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Acute rejection (AR) is closely associated with renal allograft dysfunction. Here, we

utilised RNA sequencing (RNA-Seq) and bioinformatic methods to characterise the

peripheral blood mononuclear cells (PBMCs) of patients with acute renal allograft

rejection. Pretransplant blood samples were collected from 32 kidney allograft donors

and 42 corresponding recipients with biopsies classified as T cell-mediated rejection

(TCMR, n = 18), antibody-mediated rejection (ABMR, n = 5), and normal/non-specific

changes (non-AR, n = 19). The patients with TCMR and ABMR were assigned to the

AR group, and the patients with normal/non-specific changes (n = 19) were assigned

to the non-AR group. We analysed RNA-Seq data for identifying differentially expressed

genes (DEGs), and then gene ontology (GO) analysis, Reactome, and ingenuity pathway

analysis (IPA), protein—protein interaction (PPI) network, and cell-type enrichment

analysis were utilised for bioinformatics analysis. We identified DEGs in the PBMCs of

the non-AR group when compared with the AR, ABMR, and TCMR groups. Pathway

and GO analysis showed significant inflammatory responses, complement activation,

interleukin-10 (IL-10) signalling pathways, classical antibody-mediated complement

activation pathways, etc., which were significantly enriched in the DEGs. PPI analysis

showed that IL-10, VEGFA, CXCL8, MMP9, and several histone-related genes were the

hub genes with the highest degree scores. Moreover, IPA analysis showed that several

proinflammatory pathways were upregulated, whereas antiinflammatory pathways were

downregulated. The combination of NFSF14+TANK+ANKRD 33 B +HSPA1B was able

to discriminate between AR and non-AR with an AUC of 92.3% (95% CI 82.8–100).

Characterisation of PBMCs by RNA-Seq and bioinformatics analysis demonstrated gene

signatures and biological pathways associated with AR. Our study may provide the

foundation for the discovery of biomarkers and an in-depth understanding of acute renal

allograft rejection.
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INTRODUCTION

Kidney transplantation is the optimal choice for patients with
end-stage renal disease (ESRD). However, acute rejection (AR)
cannot be avoided easily when transplanting tissue or cells from
a genetically different donor to the graft recipient because the
alloantigen of the donor induces an immune response against the
graft in the recipient (1).

Acute rejection can occur at any time following
transplantation, usually within days to weeks. It is classified as
antibody-mediated rejection (ABMR) or acute T cell-mediated
rejection (TCMR). In recent years, the overall incidence of
AR has decreased, and graft survival has improved with the
use of effective immunosuppressive therapy. Currently, AR
occurs in approximately 10–20% of cases; however, significant
improvement in long-term allograft survival rates remains
unrealised (2–4). It has been reported that graft failures occur
if AR occurs, even after immunosuppressive treatment, and
each episode of rejection is closely associated with a poor graft
survival rate (5, 6).

Therefore, investigation into the signature of AR recipients
is crucial for understanding the potential pathogenesis and
identifying effective biomarkers of rejection. Recently, there have
been many studies on biomarkers of allograft rejection. For
example, many transplant centres apply donor-derived free DNA
for testing AR, which can be positive even before the actual rise
in serum creatinine. Some biomarkers detected by the peripheral
blood mRNA assay and proteomics methods also showed good
accuracy and sensitivity in the diagnosis of various types of
rejection (7–9).

RNA sequencing (RNA-Seq) is a molecular tool widely
utilised by researchers to analyse global transcriptional changes,
deduce pathogenic mechanisms, and discover biomarkers (10).
Bioinformatics analysis provides multiperspective methods in
data mining, including gene ontology (GO) and pathway
analysis, protein–protein interaction (PPI) networks, and some
other methods.

In this study, we were able to identify the transcriptional
signature in peripheral blood mononuclear cells (PBMCs) of
recipients with AR, which helped to distinguish these cells
from those of non-AR recipients. Through bioinformatics
analysis, several genes and pathways were found to be
significantly different between AR and non-AR recipients,
including interleukin-10 (IL-10), VEGFA, CXCL8, and histone-
related genes, and also IL-10 signalling pathways. Moreover, we
found a combination of four genes which could be used to
accurately diagnose AR. Thus, this study may provide the basis
for further investigations into allograft rejection.

MATERIALS AND METHODS

Study Design, Patient Population, and
Sample Collection
Forty-two patients with ESRD who underwent kidney
transplantation at the Kidney Disease Centre of the First
Affiliated Hospital of Zhejiang University from 01 January 2018
to 31 January 2019 were selected. Inclusion criteria were patients

who were (1)≥18 years of age, regardless of gender and ethnicity;
(2) with ESRD undergoing treatment for ≥3 months; and (3)
voluntarily joined the study and signed informed consent.
Exclusion criteria were patients with (1) acute kidney injury,
(2) active inflammatory diseases, (3) other concomitant diseases
(such as malignant tumours), and (4) pregnant and lactating
women. Based on these criteria, 32 donors also participated in
the RNA-Seq cohort study. PBMCs were isolated from the blood
of 32 donors and 42 recipients, including 23 biopsy-proven
AR recipients (TCMR, n = 18; ABMR, n = 5) and 19 non-AR
recipients with stable kidney function and a normal histology.
The classifications for the histopathological diagnosis of renal
allograft biopsy were based on the Banff 2017 classification (11).
Approximately 3–5-ml peripheral blood samples were stored
at −80◦C until further use, and kidney allograft biopsies were
performed with the help of ultrasound. This study was approved
by the Institutional Review Board of the Zhejiang University
School of Medicine. The patients or participants provided
written informed consent to participate in the study.

RNA-Seq Experiments and Data Analysis
Total RNA (1000 ng) was extracted from PBMCs using TRIzol
reagent (Invitrogen) according to the manufacturer’s protocol.
The quantity and quality of the RNA isolated from the PBMCs
were measured using a NanoDrop2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA). The Agilent 2100
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA)
was used to measure RNA integrity, reported as the RNA
integrity number.

MicroRNA-Seq was performed on an Illumina Hiseq X Ten
sequencer by following the manufacturer’s protocol (Illumina
Inc.). The raw RNA-Seq data were processed as follows: clean
reads of good quality were first aligned to human reference
databases, namely the hg38 human genome, exon, splicing
junction segment splicing junction, and contamination databases
including ribosomal and mitochondrial RNA sequences using
the BWA alignment algorithm. The feature count was used
to count the read numbers mapped to each gene. The
read counts were log2-transformed, quantile-normalised, and
corrected for experimental batch effects using the ComBat R
package to compare transcription levels across samples. Then,
the normalised bulk RNA-Seq expression data (FPKM) of each
gene were calculated based on the length of the gene and read
count mapped to said gene. Differential gene expression analysis
between patients with AR and non-AR was performed using
the Limma package in R (12). A log2 fold change (FC) of 1
and p-value of 0.05 were set as the threshold for significantly
differentially expressed genes (DEGs).

Gene Ontology Analysis and Pathway
Enrichment Analysis of the DEGs
Gene ontology analysis was applied to analyse the main function
of the DEGs using DAVID tools (https://david.ncifcrf.gov/
home.jsp), which provides a comprehensive set of functional
annotation tools for investigators to understand the biological
meaning behind a large list of genes (13, 14). Pathway enrichment
analysis was performed using Reactome (https://reactome.org/)

Frontiers in Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 799051

https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://reactome.org/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiang et al. Characterisation of PBMCs in AR

which is a free, open-source, curated, and peer-reviewed pathway
database (15). The significant pathways and GO items, including
biological process (BP), cellular component (CC), and molecular
function (MF) were defined as pathways with p < 0.05.

PPI Network of the DEGs
To identify the hub genes and examine the interactions between
the DEGs, a PPI network was generated using STRING software
(https://string-db.org/). For the search parameters, the organism
queried was set to homo sapiens, the required confidence score
was set to 0.9 (highest confidence), and the interactors shown
were set to no more than 20. The edges reflected the strength
of evidence and were drawn with up to three different thickness
values: medium (0.400), high (0.700), and highest (0.900). The
false discovery rate was set to 0.05. The search results were then
imported into Cytoscape (version 3.8.2) for further analysis. The
hub genes were identified using the CytoHubba plugin with the
degree score, and the top 10 genes were finally selected (16).

Cell-Type Enrichment Analysis Using XCell
and CIBERSORT
Cell-type abundance estimation of the RNA-Seq data was
determined using xCell (https://xcell.ucsf.edu/) (17), a
bioinformatics tool that generates cell-type enrichment scores
(ESs) based on gene expression data for 64 immune and stromal
cell types, using the FPKM as the input. Relative cell-type
abundance was quantified and visualised for all samples. The
abundance of each cell type between non-AR and AR was
compared using the Wilcoxon rank-sum test. Cell types with a p
< 0.1 were considered to be significantly differentially enriched.

The deconvolution method using the Cell-type Identification
By Estimating Relative Subsets of known RNA Transcripts
(CIBERSORT) algorithm was also performed to estimate the
population percentage of immune cells for each sample from
the bulk RNA-Seq profile (https://cibersort.stanford.edu/) (18).
Based on the assumption that the expression value for each
immune cell marker in the bulk RNA-Seq is the weighted sum
of each cell type in the expression base matrix of 547 immune
cell markers in 22 sorted pure immune cells (547 × 22 matrix),
CIBERSORT was used to perform a support vector regression
(SVR) on the bulk expression value of marker genes to calculate
the weight of each cell type, which was then converted into cell
population percentages. A Student’s t-test was used to determine
the population change for each cell type between patients with
AR and non-AR at the cut-off of p < 0.05.

Ingenuity Pathway Analysis (IPA)
We utilised an ingenuity pathway analysis (IPA) to further
mine the potential pathways related to the DEGs. The
IPA is a web-based software application for the analysis,
integration, and interpretation of data derived from gene
expression experiments, including RNA-Seq, microRNA and
SNP microarrays, metabolomics, proteomics, and small-scale
experiments that generate gene and chemical lists. A downstream
effect analysis was used to predict cellular functions, disease
processes, and other phenotypes impacted by patterns in the
analysed data set. In addition, an upstream regulator analysis

was done to identify regulators (transcription factors, cytokines,
kinases, etc.) directly linked to the targets in the analysed data
and whose activation or inhibition may account for the observed
changes. A positive Z-score indicated that the pathway was
promoted, whereas a negative value indicated that the pathway
was suppressed.

Statistical Analyses
Continuous variables with normal distribution were expressed
as mean ± SD, and variables with a skewed distribution were
represented by the median (interquartile range). Categorical
variables were expressed in terms of rate (%) or composition
ratio (%). The comparison between the two groups of continuous
variables was analysed using a Student’s t-test, and the
comparison between the categorical variables was performed
using the chi-squared test. When the two-sided test yielded a p
<0.05, the difference was considered statistically significant. All
data were statistically analysed using SPSS Statistics v20 (IBM
Analytics), and statistical charts were created using GraphPad
Prism software (version 8.0.1; GraphPad Software, San Diego,
CA) or R software (v. 3.3.2).

RESULTS

Characteristics of the PBMCs RNA-Seq
Cohort
We performed RNA-Seq on 74 pretransplant blood PBMC
samples collected from 32 kidney allograft donors and 42
corresponding recipients, whose kidney biopsies were classified
as AR, including 18 and 5 patients with TCMR and ABMR,
respectively, and also 19 patients with non-AR. The demographic
and clinical characteristics of the patients are presented in
Table 1. The dialysis vintage was significantly longer (p= 0.042),
and the glomerular filtration rate (GFR) was significantly reduced
(p = 0.019) in AR recipients than in non-AR recipients. There
were no statistically significant differences between the two
groups in terms of recipient or donor age or sex, induction
type, kidney disease, HLA mismatch, cold ischaemia time, blood
urea nitrogen, serum creatinine, urine protein, and uric acid (p
> 0.05).

RNA-Seq and Differential Gene Expression
Analysis
We identified 975 genes as those differentially distinguishing
patients with AR from patients with non-AR using log2 FC > 1
and p < 0.05, as the thresholds for differential gene expression
(Supplementary Table). Among these, 776 were upregulated
and 199 were downregulated in patients with AR compared to
patients with non-AR. The volcano plots showed differences in
PBMC gene expression between AR and non-AR (Figure 1A),
and only the top 20 significantly expressed genes are shown
in Figure, including several important genes, such as C1QC,
VEGFA, IRAK2, HIF1A, and SERPINE1, which are closely
associated with the immune system, growth of peripheral blood
vessels, suppression of oxidative phosphorylation and fatty acid
oxidation, and systemic insulin resistance (19–22).
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TABLE 1 | Demographic and clinical characteristics of kidney allograft recipients.

Characteristics Total Non-AR (n = 19) AR (n = 23) p-value

Recipient age (years) 38.2 ± 1.7 38.3 ± 9.2 38.5 ± 11.3 0.067

Recipient sex (male %) 61.9 63.2 60.9 0.879

Dialysis vintage (months) 11.4 (2.75–51.95) 7.45 (0–23.25) 32.95 (5.83–66.5) 0.042

Induction type, n (%)

Antithymocyte globulin 12 (28.57) 4 (21.05) 8 (34.78)

Basiliximab 29 (69.05) 15 (78.95) 14 (60.87) 0.301

Both 1 (2.38) 0 (0) 1 (4.35)

Kidney disease, n (%)

Glomerulonephritis 31 (73.81) 16 (84.21) 15 (65.22)

Hypertension 4 (9.52) 0 (0) 4 (17.39) 0.086

Polycystic kidney disease 1 (2.38) 0 (0) 1 (4.35)

Others 6 (14.29) 3 (15.79) 3 (13.04)

Donor age (years) 53 (41.75–58) 55 (46.5–59) 49 (38.25–57.5) 0.187

Donor sex (male %) 57.1 52.6 60.9 0.591

Deceased donor (Y/N), n (%)

Y 16 (38.1) 3 (15.79) 13 (56.52) 0.017

N 26 (61.9) 16 (84.21) 10 (43.48)

HLA overall mismatch, n (%)

Mismatch (0) 0 (0) 0 (0) 0 (0)

Mismatch (l−2) 15 (35.71) 7 (36.84) 8 (34.78) 0.385

Mismatch (3–4) 24 (57.14) 12 (63.16) 12 (52.17)

HLA-A mismatch, n (%)

Mismatch (0) 9 (21.43) 5 (26.32) 4 (17.39) 0.270

Mismatch (l) 31 (73.81) 14 (73.68) 17 (73.91)

Mismatch (2) 2 (4.76) 0 (0) 2 (8.7)

HLA-B mismatch, n (%)

Mismatch (0) 6 (14.29) 2 (10.53) 4 (17.39)

Mismatch (l) 30 (71.43) 16 (84.21) 14 (60.87) 0.567

Mismatch (2) 6 (14.29) 1 (5.26) 5 (21.74)

HLA-DR mismatch, n (%)

Mismatch (0) 3 (7.14) 2 (10.53) 1 (4.35) 0.622

Mismatch (l) 32 (76.19) 14 (73.68) 18 (78.26)

Mismatch (2) 7 (16.7) 3 (15.79) 4 (17.39)

CIT (mins) 180 (120–480) 150 (120–255) 275 (120–585) 0.065

DGF(Y/N), n (%)

Y 1 (2.38) 0 (0) 1(4–35) 1.000

N 41 (97.62) 19 (100) 22 (95.65)

BUN (mmol/L) 18.33 ± 0.98 16.32 ± 5.57 19.76 ± 6.64 0.751

SCR (umol/L) 775 ± 47 701 ± 297 820 ± 263 0.523

GFR (mL/min/1.73 m2) 7.45(5.13–10.45) 9.7 (6.5–12.43) 5.85 (4.68–8.35) 0.019

UPRO (g/L) 2.54 ± 0.23 2.39 ± 1.01 2.49 ± 1.66 0.050

UA (umol/L) 369 ± 17 352 ± 102 382 ± 112 0.866

Numbers are presented as mean ± SD, median (25–75 percentiles) or count (percentage %).AR, acute rejection; non-AR, non-acute rejection; CIT, cold ischaemia time; DGF, delayed

graft function; BUN, blood urea nitrogen; SCR, serum creatinine; GFR, glomerular filtration rate; UPRO, urine protein; UA, uric acid. The bold values represent there are statistical

differences between the patients with AR and non-AR.

A total of 1,036 genes were identified as DEGs distinguishing
the PBMCs of patients with ABMR from those of non-AR
individuals, among which 730 were upregulated and 306 were
downregulated (Figure 2A). Several DEGs detected in the AR
group were also significantly expressed in the PBMCs of patients

with ABMR, including EGFA, IRAK2, andHIF1A. To distinguish
patients with TCMR from the non-AR group, a total of
1,375 genes were identified as DEGs, among which 936 were
upregulated and 439 were downregulated (Figure 3). Of note,
the top 20 DEGs identified here were highly similar to those

Frontiers in Medicine | www.frontiersin.org 4 January 2022 | Volume 8 | Article 799051

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiang et al. Characterisation of PBMCs in AR

FIGURE 1 | DEGs and GO analysis (AR and non-AR recipients). (A) Volcano map of DEGs in AR vs. non-AR recipients. Red represents upregulated genes, and blue

represents downregulated genes. A total of 975 DEGs were identified, among which 776 were upregulated and 199 were downregulated in patients with AR

compared with patients with non-AR. (B) Hierarchical clustering heatmap analysis of DEGs. Red represents upregulated genes, and blue represents downregulated

genes. (C) GO and pathway analysis of upregulated DEGs. GOs of inflammatory response and IL-10 signalling were the most significant items. (D) GO and pathway

analysis of downregulated DEGs. GOs of the complement activation and classical antibody-mediated complement activation pathway were the most significant items.

for the AR group, suggesting that TCMR may play a more
important role in the process of AR than ABMR (Figure 3A).
As shown in Figure 4A, a total of 1,472 upregulated and 505
downregulated genes were identified as DEGs distinguishing AR
(n = 13) from patients with non-AR (n = 18). Hierarchical
clustering heatmap analyses of DEGs among different groups
were shown in Figures 1B, 2B, 3B, 4B.

Gene Ontology Analysis and Pathway
Enrichment Analysis of the DEGs Patients
With AR vs. Non-AR
The DEGs were further analysed using DAVID tools, which
were also used for the analysis of BPs, CCs, and MF. As
shown in Figure 1C, GO analysis of upregulated DEGs showed
several important BPs and MFs, including cytokine activity,
inflammatory responses, responses to lipopolysaccharide,
angiogenesis, chemotaxis, signal transduction, and immune
responses. In contrast, significant GO downregulation in AR
included the processes of complement activation, antigen
binding, and the Fc-gamma receptor signalling pathway involved

in phagocytosis and regulation of the immune response. Among
these, GOs associated with immunity were significantly enriched
in both upregulated and downregulated genes, suggesting that
the dysfunction of the immune system plays an important
role in the process of AR. Pathway enrichment analysis of the
DEGs in the AR group compared with the non-AR group was
performed using the Reactome pathway analysis. As shown
in Figure 1C, the IL-10 signalling pathway was significantly

enriched in the upregulated genes. However, classical antibody-
mediated complement activation, FCGR3A-mediated IL-10

synthesis, FCGR activation, and CD22-mediated BCR regulation

pathways were significantly enriched in the downregulated
genes (Figure 1D). Among these were classical antibody-
mediated complement activation pathways previously identified
for AR (23). The remaining GO and pathway enrichments
are described in the Supplementary Materials. Notably,
IL-10-related pathways were significantly enriched in both
upregulated and downregulated pathways, suggesting that IL-10
and IL-10 signalling pathways may contribute to the process
of AR.
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FIGURE 2 | DEGs and GO analysis (ABMR and non-AR recipients). (A) Volcano map of DEGs in ABMR vs. non-AR recipients. Red and blue represent upregulated

and downregulated genes, respectively. A total of 1,036 genes were identified as DEGs in PBMCs of patients with ABMR, among which 730 were upregulated and

306 were downregulated. (B) Hierarchical clustering heatmap analysis of DEGs. Red represents upregulated genes, and blue represents downregulated genes. (C)

GO and pathway analysis of upregulated DEGs. GOs of inflammatory response and IL-10 signalling were significantly enriched. (D) GO and pathway analysis of

downregulated DEGs. GOs of the complement activation and classical antibody-mediated complement activation pathway were significantly enriched.

Patients With ABMR vs. Non-AR
As shown in Figure 2C, the GOs of inflammatory response,
response to lipopolysaccharides, immune response, chemotaxis,
and chemokine-mediated signalling pathways were significantly
enriched in upregulated genes. In contrast, receptor-mediated
endocytosis, complement activation (classical pathway),
and antigen binding pathways were significantly enriched
in downregulated genes (Figure 2D). Pathway analysis
showed that the RNA polymerase I promoter opening,
DNA methylation, PRC2 methylates histones, and DNA
and IL-10 signalling pathways were significantly enriched
in upregulated genes. In contrast, scavenging of haeme
from plasma, initial triggering of complement, regulation
of complement cascade, CD22-mediated BCR regulation,
and classical antibody-mediated complement activation
pathways were significantly enriched in downregulated genes.
The rest of the GO and pathway items are described in the
Supplementary Materials.

Patients With TCMR vs. Non-AR
As shown in Figure 3C, GO items of inflammatory responses,
angiogenesis, chemotaxis, and cytokine activity were significantly
enriched in upregulated genes. In contrast, GOs of complement
activation (classical pathway), antigen binding, complement
activation, receptor-mediated endocytosis, regulation of immune
response, etc. were significantly enriched in downregulated genes
(Figure 3D). Pathway analysis showed that IL-10 signalling,
RNA polymerase I promoter opening, DNA methylation,
and transcriptional regulation by small RNA pathways were
significantly enriched in upregulated genes. In contrast, classical
antibody-mediated complement activation, FCGR activation,
CD22-mediated BCR regulation, and FCGR3A-mediated IL-10
synthesis pathways were significantly enriched in downregulated
genes. The rest of the GO and pathway items are described in the
Supplementary Material. These GOs and pathways were very
similar to the items identified in the AR group, suggesting that
TCMR may play a more important role in the occurrence of AR.

Frontiers in Medicine | www.frontiersin.org 6 January 2022 | Volume 8 | Article 799051

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiang et al. Characterisation of PBMCs in AR

FIGURE 3 | DEGs and GO analysis in (TCMR and non-AR recipients). (A) Volcano map of DEGs in TCMR vs. non-AR recipients. Red represents upregulated genes,

and blue represents downregulated genes. A total of 1,375 genes were identified as DEGs in PBMCs of patients with TCMR, among which 936 were upregulated and

439 were downregulated. (B) Hierarchical clustering heatmap analysis of DEGs. Red represents upregulated genes, and blue represents downregulated genes. (C)

GO and pathway analysis of upregulated DEGs. GOs of inflammatory response and IL-10 signalling were the most significant enrichments. (D) GO and pathway

analysis of downregulated DEGs. GOs of the complement activation and the classical antibody-mediated complement activation pathway were the most

significant enrichments.

Donors With AR vs. Non-AR Individuals
As shown in Figure 4C, the GOs of calcium ion binding,
anchored component of membrane, cell adhesion, inflammatory
response, etc. were significantly enriched in upregulated
genes. In contrast, the GOs of oxygen transporter activity,
oxygen transport, and heparin binding were significantly
enriched in downregulated genes (Figure 4D). Pathway analysis
showed that the transcriptional regulation of granulopoiesis,
DNA methylation, and IL-10 signalling, among others, were
significantly enriched in upregulated genes. Of note, although IL-
10 signalling was identified in donors with AR, the degree was far
smaller than that in recipients with AR, ABMR, or TCMR. On
the other hand, erythrocytes take up oxygen and release carbon
dioxide, and tRNA processing in the mitochondria, etc., were
significantly enriched in downregulated genes.

Enrichment of Immune Cell Types in
PBMCs
Owing to the fact that the PBMC-RNA-Seq profile is likely a
mixture of RNA from multiple cell types, we used bulk RNA

cell-type enrichment analysis using the gene expression data to
recover the identity of the cell types found in AR and non-
AR samples with the gene signature expression-based cell-type
enrichment tool xCell, and also CIBERSORT.

Cell-type ESs across 64 immune and stromal cell types were
obtained for PBMCs using xCell. Our data analysis demonstrated
that there were 14 cell types differentially enriched in AR vs.
non-AR recipients (FDR < 0.1), with 4 of 14 cell types positively
enriched and the remaining 10 negatively enriched (Figure 5A).

The relative or absolute leukocyte cell subset population
percentages were deconvoluted from RNA-Seq using the
expression profiles of sorted immune cells. Figure 5B shows the
relative cell subset distribution difference in Tregs, macrophages
M2 cell, and dendritic cells resting populations between AR and
non-AR recipients based on gene expression. Figure 5C shows
the absolute cell subset infiltration difference in T cells CD8,
Tregs, macrophages M2, dendritic cells, and resting mast cells
between AR and non-AR recipients based on gene expression.

Cell types were also quantitated following analysis of AR vs.
non-AR donors, and six cell types were differentially enriched at
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FIGURE 4 | DEGs and GO analysis (donors with AR and non-AR). Volcano map of DEGs in TCMR vs. non-AR recipients. Red represents upregulated genes, and blue

represents downregulated genes. A total of 1472 upregulated and 505 downregulated genes were identified as DEGs in donors with AR (n = 13) compared with

non-AR (n = 18). (B) Hierarchical clustering heatmap analysis of DEGs. Red represents upregulated genes, and blue represents downregulated genes. (C) GO and

pathway analysis of upregulated DEGs. (D) GO and pathway analysis of downregulated DEGs.

FDR < 0.1 (Figure 5D). Figure 5E shows the relative cell subset
infiltration difference in T cells CD8, neutrophils, resting NK
cells, T cell gamma delta, and dendritic cell-activated populations
between AR and non-AR donors based on gene expression.
Figure 5F shows the absolute cell subset infiltration difference in
T cells, CD8, and dendritic cells resting populations between AR
and non-AR donors based on gene expression; however, none of
the results showed a statistical difference (p < 0.05).

IPA
Bar charts of enriched canonical pathways of DEGs were plotted
using the IPA tool. The y-axis represents the –log10 p-value
of enrichment significance of IPA pathways by Fisher’s exact
test. We found that LXR/RXR activation was detected with a
negative Z-score in the four groups (Figure 6). PPAR signalling
was detected with a negative Z-score in both AR vs. non-AR
and ABMR vs. non-AR groups. In contrast, the hepatic fibrosis
signalling pathway was detected with a positive Z-score in the
four groups. The IL-6 signalling pathways were detected in the

AR groups (including ABMR and TCMR), but not in the donor
group with AR.

Hub Genes From PPI Network and
Receiver Operating Characteristic (ROC)
Curves for Distinguishing AR From Non-AR
Individuals
We utilised STRING and Cytoscape software to further analyse
the interaction between the AR and non-AR DEGs. As shown
in Figure 7A, several important genes were identified, with high
confidence (interaction score >0.9), as part of the predominant
network. Subsequently, for identification of hub genes, we
performed the PPI network analysis with the CytoHubba plugin
using the degree method, and the top 10 genes were identified
for further analysis as the hub genes (Figure 7B). Interestingly,
several hub genes were members of the histone family
including HIST2H2AC, HIST1H4F, HIST1H2AE, HIST2H2AA,
and HIST1H2BB, suggesting that it plays an important role in the
process of AR.
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FIGURE 5 | Cell-type enrichment analysis using xCell and CIBERSORT. (A) Cell-type enrichment analysis of the recipients RNA-Seq data determined using xCell, a

bioinformatics tool that generates cell-type ESs based on gene expression data for 64 immune and stromal cell types. The x-axis depicts the xCell ES, and the y-axis

lists 14 of the 64 cell types that were differentially enriched (FDR <0.1, Wilcoxon test with Benjamini-Hochberg correction) in AR vs. non-AR recipients. Box plots of

the immune score (composite score of immune cell types) and the microenvironment score (composite scores of immune cell types and stromal cell types) are also

shown. (B, C) Immune cell enrichment analysis of the recipients using CIBERSORT. The bar chart shows the relative (B) and absolute (C) leukocyte cell subset

population differences between AR and non-AR recipients. The population percentages of CD8+ T cells and Tregs were deconvoluted from the RNA-Seq using the

expression profiles of sorted immune cells. (D) Cell type enrichment analysis using xCell between donors with AR and non-AR. (E–F) Immune cell enrichment analysis

of the donors using Cibersort. The bar chart shows the relative (E) and absolute (F) leukocyte cell subset population differences between donors with AR and non-AR.
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FIGURE 6 | IPA analysis of DEGs. (A) IPA analysis of DEGs in AR vs. non-AR group. IL-6 and IL-8 signalling, etc. had a positive Z-score, whereas LXR/RXR activation

and PPAR signalling had a negative Z-score. (B) IPA analysis of DEGs in ABMR vs. non-AR group. Hepatic fibrosis pathway, IL-6 and IL-8 signalling, etc., had a

positive Z-score, whereas LXR/RXR activation and PPAR signalling had a negative Z-score. (C) IPA analysis of DEGs in TCMR vs. non-AR group. Hepatic fibrosis

signalling pathway and IL-6 signalling, etc. had a positive Z-score, whereas LXR/RXR activation signalling had a negative Z-score. (D) IPA analysis of DEGs in donors

with AR vs. non-AR group. LPS/IL-1-mediated inhibition of RXR function and TREM1 signalling etc. had a positive Z-score and LXR/RXR activation signalling had a

negative Z-score.
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FIGURE 7 | PPI networks of DEGs and ROC curves for diagnosis of AR. (A) The PPI network of DEGs detected in AR vs. non-AR groups was performed with

Cytoscape. (B) The hub genes were identified by the CytoHubba plugin with the top 10-degree score. (C) Box plots of the mRNA expression. (D) ROC curves were

constructed to determine the diagnostic power of DEGs for AR. TNFSF14: AUC 79.5 (95% CI, 65.1–93.9); TANK: AUC 78.3 (95% CI, 63.4–93.1); ANKRD33B: AUC

80.5 (95% CI, 65.8–95.2); HSPA1B: AUC 79.3 (95% CI, 63.7–94.8); NFSF14+TANK+ANKRD33B+HSPA1B: AUC 92.3 (95% CI, 82.8–100).
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We also conducted a conventional receiver operating
characteristic (ROC) curve analysis to determine the power of
DEGs for the diagnosis of AR (Figures 7C,D). Interestingly, four
genes (TNFSF14, TANK, ANKRD33B, and HSPA1B) showed
good performance in distinguishing between AR and non-AR
groups. Moreover, the 4-gene combination reached an ROC
AUC of 92.3% (95% CI 82.8–100) with respect to discrimination
between AR and non-AR, suggesting its potential clinical usage
in monitoring transplant patients.

DISCUSSION

With the effective use of immunosuppressive drugs, the rate of
acute renal graft rejection has declined in recent years. Kidney
allograft rejection is associated with molecular changes in renal
allograft tissue, which reflect transcription changes in resident
cells or changes in cell populations, such as effector T cells,
macrophages, and natural killer (NK) cells (24, 25). Therefore,
here we investigated the signature in PBMCs of recipients with
AR using RNA-Seq and bioinformatics analysis to further explore
the potential pathogenesis, identify biomarkers, and provide a
basis for follow-up investigations.

In our study, the PPI network showed several significant
genes with high confidence, including IL-10, VEGFA, CXCL8,
MMP9, and histone-related genes (Figures 7A,B). Chemokines
play an important role in coordinating the immune system
via many BPs, including regulating the migration of immature
lymphoid progenitor cells, the recirculation of mature naïve T
and B lymphocytes, and the homing of antigen-specific effector
T cells. It also regulates the migration of antigen-presenting
cells, such as dendritic cells and monocytes or macrophages.
Recently, many studies have reported that several members
of the CXC family of chemokines show significant differences
with different types of allograft rejection. A study revealed that
mRNAs for four chemokines (CCL5, CXCL9, CXCL10, and
CXCL11) were positively enriched in TCMR urine compared
with non-rejection urine. Similarly, mRNAs for six chemokines
(CCL2, CCL5, CXCL5, CXCL9, CXCL10, and CCL18) were
positively enriched in ABMR urine compared with non-rejection
urine (10). Jasper et al. identified and validated a novel eight-
gene expression assay (CXCL10, FCGR1A, FCGR1B, GBP1,
GBP4, IL15, KLRC1, and TIMP1) that could be used as a non-
invasive and effective diagnostic biomarker for ABMR (ROC
AUC = 79.9%; 95% CI 72.6–87.2, p < 0.0001) (8). Mueller et
al. reported that the expression of CXCL10 and CXCL9 was
significantly increased in kidney biopsy specimens with TCMR,
which was supported by clinical data from multicentre studies
of increased urinary CXCL9 and CXCL10 mRNA and protein
levels as diagnostic biomarkers of TCMR (26, 27). Additionally,
Chen et al. reported that CXCL13 could help to identify AR
from a stable group following kidney transplantation. Their study
showed that CXCL13 mRNA expression was ten times higher in
AR, than that in the stable group (p < 0.001), and was hence a
good diagnostic biomarker (ROC AUC 0.89; 95% CI: 0.81 0.97).
Moreover, the serum protein level of CXCL13 detected by ELISA
was 2.2 times higher in the acute group than in the stable group

(328.4 vs. 147.6 ng/ml, p= 0.002). Our study showed that CXCL8
(also known as IL-8) was significantly increased in PBMCs
from the AR group. However, few studies have investigated its
performance in patients with AR. Given that several members
of the chemokine CXC family have previously been shown to be
effective at diagnosing allograft rejection, CXCL8 requires further
investigation as a biomarker in the future.

Moreover, our PPI network demonstrated that IL-10 showed
strong interactions with other genes, suggesting a contribution
to the AR process. Similarly, Verma et al. (10) found that
the expression of IL-10 was significantly increased in patients
with TCMR compared with patients with non-TCMR. IL-10, a
cytokine with antiinflammatory properties, plays a central role
in infection by limiting the immune response to pathogens,
thereby preventing damage to the host. Dysregulation of IL-
10 is linked with susceptibility to numerous infectious and
autoimmune diseases in humans and mouse models (28). It
is expressed by a variety of cell types including macrophages,
dendritic cell subsets, B cells, and several T cell subpopulations,
including Th2 and T-regulatory cells (Tregs) and NK cells
(29). Deficiency of IL-10 or its receptors results in aberrant
immune responses that lead to immunopathology and diseases
(30, 31). Such imbalance in pathological vs. regulatory immune
networks can result in graft vs. host disease (GVHD), which is
a limiting complication of allogeneic stem cell transplantation.
IL-10 secretion is dynamically modulated by the availability of
antigens, costimulatory signals, cytokines, commensal microbes,
and their metabolites in the microenvironment. There were
some similarities between GVHD and AR, such as pathological
processes involving dysregulation of the immune system and
dysfunction of immune cells. These results warrant further,
future investigation of the role of IL-10 in the AR processes.

Vascular endothelial growth factor (VEGF) is an essential
growth factor that participates in various pathophysiological
processes, including embryonic development, repair of
traumatised tissue, ischaemia, inflammation, and tumour
occurrence by promoting angiogenesis. Tambur et al. (21) and
Aharinejad et al. (22) found that VEGF expression is correlated
with AR and chronic rejection. On a related note, Berberat
et al. (32) found that the use of anti-VEGF reagents could
effectively inhibit the progression of AR. Several studies have
reported that VEGF regulates many AR-related molecules,
both in vivo and ex vivo, including IL-10, mononuclear cell
chemokine-1 (MCP-1), IL-8, E-selectin, ICAM-1, and VCAM-
1 (33–35). The infusion of macrophages and lymphocytes
stimulates angiogenesis, which in turn promotes inflammation
(36). The contribution of VEGF to AR occurrence following
liver transplantation is mainly due to the recognition of
alloantigens of the donor by T lymphocytes, which can induce
a series of immune responses thereby negatively affecting
liver transplantation (37). Similarly, we found that VEGFA
significantly increased in patients with AR; however, the role of
VEGFA in AR following kidney transplantation remains unclear
and requires further investigation.

As described previously, both GO and pathway analysis
showed that genes related to the immune system, complement
activation, and inflammatory response were significantly
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enriched in the AR group. Classical antibody-mediated
complement activation mediates many of the downstream effects
of antibodies, which are affected by many factors, including
antigen density and configuration ratio, antibody abundance,
antibody titre and isotype, and complement regulation by the
target tissue. The C1r and C1s serine proteases are transactivated
and acquire the ability to cleave C4 into C4a and C4b fragments
when C1q binds to IgG-or IgM-containing immune complexes
(38). Pathway analysis showed that the IL-10 signalling pathway
was significantly enriched in the upregulated genes. As described
above, the IL-10 signalling pathway plays an important role in
the immune response and may mediate the occurrence of AR.
However, the classical antibody-mediated complement activation
pathway, including C1QB, C1QC, and many immunoglobulin
components, was significantly enriched in downregulated genes,
suggesting that the dysfunction of the IL-10 signalling pathway
may contribute to the process of AR.

Based on the IPA analysis, the PPAR signalling pathways
and LXR/RXR activation were predicted to be downregulated,
suggesting that they may play an important role in acute
renal allograft rejection. Metabolomics, lipidomics, functional
metabolic assays, and single-cell analysis of cultured human
macrophages revealed that PPARα regulates macrophage
glycolysis, citrate metabolism, and mitochondrial membrane
sphingolipid metabolism and suppresses its inflammatory
properties. Treatment with the PPARα agonist suppressed the
development of vein graft lesions, while silencing of PPARα

in macrophages promoted vein graft lesion development (39).
Thus, PPAR probably acts as a protective factor in the process
of AR, and the suppression of PPAR may promote acute renal
allograft rejection. LXR/RXR activation has been reported to
have antiangiogenic and anti-inflammatory effects (40, 41). The
expression and activation of LXRs in human lymphocytes reduce
pro-inflammatory signalling, while activation of LXR using
synthetic agonists in monocytes promotes anti-inflammatory
properties (42, 43). In addition, LXR activation has been shown
to polarise macrophages to the M2 phenotype (44). Mukwaya
et al. (45) reported that progressive activation of the LXR/RXR,
PPARα/RXRα, and STAT3 pathways after suppression of
VEGF signalling could alleviate inflammation and capillary
remodelling. Therefore, LXR/RXR activation may also play a
protective role in the AR process. In relation to our study, an
inflammatory response was clearly observed in GO analysis of
DEGs from the AR, ABMR, and TCMR groups (Figures 1B,
2B, 3B), suggesting that the inflammatory response plays
an important role in allograft rejection. The upregulation of
some other proinflammatory elements was also observed in
our analysis, including IL-6 and IL-8 (CXCL-8) signalling
pathways (Figure 6). In contrast, the downregulation of some
antiinflammatory elements, such as LXR/RXR activation and
PPAR signalling, was observed. Thus, we believe that the
imbalance of proinflammatory and antiinflammatory elements
somehow plays an important role in the promotion of AR.

In addition, we constructed an ROC curve to determine
the power of DEGs for the diagnosis of AR (Figures 7C,D).
Interestingly, four genes (TNFSF14, TANK, ANKRD33B, and
HSPA1B) were identified as effective biomarkers distinguishing

AR from non-AR groups. Most of these genes have important
biological functions and are closely associated with the immune
system and inflammation. TNFSF14 (also called LIGHT) plays
an important role in T cell activation and inflammation. It is
produced by T cells, which can stimulate T cell proliferation
and cytokine production, and is closely associated with T
cell-mediated diseases (46, 47). LIGHT-mediated signalling
modulates macrophage activity, which may be beneficial for the
treatment of chronic inflammatory conditions (48). Wang et al.
(49) reported that LIGHT might be a critical cytokine involved
in the development of autoimmune inflammatory diseases.
HSPA1B (also known as HSP72) has many biological functions.
It can enhance STUB1-mediated SMAD3 ubiquitination and
degradation and facilitates STUB1-mediated inhibition of TGF-β
signalling, which is essential for STUB1-mediated ubiquitination
and degradation of FOXP3 in regulatory T cells (Treg) during
inflammation (50, 51). Recently, Wang et al. (52) reported that
TANK serves as an important negative regulator of NF-κB
signalling cascades induced by genotoxic stress and IL-1R/Toll-
like receptor stimulation (52). Thus, the potential of these genes
as AR biomarkers and their role in AR require further research.

Nevertheless, this study has a few limitations. First, the
sample size was relatively small and larger meta studies
need to be performed to validate our findings. Second, the
transcriptional profiles identified in the current investigation
need to be validated using additional RNA-Seq studies of
PBMCs and kidney allograft biopsies for validation. Third,
patients with high sensitivity must receive immunosuppressive
drug treatment before transplantation. Moreover, different
patients usually accept different treatment methods and this
may have had an unaddressed effect on our results. Future
work should take these limitations into account when testing
the clinical utility of the identified biomarkers in blinded
prospective studies.

Hence, our study showed that several classical pathways
and BPs of DEGs, such as complement activation, immune
response, and inflammation, were significantly enriched in the
AR and non-AR groups. We also found that some pathways
and molecules may contribute to the occurrence of AR, whose
role in AR has rarely been reported in the past, including
the IL-10 signalling pathway, IL-10, CXCL8, and VEGFA.
Moreover, we identified a potential 4-gene combination with
a ROC AUC of 92.3% (95% CI 82.8–100) for discrimination
between AR and non-AR, which requires further validation.
Thus, here the characterisation of PBMCs by RNA-Seq and
bioinformatics analysis demonstrated the gene signatures and
biological pathways associated with patients with AR and non-
AR, thereby providing a framework for the discovery of potential
biomarkers and an in-depth understanding of acute renal
allograft rejection.
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