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Abstract 

YTHDF2 is responsible for maintaining the dynamic N6-methyladenosine (m6A) modification balance and 
influences a variety of cancers. We tested whether YTHDF2 gene rs3738067 A>G polymorphism is related to 
Wilms tumor by genotyping samples of Chinese children (450 cases and 1317 controls). However, the 
rs3738067 A>G polymorphism showed no statistical significance with Wilms tumor susceptibility. Stratification 
analysis also revealed that there was no remarkable association of rs3738067 variant AG/GG genotype with 
Wilms tumor risk in every subgroup (age, gender, and clinical stages). In all, the results indicated YTHDF2 gene 
rs3738067 A>G polymorphism could not alter Wilms tumor risk significantly. 
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Introduction 
Wilms tumor (nephroblastoma) is a typical 

common seen embryonal kidney cancer in childhood 
[1]. Its prevalence was about 1 in 10,000 children in 
Western populations [2], whereas 3.3 in one million 
children in China [3]. Wilms tumor usually represents 
epithelial, undifferentiated/blastemal, and stromal 
components in varying proportions [4, 5]. Moreover, 
Wilms tumor also displays heterologous elements 
such as cartilage, osteoid, and neural elements [6-8]. 
This heterogeneity suggests a complexity to the 
underlying causes of Wilms tumor [9]. 

Knowledge of the genetic underpinnings of 
Wilms tumor is growing. In 1990, the WT1 gene was 

first cloned as a Wilms tumor suppressor gene [10]. 
Subsequently, mutations in WTX and CTNNB1, loss of 
imprinting (LOI), or loss of heterozygosity (LOH) at 
11p15 were found to contribute to Wilms tumor 
development [11-14]. Moreover, multiple genetic 
variants have been identified as Wilms tumor risk loci 
in genetic association studies [15-18]. However, all the 
identified gene mutations or single nucleotide 
polymorphisms (SNPs) could only explain a small set 
of the etiology of Wilms tumor [19, 20]. Thus, 
identification and characterization of more variants 
are indispensable in better unraveling the full genetic 
spectrum of Wilms tumor. 
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N6-methyladenosine (m6A) is a prevalent 
internal modification of mRNAs, taking up >80% of 
all RNA base methylation [21]. It regulates the 
processing, localization, translation, and eventual 
decay of RNA [22]. m6A modification is deposited by 
the methyltransferase complex (writer) composed of 
METTL3, METTL14, and WTAP [23]. Such 
modification could be reversed by m6A demethylases 
(erasers) including FTO and ALKBH5. Meanwhile, 
m6A associated RNA binding proteins (readers), 
including YTHDF1-3 and YTHDC1, also function in 
m6A modification by modulating mRNA fate [24, 25]. 
m6A modification is highly involved in the 
carcinogenesis and progression of multiple cancers 
[26-33]. YTHDF2, an m6A reader, usually recognizes 
m6A in the 3’-UTR of mRNA, leading to mRNA 
degradation [34]. The contribution of YTHDF2 gene to 
oncogenesis has been partly clarified, whereas 
correlations between YTHDF2 gene SNPs and Wilms 
tumor risk have not been analyzed. The current study 
addresses the association between YTHDF2 gene 
SNPs and Wilms tumor risk among children of 
Chinese ancestry. 

Materials and Methods 
Study subjects 

We successfully enrolled 450 cases and 1317 
controls to participate in this project. The cases were 
newly diagnosed and histopathologically confirmed 
to be Wilms tumor. Control subjects were healthy 
volunteers with no underlying medical disorder. 
Controls and cases were frequency-matched by 
geographically ethnicity, age, and gender. All subjects 
were Han Chinese children to lessen the genetic 
background differences. All subjects’ guardians 
provided written consent before accepting any 
study-related activity. Our research was approved by 
the Institutional Review Board of the participating 
hospitals and conducted in accordance with the 
principles of the Declaration of Helsinki. 

Polymorphism selection and genotyping 
The selection of YTHDF2 gene rs3738067 A>G 

was based on previously described criteria [35-37]. 
Selection criteria were briefly depicted below: (1) the 
minor allele frequency (MAF) reported in HapMap 
was > 5% for Chinese Han subjects; (2) putative 
functional potentials SNPs located in the 5’- flanking 
region, exon, 5’- untranslated region (5’ UTR), and 3’ 
UTR, which might affect transcription activity or 
binding capacity of the microRNA binding site; (3) 
SNPs in low linkage disequilibrium with each other 
(R2<0.8). YTHDF2 gene rs3738067 A>G is located in 
transcription factor binding site (TFBS). DNA was 
extracted from blood using QIAamp DNA Blood mini 

kit (QIAGEN Inc., Valencia, CA). Genotyping was 
carried out using TaqMan technology (Applied 
Biosystems, Foster City, CA) [36]. The conditions of 
reactions were set as follow: pre-read stage at 60 °C 
for 30 seconds, holding stage at 95 °C 10 minutes, 
repeated 45 cycles each of denaturation at 95 °C for 15 
seconds, annealing and extension at 60 °C for 1 
minute. For quality control purposes, 10% of the 
samples genotyped were randomly duplicated 
blindly. Quality control analysis showed a 
concordance rate of 100%. 

Statistical analysis 
Chi-square test (for categorical variables) and 

Student t-test (for continuous variables) were 
employed to evaluate clinical variables differences in 
the case and control groups. A goodness-of-fit χ2 test 
served to know whether SNP rs3738067 A>G in the 
controls were agreed with Hardy-Weinberg 
equilibrium (HWE). The association between 
rs3738067 A>G and Wilms tumor risk was estimated 
by odds ratios (ORs) with 95% confidence intervals 
(CIs) calculated by logistic regression analyses. 
Statistical analyses were performed with SAS v10.0 
(SAS Institute Inc., Cary, NC) and statistical 
significance was considered when P < 0.05. 

Results 
Population characteristics 

Baseline characteristics of Wilms tumor cases 
and controls are shown in Table S1. 450 cases and 
1317 controls were well matched in terms of age 
(P=0.668) and gender (P=0.157). Among the cases, 137 
cases (30.44%) were classified into clinical stage I, 122 
(27.11%) into clinical stage II, 119 (26.44%) into clinical 
stage III, 54 (12.00%) into clinical stage IV, and 18 
(4.00%) could not be classified. 

Association between YTHDF2 rs3738067 A>G 
polymorphism and Wilms tumor risk 

A total of 441 cases and 1316 controls were 
successfully genotyped. The genotype of rs3738067 
A>G and its association with Wilms tumor risk is 
shown in Table 1. The P value of HWE in control 
population of rs3738067 A>G was 0.860, meaning no 
violation of HWE. No significant difference in 
frequencies of genotype at rs3738067 A>G was 
observed between cases and controls (AG vs. AA: 
adjusted OR=0.91, 95% CI=0.73-1.15, P=0.444; GG vs. 
AA: adjusted OR=1.00, 95% CI=0.64-1.54, P=0.981; 
additive: adjusted OR=0.96, 95% CI=0.80-1.14, 
P=0.619; dominant: adjusted OR=0.93, 95% 
CI=0.75-1.15, P=0.491; recessive: adjusted OR=1.03, 
95% CI=0.67-1. 85, P=0.892). 
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Table 1. Association between YTHDF2 rs3738067 A>G polymorphism and Wilms tumor risk 

Genotype Cases (N=441) Controls (N=1316) P a Crude OR (95% CI) P Adjusted OR (95% CI) b P b 
rs3738067 (HWE=0.860)       
AA 253 (57.37) 731 (55.55)  1.00  1.00  
AG 158 (35.83) 498 (37.84)  0.92 (0.73-1.15) 0.457 0.91 (0.73-1.15) 0.444 
GG 30 (6.80) 87 (6.61)  1.00 (0.64-1.55) 0.987 1.00 (0.64-1.54) 0.981 
Additive   0.632 0.96 (0.80-1.14) 0.632 0.96 (0.80-1.14) 0.619 
Dominant 188 (42.63) 585 (44.45) 0.505 0.93 (0.75-1.15) 0.505 0.93 (0.75-1.15) 0.491 
Recessive 411 (93.20) 1229 (93.39) 0.889 1.03 (0.67-1.59) 0.888 1.03 (0.67-1.58) 0.892 
HWE, Hardy-Weinberg equilibrium; OR, odds ratio; CI, confidence interval. 
a χ2 test for genotype distributions between Wilms tumor patients and cancer-free controls. 
b Adjusted for age and gender. 

 

Table 2. Stratify analysis of YTHDF2 rs3738067 A>G polymorphism with Wilms tumor risk 

Variables rs3738067 (case/control) Crude OR P Adjusted OR a P a 
AA AG/GG (95% CI) (95% CI) 

Age, month       
≤18 84/272 59/228 0.84 (0.58-1.22) 0.357 0.86 (0.59-1.25) 0.431 
>18 169/459 129/357 0.98 (0.75-1.28) 0.891 1.00 (0.76-1.31) 0.990 
Gender       
Females 111/320 96/248 1.12 (0.81-1.54) 0.501 1.13 (0.82-1.55) 0.467 
Males 142/411 92/337 0.79 (0.59-1.07) 0.123 0.79 (0.59-1.07) 0.129 
Clinical stages       
I 83/731 54/585 0.81 (0.57-1.17) 0.259 0.82 (0.57-1.17) 0.274 
II 70/731 49/585 0.88 (0.60-1.28) 0.491 0.88 (0.60-1.28) 0.500 
III 63/731 54/585 1.07 (0.73-1.57) 0.723 1.05 (0.72-1.54) 0.809 
IV 29/731 23/585 0.99 (0.57-1.73) 0.975 0.98 (0.60-1.71) 0.937 
I+II 153/731 103/585 0.84 (0.64-1.11) 0.214 0.84 (0.64-1.11) 0.221 
III+IV 92/731 77/585 1.05 (0.76-1.44) 0.785 1.02 (0.74-1.41) 0.901 
OR, odds ratio; CI, confidence interval. 
a Adjusted for age and gender, omitting the corresponding variable. 

 

Stratification analysis 
We further performed stratification analysis 

based on age, gender, and clinical stages (Table 2). 
Similarly, we did not observe any association between 
the rs3738067 A>G polymorphism and Wilms tumor 
risk in all subgroups. 

Discussion 
The current knowledge of genetic predisposition 

to Wilms tumor is incomplete. SNPs in m6A-related 
genes are highly implicated in the risk of cancer. We 
hypothesized YTHDF2 gene SNPs may also influence 
the risk of Wilms tumor. This pilot study provides the 
first indication that YTHDF2 gene rs3738067 A>G 
could not impact Wilms tumor risk in Chinese 
children. 

The final consequences of m6A modification on 
mRNA fate are executed by “reader” proteins. These 
proteins mainly included the YTH family (YTHDC1-2 
and YTHDF1-3), HNRNPA2B1, and eIF3. YTHDF2 
recognizes m6A mRNA within the GACU/A 
consensus to induce degradation of methylated 
transcripts [38]. Cytoplasmic YTHDF1 and YTHDF3 
could bind to m6A to initiate the translation of 
m6A-containing transcripts [39], while IGF2BP protein 
could enhance the stability of target mRNA [40]. 

Growing evidence has been added to support the 
critical role of YTHDF2 in the regulation of cancer cell 
proliferation and migration. Jasmin Paris et al. [41] 
found that YTHDF2 is highly expressed across 
multiple human acute myeloid leukemia (AML) and 
is required for initiation and propagation in AML. 
YTHDF2 shortens the half-life of various m6A 
transcripts that contribute to the overall integrity of 
self-renewing leukemic stem cells (LSCs) function. 
Therefore, YTHDF2 could be treated as a unique 
therapeutic target for AML therapy. In hepatocellular 
carcinoma (HCC), YTHDF2 was found to be reversely 
associated with the survival of patients. Knockdown 
of YTHDF2 resulted in impaired stemness in liver 
cancer cells. Mechanistically, YTHDF2 could regulate 
m6A methylation of OCT4 mRNA and thus promote 
the liver cancer stem cell phenotype and HCC 
metastasis [42]. Xie et al. [43] found that the 
METTL3/YTHDF2 m6A axis contributed to bladder 
cancer progression by directly degrading the mRNAs 
of the tumor suppressors KLF4 and SETD7. YTHDF2 
was also found to be upregulated in lung cancer 
tissues and promotes lung cancer cell growth. 
Mechanistically, YTHDF2 acts as a lung cancer 
promoter to facilitate 6-phosphogluconate 
dehydrogenase (6PGD) mRNA translation through 
binding to the m6A modification site of 6PGD [44]. 
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Contributions of the m6A gene to cancer are 
highly acknowledged, yet research on m6A critical 
gene SNPs on cancer risk is still at the primary stage. 
Multiple SNPs located in m6A critical genes have been 
found to impact the risk of cancer. Our previous 
studies also revealed the involvement of m6A gene 
SNPs in Wilms tumor [45-47]. For YTHDF2 gene SNPs 
and cancer risk, only one study has been conducted. 
In 2020, Meng et al. [48] performed the first genetic 
association study regarding m6A modification critical 
gene SNPs and cancer risk. They genotyped 240 SNPs 
within 20 m6A modification-related genes in samples 
of 2082 colorectal cancer cases and 2308 healthy 
controls. One SNP, rs4654320, in the YTHDF2 gene 
was included in the analysis. However, all the SNPs 
including YTHDF2 rs4654320 could not predispose to 
colorectal cancer, except for one SNP rs118049207 in 
the SND1 gene. In 2012, a genome-wide association 
study was carried out on Wilms tumor. The authors 
used cases recruited through oncology clinics in 
North America to identify genetic variants that confer 
susceptibility to Wilms tumor. They selected SNPs 
that demonstrated an association of a significance 
level of P<5×10-5 for the replication phase. They failed 
to detect YTHDF2 gene SNPs that were associated 
with Wilms tumor risk [14]. Until now, no available 
reports have been carried out to explore the role of 
YTHDF2 gene SNPs on Wilms tumor risk. Thus, here 
we set as a pioneer to determine the role of YTHDF2 
gene SNPs on Wilms tumor risk. The current clinical 
analysis indicated YTHDF2 rs3738067 A>G could not 
impact Wilms tumor risk in Chinese children. We 
then analyzed the role of rs3738067 A>G in Wilms 
tumor risk using stratification analysis but still 
obtained negative results. Several potential reasons 
may help to interpret these null relationships: 1) the 
weak impact of SNP rs3738067 A>G; 2) the 
insufficient statistical power caused by moderate 
sample size; 3) influence of other potential pertinent 
factors, including modifications of environmental 
factors (parental exposures to pesticides, paternal 
occupation) [49, 50] and genetic-environmental 
factors. 

Among the weaknesses are that the relatively 
small sample size of the study is underpowered to 
detect the weak impact of SNPs. In addition, the 
outcome of variant rs3738067 A>G on Wilms tumor 
risk was only assessed by genetic analysis. 
Environmental factors that greatly modified the risk 
of Wilms tumor remained unaccounted in the current 
study. Moreover, the risk variant identification here 
was only conducted in Chinese descendants, whether 
the effect of YTHDF2 gene rs3738067 A>G can be 
generalized to other ethnicities needs to be confirmed. 
Last, the relationship was only determined in the 

genetic model. The relationship between YTHDF2 and 
Wilms tumor from the protein level is warranted to be 
determined. 

Taken together, our results suggested that the 
YTHDF2 rs3738067 A>G polymorphism did not show 
a significant association with the risk of Wilms tumor 
in a population of Chinese children. Investigations are 
warranted to verify this assessment and to further 
evaluate the underlying role of YTHDF2 rs3738067 
A>G on the risk for Wilms tumor. 
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