neutrophils to the CTCL
microenvironment. However, in CTCL patients, there is no
evidence demonstrating the release of NETs within the CTCL
tumor microenvironment, even though neutrophils isolated
from the peripheral blood of these patients are phenotypically
active (195). As the disease progresses, other cells such as
myeloid-derived suppressor cells become activated and secrete
ROS (196, 197). Increased ROS release has been linked to T cell
tolerance and unresponsiveness within CTCL skin lesions (198).
Additionally, if present within CTCL, neutrophils show
compromised functionality, with diminished ingestion and
intracellular killing of pathogens, as well as reduced NET
production. Moreover, impairment of the host immune
response against pathogens increases susceptibility to severe
infections, and complications observed in CTCL patients
(199, 200).

As the CTCL progresses, the tumor microenvironment is
associated with increasing expression of TH2 TFs and cytokines
(e.g. GATA-3, IL-4, IL-5, and IL-13) and declining levels of TH1
and TH17 associated TFs and cytokines (e.g. T-bet, RORgt, IL-12,
IL-17 and IFN-g) (201–207). Accordingly, late-stage CTCL is
dominated by a TH2 tumor microenvironment and small
numbers of TH1 cells and CD8+ T cells (205, 208–212). The
increased TH2-bias is believed to be a key process that suppresses
cellular immunity and anti-tumor responses in CTCL (213, 214).
It has also been observed that different cellular sources of IL-17
may exist within the CTCL microenvironment. However, these
IL-17-secreting cells fail to express the characteristic TH17
phenotype, indicating that IL-17 production may originate
from dysregulated signaling and cannot be classified as a true
TH17 response in SS (201, 215). Understanding how the low
numbers of neutrophils, TH1 and TH17 TETs promote or inhibit
tumorigenesis in CTCL may inform future development of skin
cancer therapies and treatments.
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RESEARCH GAPS IN TETS

Since the discovery of ETs two decades ago, substantial advances
in defining their role in immune-mediated antimicrobial activity
have been made (216). Processes related to their formation and
mechanism of action are being identified. It is now generally
accepted that ET formation is not unique to neutrophils as this
phenomenon has also been observed in other immune cells (60,
103–112). Furthermore, work from our lab and others
demonstrate that adaptive immune cells, namely antigen-
specific T cells, extrude ETs suggesting that lymphocyte ETs
serve as an important link between cells of the innate and
adaptive immune system. Recent findings provide new
perspectives on how T cell-derived ETs are involved in
antimicrobial responses and influence host immune
homeostasis. Though significant progress has been made
regarding ETs, the complete role of TETs in host defense and
inflammation is still unclear. More work is needed to elucidate
the unique role of TETs and how that may inform treatment of
ET-associated diseases.

Even though in vitro and in vivo formation of TETs has been
observed, huge research gaps exist in our knowledge about how
TETs form in general. Various particles and microbial agents can
induce the release of histone-coated DNA ETs by T cells, but
additional research is needed to identify the exact stimuli and
receptors that induce TET formation (60, 113, 133, 139).
Defining the distinctive characteristics of these stimuli is
critical to advancing our understanding of diseases with TET-
related pathophysiology. Equally important, research is needed
to understand how ET formation is blocked. For example, the
bacteria, Lactobacillus rhamnosus, inhibits NET release
suggesting that different microbial species can act as agonists
or antagonists of TET formation (217, 218). This brings up the
interesting possibility that agents that modulate the microbiome,
probiotics or antibiotics, may be beneficial in the management of
TET-related diseases. An improved understanding of the role
genetics play in TET formation and activity can also guide future
therapeutics. Some NET associated diseases, such as psoriasis,
have genetic component, so research efforts should pursue
putative gene variants that predispose individuals to TET
dysfunction. Understanding how host genetics influence TET
activity may help us prognosticate individuals who are at risk for
pathological conditions linked to extracellular traps.

Dissecting the mechanisms involved in TET induction and
release may inform how TET activity can be moderated. With
the introduction of novel computational and imaging algorithms
that utilize high content screening-cellomics platform, efficient
and precise detection of ETs are now possible (219). This high-
throughput screening method uses cell membrane specific DNA
dyes (permeable and impermeable) in situ to discern the cellular
and morphologic characteristics of ET-forming cells. The
combination of high-throughput screening with single-cell
analysis of morphological changes within the nucleus and
chromatin dynamics can provide precise detection of ET-
forming cells with attention to specificity while eliminating
user bias that is seen with other cell death assays. Furthermore,
combining live cell imaging with staining for cell death markers
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in situ will help identify the specific death pathway and thus,
discriminate between NETs, TETs, apoptosis, and necrosis (219).

An improved understanding of the uni-directional and/or bi-
directional communication pathways between TETs and
immune cells is also needed to fully understand the ultimate
cellular response to TETs. We know that NETs do not always
work in isolation. NETs can work cooperatively with
macrophages in granuloma formation. NETosis by itself does
not improve the killing potential of neutrophils against S. aureus
but rather it augments macrophage microbial killing (161). Even
though TH17 cells are adaptive immune cells,, the extracellular
trap timing and response are more characteristic of an innate
immune response; thus, TH17 cells may link the two arms of
immunity by working cooperatively with other cells. TH17 cells
recruit neutrophils and other proinflammatory cells to the
infection site, where neutrophils activate and promote
differentiation of TH17 cells, suggesting cross-talk between
innate and adaptive cells (220, 221). These cooperative
mechanisms have strong clinical relevance, as NETs have been
connected to tumor progression and metastasis (185). Therefore,
more research is needed to understand how TH17 cells
coordinate host defense mechanisms with other cells.

Insights into how ET formation acts as a conduit for various
immune cells, including neutrophils, T cells and macrophages, to
fight microbes cooperatively within the deeper layers of the skin
during acne disease is of particular importance. We have shown
that AMTH17 cells release TETs that are coated with histones as
part of the host antimicrobial defense. The fact that AMTH17 cells
release ETs implies that this TH17 subpopulation can act as an
important link between the innate and adaptive arms of the
immune response, which ensures the efficient capture and
destruction of invading microbes. However, there is a need to
delineate the specific CD4 + T cell populations that have a
capacity to release ETs, as the molecular markers that can be
used to identify, purify and isolate TET-forming T cells are yet to
be discovered. In the interim, it is possible that TET-forming
TH17 have a specific pro-inflammatory signature as TH17 cells
differentiated in the presence of IL-23 provoke EAE, but not
TH17 induced by IL-6 and TGFb alone (76). We are still in the
beginning of understanding how the cytokine milieu influence
the plasticity and heterogeneity of TH17 cells into either
pathologic or non-pathologic conditions within different
inflammatory settings. Yet, the verification of TH17 cell
plasticity in humans and its functional importance implies that
during pathological conditions, both anti-inflammatory and
antimicrobial therapeutics should be designed to specifically
target recruited cells while sparing TH17 subpopulations and
other tissue-resident cells that promote skin tissue repair.
Teasing apart, the likely, yin and yang activities associated with
TET-forming TH17 cells will be of future interest (60).

Many unanswered questions remain when it comes to TETs.
Future studies should focus on clarifying which pathologies,
including autoimmune diseases, cancer, and chronic
inflammation, that are associated with T cell derived ETs. In
doing so, we may also begin to identify autoantigens that may be
associated with TETs, thereby improving our understanding of
the underlying mechanisms contributing to these diseases.
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Simultaneously, we will gain a greater understanding and
appreciation for the critical protective role that TETs serve. As
ET and TET research unfolds, therapeutic opportunities to
exploit and control the formation, modulation, and regulation
of these ETs for the treatment of inflammatory and autoimmune
diseases may be on the horizon.
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