
 International Journal of 

Molecular Sciences

Article

The T2 Toxin Produced by Fusarium spp. Impacts
Porcine Duodenal Nitric Oxide Synthase
(nNOS)-Positive Nervous Structures—The
Preliminary Study

Andrzej Rychlik 1, Slawomir Gonkowski 2 , Ewa Kaczmar 1, Kazimierz Obremski 3 ,
Jaroslaw Calka 2 and Krystyna Makowska 1,*

1 Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in
Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland; andrzej.rychlik@uwm.edu.pl (A.R.);
ewa.kaczmar@uwm.edu.pl (E.K.)

2 Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in
Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland; slawomir.gonkowski@uwm.edu.pl (S.G.);
jaroslaw.calka@uwm.edu.pl (J.C.)

3 Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of
Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
kazimierz.obremski@uwm.edu.pl

* Correspondence: krystyna.makowska@uwm.edu.pl; Fax: +48-95234460

Received: 25 May 2020; Accepted: 15 July 2020; Published: 20 July 2020
����������
�������

Abstract: T2 toxin synthetized by Fusarium spp. negatively affects various internal organs and
systems, including the digestive tract and the immune, endocrine, and nervous systems. However,
knowledge about the effects of T2 on the enteric nervous system (ENS) is still incomplete. Therefore,
during the present experiment, the influence of T2 toxin with a dose of 12 µg/kg body weight (b.w.)/per
day on the number of enteric nervous structures immunoreactive to neuronal isoform nitric oxide
synthase (nNOS—used here as a marker of nitrergic neurons) in the porcine duodenum was studied
using the double immunofluorescence method. Under physiological conditions, nNOS-positive
neurons amounted to 38.28 ± 1.147%, 38.39 ± 1.244%, and 35.34 ± 1.151 of all enteric neurons in
the myenteric (MP), outer submucous (OSP), and inner submucous (ISP) plexuses, respectively.
After administration of T2 toxin, an increase in the number of these neurons was observed in all types
of the enteric plexuses and nNOS-positive cells reached 46.20 ± 1.453% in the MP, 45.39 ± 0.488% in
the OSP, and 44.07 ± 0.308% in the ISP. However, in the present study, the influence of T2 toxin on the
intramucosal and intramuscular nNOS-positive nerves was not observed. The results obtained in the
present study indicate that even low doses of T2 toxin are not neutral for living organisms because
they may change the neurochemical characterization of the enteric neurons.

Keywords: nitric oxide; nitric oxide synthase; nNOS; enteric nervous system; porcine; mycotoxins;
T2 toxin

1. Introduction

Mycotoxins are secondary metabolites of various fungi species. The main producers of these
harmful substances are Penicillium, Aspergillus, and Fusarium spp. [1]. The latter genus mostly
synthetizes toxins called trichothecenes which, due to differences in their chemical structure, are divided
into A, B, C, or D types. From among these four types, A and B trichothecenes show the strongest
toxicity and therefore they are the greatest threat to the health and life of humans and animals [2].
Type A trichothecenes includes, among others, T2 toxin (T2), HT2 toxin, diacetoxyscripenol, and
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neosolaniol—among which T2, commonly occurring in food and feed, is characterized by the highest
toxicity [2,3].

According to current knowledge, T2 is recognized as a mycotoxin, which causes a broad spectrum
of adverse effects on the living organism. Previous studies have shown that after exposure to the T2
toxin, the most intense changes appear in the digestive tract, as well as in the immune, endocrine, and
nervous systems. Moreover, it has caused toxicosis outbreaks in many countries, such as Japan, USA,
China, and Canada [4,5]. However, although it is known that T2 intoxication results in a number of
gastrointestinal symptoms, it also causes damage within the nervous system, and knowledge about
the effects of T2 on the enteric nervous system (ENS) is still incomplete [6,7].

Due to the presence of millions of neurons dispersed in the wall of the gastrointestinal (GI) tract,
the ENS is characterized by a high degree of functional autonomy [7,8]. Enteric neurons manage the
regulation of the majority of GI tract activities, such as intestinal motility, secretion of the digestive
enzymes, absorption of nutrients, intestinal blood flow, and many others [8,9].

Enteric nerve cells form intramural plexuses, whose location in the gastric and intestinal wall
depends on the segment of the GI tract and mammalian species. In the small intestine of large mammals
(including humans and pigs) there are three types of ganglionated intramural plexuses. In the smooth
muscular layer, between the longitudinal and circular fibers, is the myenteric plexus (MP). In turn,
within the submucous layer, two types of plexuses are distinguished. The first of them is the outer
submucous plexus (OSP), which lies close to the internal side of the circular fibers of the intestinal
muscular coat; and the second is the inner submucous plexus (ISP), which is situated right next to the
lamina propria of the mucosa [10–12]. Such organization of the enteric plexuses makes the porcine ENS
similar to the human enteric nervous system, but it should be underlined that, besides the building
and distribution of intestinal plexuses, the human and porcine enteric neurons are also similar in their
essential, neurochemical, physiological, and biochemical properties. For this reason, the domestic
pig is considered to be a good animal model for studies on the pathological processes occurring
in the human body influenced by the ENS [9,13], all the more so since it is known that the enteric
neurons can undergo structural, functional, or chemical changes as a result of various pathological
stimuli [6,9,10,14,15].

Complicated and multidirectional ENS functions are possible thanks to several dozen biologically
active substances produced by enteric neurons. To date—apart from acetylcholine, which is the main
ENS neurotransmitter—several other active substances have been described in the nervous structures
within the GI tract [6,8–10,14,16,17]. One of them is nitric oxide (NO), which unlike the majority of
neuronal factors in the ENS, is a gaseous neurotransmitter.

During studies on the nervous system (including ENS), a neuronal isoform of nitric oxide synthase
(nNOS), catalyzing the production of NO from L-arginine, is often used as a marker of nitrergic nervous
structures [9,18]. This is because NO is oxidized to nitrite and nitrate in a matter of seconds after
its synthesis. According to the current knowledge, nNOS-positive nervous structures are present
in the ENS of numerous species, including humans, and the number of nitrergic neurons depends
on the animal species and the studied segment of the GI tract [19–23]. In the ENS, nitric oxide is
classified as one of the most important inhibitory factors. Previous studies have reported that NO
causes relaxation of the gastrointestinal smooth muscles and inhibits the secretion of electrolytes and
intestinal hormones [24]. Furthermore, since nitric oxide is an important vasodilator, it is involved in
the regulation of mesenteric and intestinal blood flow [9,21].

However, many aspects of NO functions in intestinal neurons are not clear. Among others, the
participation of nitrergic enteric neuronal cells in pathological processes within the intestine is not
fully known. Some previous reports have suggested that NO has neuroprotective functions in the ENS
and participates in pathological processes in the intestine, however, knowledge of this topic is still
rather scarce [9,22,25].

Therefore, the present investigation studied the influence of T2 toxin on the nNOS-positive
nervous structures in the porcine duodenum and, due to the abovementioned high similarities in the
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organization and functioning of the ENS between humans and pigs, the results obtained during this
experiment will help to understand the mechanisms of the impact of T2 on the human digestive tract.

2. Results

In the present investigation, nervous structures immunopositive to nNOS were observed in all
types of enteric plexuses of both studied groups of animals.

Under physiological conditions, the number of nNOS-like immunoreactive (nNOS-LI) neurons
was relatively high in all types of plexuses studied. It reached up to 38.28 ± 1.147%, 38.39 ± 1.244%,
and 35.34 ± 1.151% of all neuronal cells labeled with PGP 9.5 in the MP (Figure 1), OSP (Figure 2),
and ISP (Figure 3), respectively. For nerve fibers, nNOS-positive structures were not so abundant.
The nNOS-LI nerves observed in the wall of the duodenum were generally slender and short. In the
mucosal layer, the average number of fibers immunoreactive to nNOS amounted to 9.66 ± 0.62 nerves
per observation field; whereas in the muscular layer, such nerves were more numerous and their
average number reached 24.73 ± 1.008.
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Figure 1. Distribution pattern of nerve cells immunoreactive to protein gene-product 9.5 (PGP 9.5)—used
as pan neuronal marker and neuronal isoform of nitric oxide synthase (nNOS) in the myenteric plexus
of porcine duodenum under physiological conditions (C) and after T2-toxin administration (T2);
the pictures are the result of the overlap of both stainings. The arrows point to neurons immunoreactive
for both PGP 9.5 and nNOS.
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Figure 2. Distribution pattern of nerve cells immunoreactive to protein gene-product 9.5 (PGP 9.5)—used
as pan neuronal marker and neuronal isoform of nitric oxide synthase (nNOS) in the outer submucous
plexus of porcine duodenum under physiological conditions (C) and after T2-toxin administration
(T2); the pictures are the result of the overlap of both stainings. The arrows are pointing neurons
immunoreactive for both—PGP 9.5 and nNOS.
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Figure 3. Distribution pattern of nerve cells immunoreactive to protein gene-product 9.5 (PGP 9.5)—used
as pan neuronal marker and neuronal isoform of nitric oxide synthase (nNOS) in the inner submucous
plexus of porcine duodenum under physiological conditions (C) and after T2-toxin administration
(T2); the pictures are the result of the overlap of both stainings. The arrows are pointing neurons
immunoreactive for both—PGP 9.5 and nNOS.

During the present study, the influence of T2 toxin on the nitrergic nervous structures was noted
in the majority of the studied ENS elements. In all types of the enteric plexuses, the observed changes
were noticeable and statistically significant. In contrast to neuronal cells, T2-induced fluctuations in
the density of intramucosal, intramuscular, and intraganglionic nerve fibers were not detected.

Among all types of the enteric plexuses, the greatest differences between control pigs and animals
treated with T2 were observed within the ISP, where the studied mycotoxin increased the percentage
of nNOS-LI perikarya to 44.07 ± 0.308% (by almost 9 percentage points—pp). In the OSP after T2 toxin
administration, the amount of nNOS-LI cells was 45.39 ± 0.488% and it was higher than in the control
animals by about 7 pp. Changes between T2 and C groups were observed in the MP as well. In this
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case, the percentage of neurons immunopositive to nNOS amounted to 46.20 ± 1.453%, and it was
higher by almost 8 pp in reference to the physiological state (Table 1).

Table 1. Nitric oxide synthase (nNOS)-like immunoreactive perikarya and nerve fibers in porcine
duodenum under physiological conditions (C group) and after administration of T2 toxin.

Part of the Intestinal Wall
C Group T2 Group

Pig 1 Pig 2 Pig 3 Pig 4 Pig 5 Pig 1 Pig 2 Pig 3 Pig 4 Pig 5

CML
A 21.925 24.2 28.15 25.15 24.2 23.95 22.9 23.675 22.925 24.2

average ± SEM 24.73 ± 1.008 23.53 ± 0.265

MP
B 502/186 511/214 506/202 503/186 512/182 503/250 511/243 512/246 507/212 506/222
C 37.05% 41.88% 39.92% 36.98% 35.55% 49.7% 47.55% 48.05% 41.81% 43.87%

average ± SEM 38.28 ± 1.147% * 46.20 ± 1.453% *

OSP
B 504/174 504/193 507/208 509/209 505/187 505/230 502/233 506/235 507/212 506/222
C 34.52% 38.29% 41,03% 41,06% 37,03% 45,54% 46,41% 46,44% 44,05% 44,49%

average ± SEM 38.39 ± 1.244% * 45.39 ± 0.488% *

ISP
B 502/185 501/184 503/191 506/164 507/166 500/220 504/222 505/218 501/226 500/220
C 36.85% 36.73% 37.97% 32.41% 32.74% 44.00% 44.05% 43.17% 45.11% 44.00%

average ± SEM 35.34 ± 1.151% * 44.07 ± 0.308% *

ML
A 7.45 9.675 11.225 10.25 9.675 8.3 9.825 9.675 8.75 9.225

average ± SEM 9.66 ± 0.62 9.16 ± 0.285

CML—circular muscle layer, MP—myenteric plexus, OSP—outer submucous plexus, ISP—inner submucous plexus,
ML—mucosal layer, CB—cell bodies, NF—nerve fibers. Statistically significant (p ≤ 0.05) differences between C
group and T2 group were marked with *. A—the average number of nNOS-positive nerve fibers per observation
field (0.1 mm2) in the particular animals. B—the number of cells PGP 9.5+/nNOS+ counted in particular animals.
C—the percentage of nNOS-positive cells in relation to the number of PGP 9.5—positive cells (treated as 100%).

As mentioned above, contrary to the enteric neurons, T2 toxin administration did not affect
the density of intramucosal, intramuscular, or intraganglionic nNOS-LI nerve fibers in the porcine
duodenum, and the slight differences in the number of such nerves noted in the mucosal and muscular
layers between both groups of animals were not statistically significant (Table 1). Moreover, T2 toxin
did not change the morphology of nitrergic nerves. In animals treated with the mycotoxin, such nerves
(like in the control animals) were rather delicate and thin.

During the present investigation, an average surface area of enetric ganglia was also studied
(Table 2). However, the differences between T2 and C groups were not statistically significant.

Table 2. Size [µm2] of the MP—myenteric plexus, OSP—outer submucous plexus, and ISP—inner
submucous plexus in porcine duodenum under physiological conditions (C group) and after
administration of T2 toxin.

C Group T2 Group

MP 2619.13 ± 142.09 2524.08 ± 123.87
OSP 1879.69 ± 95.45 1634.08 ± 92.95
ISP 795.83 ± 46.2 695.81 ± 40.42

3. Discussion

The results of the present study indicate that nNOS is widely distributed in the nervous structures
located in the duodenum of the domestic pig. This observation is in agreement with previous reports
describing the presence of nitrergic neuronal cells and fibers in various fragments of the GI tract of
several animal species, including humans [9,21,26–28]. On the other hand, it should be noted that
knowledge about the distribution of nNOS in the ENS of the duodenum is rather scarce [9,14].

The majority of nitrergic neurons in the ENS belong to the class of nonadrenergic noncholinergic
(NANC) neurons showing inhibitory activity [29]. NO in the GI tract mostly takes part in the relaxation
of the intestinal muscles inhibiting the contractility of the smooth muscles in all segments of the GI tract
from the esophagus to the rectum [19,30,31]. Moreover, NO is involved in the control of the secretion
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of electrolytes and intestinal hormones [22] as well as in the regulation of the mesenteric and intestinal
blood flow through vasodilatory activity [21,26,32]. It should be noted that the role of this substance in
the gastrointestinal secretion is not unequivocal. Although NO significantly reduces the gastric acid
secretion [33], it increases the secretory activity within the duodenum and colon [24,34,35]. Previous
studies have also shown that NO (strong inhibitory factor in the GI tract) is present in a small number
of neurons synthesizing acetylcholine (the main stimulatory neuronal substance in the GI tract) [36].
The functions of such neurons, in which two neuronal factors have an opposite effect, are not clear.
Some studies suggest that the abovementioned colocalization may occur in the myenteric descending
interneurons taking part in the peristalsis [36].

Moreover, it has been noted that NO acts as a cytoprotective agent during some intestinal injuries
and endotoxicities, mainly via the regulation of the mucosal blood flow [37,38]. It has also been
reported that the endogenous release of this gaseous neurotransmitter induces protective effects of
other active substances in the nervous system within the GI tract [39–41].

During the present study, the influence of T2 toxin on the number of nNOS-positive neurons has
been observed in all parts of the ENS within the duodenum. As knowledge about the impact of T2
toxin on the ENS is fragmentary and NO in the enteric neurons can play multidirectional functions,
the mechanisms underlying the observed changes are not clear. The observed fluctuations may result
from various processes, including stimulation of the transcription and/or translation steps of the
nNOS synthesis, as well as from perturbations in the transport of this molecule from perikaryon to
presynaptic endings, where it participates in NO formation. Moreover, the increase in the number of
nitrergic neurons may result from the abovementioned T2 toxin-induced stimulation together with
cholinergic and nitrergic neurons to enhance their nNOS expression with the simultaneous inhibition
of enzymes participating in acetylcholine synthesis. It is more likely that a decrease in the number of
cholinergic neurons in the ENS has been reported under the impact of toxic substances [42].

The increase in the number of nNOS-LI enteric nervous structures observed, especially in the
MP, may be connected with the anorectic activity of T2 toxin and its relaxant impact on the intestinal
muscles [2,4,5]. Although no symptoms (such as lack of appetite or constipation) were observed during
the experiment, changes associated with neuron activity may be the first signs of intoxication occurring
before clinical symptoms.

The other reason for the observed changes may be connected with the relatively well known
proinflammatory and damaging activity of T2 toxin, which is considered to be an important risk factor
for leucocyte deficiency, Kashin–Beck disease, and alimentary toxic aleukia (ATA) [5,43,44]. This is
very likely in view of the close interrelations between intestinal epithelial cells, the immunological
system and the ENS, and the participation of NO in immune processes [45]. It has been previously
reported that, depending on the inflamed tissue, NO may participate in both anti-inflammatory and
proinflammatory reactions [46]. However, in the digestive tract, NO is primarily known as an important
proinflammatory factor [47], which causes changes in the cytokine levels and takes part in processes
associated with inflammatory bowel disease [14,48].

Another cause of the noted changes may be connected with the neurotoxic effects of T2 toxin [3].
Therefore, an increase in the number of nNOS-LI neurons noted in the present study may be associated
with neuroprotective functions of NO. This thesis is supported by the fact that some previous studies
have described the participation of NO in enhancing enteric neuron resistance to damaging factors [25]
and the influence of nNOS on the expression of vital transcription factors in the enteric plexuses [49].
Nevertheless, it must not be forgotten that NO is also known as a strong damaging factor in the
neuronal tissue [50] because, as a very active molecule, it may react in the cell body with many other
substances leading to the blocking of important enzymes and contributing to the production of free
radicals [50]. Such processes take place where the amount of NO in the tissues is high. So, it cannot
be excluded that the increase in the percentage of nNOS-LI neurons noted in the present study is not
connected with neuroprotective but, on the contrary, with neurodegenerative and neurotoxic processes
induced by the T2 toxin.
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Fluctuations in the number of nitrergic neurons under T2 intoxication may also result from changes
in sensory and pain stimuli conduction. Some studies have described the presence of NO in the afferent
nervous structures, including neurons supplying the GI tract [51], which may suggest the participation
of NO in mechanisms involved in sensory processes. Although the doses of T2 used in the present
study were low and no symptoms of the inflammatory processes and/or pain perception were observed
during the study, it cannot be ruled out that an increase in the percentage of nNOS–LI neurons are the
first sign of subclinical inflammatory processes and changes in sensory stimuli conduction.

It should also be noted that in the present study, the animals were treated with relatively low
doses of T2 toxin. The doses used in the present study are lower than the lowest observed adverse
effect level (LOAEL) for pigs established by the European Union. Therefore, the present study has
shown that even low doses of T2 toxin may change the expression of nNOS in the ENS.

4. Materials and Methods

Ten immature female pigs of the Large White Polish breed (8 weeks old, 20 kg body weight (b.w.))
were used during the present study. The animals were obtained from a commercial fattening farm
located in the vicinity of Olsztyn (Poland). After an adaptation period (five days), the animals were
randomly divided into two groups of five gilts. One of them served as the control group (C group),
and the second was the experimental group (T2 group). Each day, the animals were given capsules
orally for the next 42 days. The capsules given to control animals were empty, while those given to the
T2 group were filled with T2 toxin in a dose of 12 µg/kg b.w./day, which was calculated in relation to
the current body weight of animals. This dose may be considered as a relatively low dose of T2 toxin,
because it is clearly lower than the lowest observed adverse effect level (LOAEL) in pigs, established
by the European Food Safety Authority at the level of 29 µg/kg b.w. per day [52].

Pigs were kept under standard laboratory conditions with access to food and water ad libidum
as described previously by Makowska et al. [6], and all procedures were conducted in agreement
with the directions of the Local Ethical Committee for Animal Experiments in Olsztyn (Poland)
(decision from 28 November 2012, No. 73/2012/DTN). To avoid the influence of additional mycotoxin
contamination, the feed used in the experiment was tested for the presence of these substances
according to methods described previously by Makowska et al. [6] and contamination of feed with
mycotoxins was not observed.

For the premedication and euthanasia of animals, which was made on the 43th day of the
experiment, Stressnil (Janssen, Beerse, Belgium, 75 µL/kg b.w.) and an overdose of sodium thiopental
(Thiopental, Sandoz, Kundl, Austria) were used, respectively. Tissues were collected from all pigs
immediately after the death of the animal. Duodenal fragments (about 2 cm-long, 4–5 cm away
from the pylorus) were fixed for one hour in a solution of 4% buffered paraformaldehyde (pH 7.4).
These tissues were then transferred into the phosphate buffer (0.1 M, pH 7.4, at 4 ◦C) for three days
with a daily exchange of this solution. On the fourth day, fragments of the duodenum were put into
18% phosphate-buffered sucrose, where they were stored for 3 weeks at 4 ◦C. The next step of tissue
preparation was freezing at −22 ◦C in order to further cutting them into 14 µm-thick sections on
microtome (Microm, HM 525, Walldorf, Germany). The cutting was performed perpendicular to the
lumen of the duodenum.

The routine double-labeling immunofluorescence method used in this study was described
previously by Gonkowski [17].

Briefly, this technique was performed as follows. Before labeling, the slides with tissue fragments
were taken out of the freezer and dried for 45 min at room temperature (rt). For the next hour, they were
incubated at rt with blocking solution (10% goat serum, 0.1% bovine serum albumin (BSA), 0.01% NaN3,
Triton X-100, and thimerosal in phosphate-buffered saline - PBS). For the immunofluorescence labeling,
duodenal fragments were incubated overnight (rt, humid chamber) with a mixture of two antibodies
raised in different species directed toward: pan-neuronal marker protein gene-product 9.5 (PGP 9.5,
mouse monoclonal antibody, catalogue No. 7863-2004, Biogenesis, UK, working dilution 1:2000) and a
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marker of nitrergic neuron neuronal isoform of nitric oxide synthase (nNOS, rabbit polyclonal antibody,
catalogue no AB5380, MercMillipore, Darmstadt, DEU, working dilution 1:6000). The visualization of
complexes of primary antisera bounded to appropriate antigen was made by the incubation (1 h, rt.) of
tissue fragments with the mixture of two secondary antibodies conjugated with two types of Alexa
Fluors: Alexa Fluor 488 (donkey antimouse IgG) and Alexa Fluor 546 (donkey antirabbit IgG). Both
antibodies conjugated with Alexa Fluors were from Invitrogen (Carlsbad, CA, USA) and their working
dilution was 1:1000. After each step of the immunofluorescence method, slides were rinsed with PBS
(3 × 15 min, pH 7.4).

Labelled duodenum fragments were analyzed with an Olympus BX51 microscope with
epi-fluorescence and appropriate filter sets connected with an Olympus XM10 camera.

For the exclusion of nonspecific labeling, three routine control tests of the antibodies were
performed, i.e., preabsorption of the antiserum with the appropriate antigen, omission and replacement
of primary antiserum by nonimmune serum.

To determine the influence of T2 toxin on nitrergic neuronal cells, the percentage of nNOS-like
immunoreactive neurons in relation to all neuronal cells immunoreactive to protein gene product 9.5
(PGP 9.5—used a pan-neuronal marker) was evaluated. For this purpose, at least 500 PGP 9.5-positive
perikaryons (only cells with clearly visible nuclei) in every type of duodenal enteric plexuses from each
animal were examined for the presence of nNOS, and the number of PGP 9.5-LI cells was treated as
100%. The obtained results were pooled and presented as the mean percentage± SEM. For cell counting,
at least 10 fragments of the duodenum obtained from each animal spaced at least 150 µm apart were
included in the study. This method was used to avoid double-counting the same perikaryons.

For the analysis of the number of nNOS-positive nerve fibers in the muscular and mucosal layers,
all nerves immunoreactive to nNOS in the microscopic observation field (0.1 mm2) were counted.
The counting of nerves was performed in 4 sections per animal with 5 fields per section. The obtained
results were pooled and presented as the mean number of nerves ± SEM.

The average surface area of enetric ganglia (performed on 100 randomly selected ganglia from
each type of the enteric plexus) was evaluated with ImageJ 7.1 (NIH open source software, Bethesda,
MD, USA).

Student’s t-test was used for statistical analysis (Statistica 12, StatSoft, Inc., Cracow, Poland).
Statistically significant differences were considered significant at p < 0.05.

5. Conclusions

In summary, the reason for the observed changes in the number of nNOS-LI nervous cells in the
duodenal ENS under the impact of T2 toxin may be multidirectional, and the exact mechanisms of
these processes need further studies. However, the present research has demonstrated that nitrergic
neurons in the ENS participate in mechanisms connected with the influence of T2 toxin on the GI tract,
and even low doses of this substance may impact a living organism. Therefore, exposure to even small
amounts of this mycotoxin may be a threat to the health of both humans and animals.
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27. Gonkowski, S.; Kamińska, B.; Landowski, P.; Całka, J. Immunohistochemical distribution of cocaine- and
amphetamine-regulated transcript peptide-like immunoreactive (CART-LI) nerve fibers and various degree
of co-localization with other neuronal factors in the circular muscle layer of human descending colon. Histol.
Histopathol. 2012, 28, 851–858. [PubMed]

28. Takeda, M.; Miyahara, K.; Sueyoshi, R.; Arakawa, A.; Lane, G.J.; Yamataka, A. Innervation of the entire
internal anal sphincter in a mouse model of Hirschsprung’s disease: A first report. Pediatr. Surg. Int. 2018,
35, 209–214. [CrossRef] [PubMed]

29. King, B.F. Purinergic signalling in the enteric nervous system (An overview of current perspectives).
Auton. Neurosci. 2015, 191, 141–147. [CrossRef] [PubMed]

30. Murray, J.; Du, C.; Ledlow, A.; Bates, J.N.; Conkin, J.L. Nitric oxide: Mediator of nonadrenergic
noncholinergicresponses of opossum esophagal muscle. Am. J. Physiol. 1991, 261, 401–406. [CrossRef]

31. Sarna, S.K.; Otterson, M.F.; Ryan, R.P.; Cowles, V.E. Nitric oxide regulates migrating motor complex cycling
and its postprandial disruption. Am. J. Physiol. 1993, 265, 759–766. [CrossRef]

32. Watkins, D.J.; Besner, G.E. The role of the intestinal microcirculation in necrotizing enterocolitis.
Semin. Pediatr. Surg. 2013, 22, 83–87. [CrossRef]

33. Lanas, A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther. 2008, 10, S4. [CrossRef]
34. Beck, M.; Schlabrakowski, A.; Schrödl, F.; Neuhuber, W.; Brehmer, A. ChAT and NOS in human myenteric

neurons: Co-existence and co-absence. Cell Tissue Res. 2009, 338, 37–51. [CrossRef] [PubMed]
35. Stanek, A.; Gadowska-Cicha, A.; Gawron, K.; Wielkoszyński, T.; Adamek, B.; Cieślar, G.; Wiczkowski, A.;
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