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Breast cancer is one of the most frequent cancer types worldwide and the first cause of
cancer-related deaths in women. Although significant therapeutic advances have been
achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused
627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary
to develop new molecular therapies that can target several relevant cellular processes at
once. Ion channels are versati le regulators of several physiological- and
pathophysiological-related mechanisms, including cancer-relevant processes such as
tumor progression, apoptosis inhibition, proliferation, migration, invasion, and
chemoresistance. Ion channels are the main regulators of cellular functions, conducting
ions selectively through a pore-forming structure located in the plasma membrane,
protein–protein interactions one of their main regulatory mechanisms. Among the
different ion channel families, the Transient Receptor Potential (TRP) family stands out in
the context of breast cancer since several members have been proposed as prognostic
markers in this pathology. However, only a few approaches exist to block their specific
activity during tumoral progress. In this article, we describe several TRP channels that
have been involved in breast cancer progress with a particular focus on their binding
partners that have also been described as drivers of breast cancer progression. Here, we
propose disrupting these interactions as attractive and potential new therapeutic targets
for treating this neoplastic disease.

Keywords: TRP channels, protein–protein interactions, calcium signaling, breast cancer, interactomics
INTRODUCTION

Breast Cancer Overview and Global Impact
Breast cancer is the second most frequent cancer type and the first cause of cancer-related deaths in
women worldwide, with 627,000 deaths in 2018 (1). This neoplastic disease can be classified
according to different parameters, providing further information about the tumor. In terms of
diagnosis, breast tumors are histologically classified by their cellular origins in the mammary gland.
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If the tumor was originated by a ductal or lobular epithelial cell, it
would be referred to as ductal or lobular carcinoma, respectively
(2). For prognosis information, different molecular classifications
have been developed. In this context, an important molecular
classification is the "intrinsic subtype", which involves tumor
classification according to the expression pattern of 50 genes
related to cancer (PAM50). In PAM50, patients are sorted into
six groups: Luminal A, Luminal B, HER2-enriched, Normal-like,
Claudin-low, and Basal-like (3, 4). Another important molecular
classification is the "surrogate intrinsic subtypes", which is the
focus of this review. In this classification, tumors are grouped in
five subtypes according to histologic features and expression of
the Estrogen Receptor (ER), Progesterone Receptor (PR), and
Human Epidermic Growth Factor Receptor 2 (HER2): Luminal
A-like, Luminal B-like HER2−, Luminal B-like HER2+, HER2-
enriched (non-luminal) and Triple-negative (TNBC). Luminal
A-like, luminal B-like HER2- and luminal B-like HER2+ patients
are the most common type, accounting for 75–80% of cases (4).
Despite the above, these patients are usually treated with
competitive inhibitors (also called hormonal therapy) that
target the estrogen receptor, such as Tamoxifen or Fulvestrant.
In cases where hormonal therapy fails, alternative treatments are
employed, such as aromatase and mTOR inhibitors, which
hinder and reduce estrogen synthesis. On the other hand,
HER2-enriched tumors present increased levels of HER2,
which is why the most efficient therapy consists of the use of
Trastuzumab, a humanized monoclonal antibody against HER2.
Even though Trastuzumab is the standard therapy for this group
of patients, other HER2-related antibodies are available, such as
Pertuzumab, an inhibitor of HER2 dimerization; Ado-
trastuzumab (emtansine), an antibody–drug conjugate; and the
tyrosine-kinase inhibitors lapatinib and neratinib, which inhibit
both HER2 and the epithelial growth factor (EGFR) pathways
(5). TNBC account for around 10–15% of breast cancer cases and
are the hardest to treat (4). Since this group of patients is ER-,
PR- and HER2-expression, there are no effective hormonal-
based treatments or molecular therapies available. The
treatment usual ly consists of surgery fol lowed by
chemotherapy and radiotherapy, whether individually or
combined. However, its prognosis of TNBC remains poor (6).

Calcium Signaling in Breast Cancer
Calcium ions (Ca2+) regulate several cellular processes in
different organisms (7–9). Spatio-temporal changes in the
cytoplasmic Ca2+ concentration occur in response to different
stimuli that will be interpreted by the cell, promoting specific
cellular outputs (10). Different molecular entities regulate Ca2+

homeostasis (11) and allow the cell to establish large Ca2+

concentration gradients (15,000–20,000 times) maintaining
extremely low intracellular Ca2+ levels (close to 100 nM)
compared to the extracellular medium (1–1.5 mM) (9, 12).

Ca2+ signaling modulates various cellular processes such as
gene expression, cell cycle progression, cell migration, autophagy
apoptosis (13), fertilization (14), and synapsis (15). Accordingly,
aberrant intracellular Ca2+ signaling has been implicated in the
development of different pathologies, such as neurodegenerative
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(16), metabolic (17, 18), and autoimmune disorders (19). In the
context of neoplastic diseases, intracellular Ca2+-dependent
signaling is involved in various processes that promote
tumorigenesis and cancer progression, such as proliferation,
migration, angiogenesis, and evasion of apoptosis (reviewed by
20–23).

Recent studies have highlighted specific regulators of Ca2+

signaling due to their role in the progression of breast cancer
(24). These Ca2+ signaling regulators have been involved in
controlling of proliferation, metastasis, cell death, and drug
resistance. Therefore, several molecular entities that participate
in these events have been suggested as possible therapeutic
targets for breast cancer treatment (25). Among these
regulators, the Transient Receptor Potential (TRP) channels
superfamily has emerged as a novel and interesting target for
therapeutic intervention in the context of breast cancer.

The TRP channels superfamily is characterized by sharing a
common structure of six transmembrane segments and acting as
polymodal cellular sensors for a broad spectrum of physical and
chemical stimuli (26). TRP channels have been divided into seven
families according to their sequence similarity (27, 28): TRPA
(ankyrin), TRPC (canonical), TRPM (melastatin), TRPML
(mucolipin), TRPN (no mechanoreceptor potential C or nompC),
TRPP (polycystin or polycystic kidney disease), and TRPV
(vanilloid and a proposed sister family, TRPVL) and recently a
new member has been identified, TRPS (soromelastatin) (29).

Recent reports suggest the important role of TRP channels in
different diseases, including cardiovascular, neurological, metabolic
and neoplastic disorders (30). In cancer, changes in the expression
and function of TRP channels are directly related to cellular
processes that contribute to the progression of cancer, such as cell
proliferation, differentiation, angiogenesis, migration, invasion and
chemoresistance of cancer cells to apoptotic-induced cell death,
promoting resistance to chemotherapy treatments (31). Several
studies have shown the effect of modulating the activity of TRP
channels in various cancer models using agonists and antagonists
with or without the use of chemotherapeutic drugs, proposing them
as excellent therapeutic targets (31–33). However, most of these
agonists or antagonists are not specific and affect several TRP
channels, and can impact their activity in other tissues, causing
adverse effects (34).

In this context, TRP channels can form homomeric complexes
or co-assemble into heteromeric functional tetramers with subunits
of the same family or between different families (35). Also, these
channels interact with an extensive network of different regulatory
and structural proteins (TRIP Database: (36, 37). Drug discovery
has been characterized by searching for molecular targets to identify
new and potentially beneficial agents to selectively target disease-
specific mechanisms and pathways involved in these diseases (38).
Protein–protein interactions (PPIs) mediate and regulate most
cellular functions and processes. Also, several diseases are caused
by aberrant interactions between proteins and their regulators or
effectors. Thus, the searching and design of drugs to disrupt PPIs
have become increasingly more relevant (39). In the context of
cancer, one of the approaches to study the impact of certain genes or
proteins on the tumor phenotype and differentiate between causal
June 2021 | Volume 11 | Article 621614
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and driver genes is to analyze their network of interactions and their
effect on specific functions and pathways (40). Recent studies
demonstrate that ion channels can be crucial in the organization
of large macromolecular complexes serving for the regulation of
diverse cellular processes (41, 42), as well as transduction nodes on
which several signaling pathways might converge (43). Indeed, ion
channels’ expression is altered in several types of cancer. Also, their
activity has been considered of great importance in the development
and progression of the disease, including breast cancer (44, 45).
Interestingly, not only ion channels are dysregulated in cancer, but
also their regulators, effectors, and other interacting proteins. Here
we discuss the role of TRP channel interactors involved in breast
cancer and propose the modulation of these interactions as
therapeutic targets (Figure 1 and Supplementary Table 1),
opening a window for the design of more specific drugs
against cancer.
TRP CHANNELS AND THEIR
INTERACTORS IN BREAST CANCER

TRPC1
TRPC1 is a non-selective cationic channel with a reported PCa/
PNa ~1 in homotetrameric subunits (46–48). TRPC1 is expressed
in diverse cell types such as smoothmuscle, Central Nervous System
(CNS) neurons, endothelial cells, platelets and salivary gland
Frontiers in Oncology | www.frontiersin.org 3
epithelial cells (46). Moreover, TRPC1 participates in endothelial
permeability, vascular tone modulation (46), salivary fluid secretion
(49), and synaptic plasticity (50). Mechanical stretch, receptor-
dependent stimulation, diacylglycerol (DAG) (46, 51, 52) and ER-
Ca2+ store depletion via STIM1 (53, 54) have been proposed as
activation mechanisms.

The dysregulation in the activity of this channel has been
reported in several type of cancer such as breast cancer,
pancreatic cancer, lung cancer and others, where its
overexpression has been related with poorly differentiated
tumors and higher cell motility, proliferation and hypoxia-
induced autophagy (55–58). Currently, it has been reported
that TRPC1 promotes hypoxia-induced HIF1a-mediated
EGFR signaling and expression of Epitelial–Mesenchymal
Transition (EMT)-associated genes such as SNAIL in MDA-
MB-468 cells (human TNBC cell line, Basal B). Consistently,
TRPC1 expression is increased in Claudin-low human breast
tumors and it has been associated with poor prognosis in patients
with basal-like breast cancer (59). Importantly, TRPC1 is
required for EGF-induced Ca2+ influx (48). Furthermore,
TRPC1 interacts with FGFR1, and downregulation of TRPC1
inhibits proliferation in rat neural stem cells (60). Accordingly,
TRPC1 silencing leads to decreased FGFR1 activation-induced
Ca2+ signals. Both growth factor receptors, FGFR1 and EGFR,
have crucial roles in cancer progression since their activation
induces cell proliferation (61, 62). Moreover, FGFR1 expression
A

B

FIGURE 1 | Association between the expression of TRP channels and clinical prognosis and PPIs proposed as therapeutic targets. (A) Summary of the expression
of TRPC channels in tumoral vs non-tumoral tissue and the association between TRP channels and clinical prognosis. (B) Summary of the PPIs proposed as
therapeutic targets and their associated-pro-tumoral processes.
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is associated with resistance against endocrine therapy (63, 64),
and EGFR is associated with poor prognosis in TNBC (61).
These data suggest that TRPC1 might have important roles in
FGFR1/EGFR-mediated breast cancer processes, which are still
unaddressed. Since Ca2+ signaling is pivotal for these receptors’
downstream pathways, a novel therapeutic proposition might be
to block TRPC1 activity or the functional interaction with either
FGFR or EGFR.

TRPC1 interaction with Caveolin-1 is required for its proper
plasma membrane targeting during Store-Operated Calcium
Entry (SOCE) (65). Also, Caveolin-1 acts as a scaffold protein
which mediates IP3R-TRPC1 interaction (66). Indeed, silencing
Caveolin-1 decreases both SOCE and ER-Ca2+ depletion-
induced association of TRPC1 to IP3Rs (67), indicating that
Caveolin-1 plays an active role on Ca2+ homeostasis. The
participation of Caveolin-1 in breast cancer has been
extensively reviewed (68). Interestingly, Caveolin-1 participates
in several breast cancer-progression events such as metastasis,
cell cycle progression, and therapy resistance. Nevertheless, the
current role of Caveolin-1 in breast cancer remains controversial
due to different studies suggesting that this protein might act as a
tumor suppressor. In contrast, others propose that it is instead an
oncogene (68). Thus, the interplay between Caveolin-1 and
TRPC1 in breast cancer is an open window for further
research and future therapies. Similar to Caveolin-1, PLC-g1
interacts with TRPC1 and IP3R during SOCE, suggesting a
scaffolding role for this protein besides its IP3/DAG-
production function (69).

PLC- g1 overexpression has been proposed as a marker for
metastasis development in early-stage luminal A and luminal B
breast cancers (70). Interestingly, a synthetic peptide based on
PLC-g1 SH2 domains produces antitumoral effects in EGFR/
HER-2 positive cells (71). Moreover, TRPC1 interacts with
RhoA, a member of the Rho GTPases family. RhoA plays a
crucial role in actin cytoskeleton dynamics, cell migration and
contractility (72). Several authors have reported the opposite
effects of RhoA in breast cancer models. Some studies state that
RhoA prevents invasive processes (73, 74), while others propose
that RhoA enhances cell invasiveness and proliferation of breast
cancer cells (75, 76). This might be due to the fact that RhoA
downstream effectors have opposing effects on pro-neoplastic
processes (73). RhoA is suggested to promote TRPC1 association
to IP3R during SOCE (77). Moreover, RhoA promotes the
translocation of TRPC1 to the plasma membrane (77) and its
activation (78), thus enhancing SOCE. Indeed, RhoA promotes
cell migration of intestinal epithelial cells through the induction
of SOCE via interaction with TRPC1 (78). Hence, TRPC1 might
be an effector of RhoA activity, implying that this interaction’s
specific disruption might impair TRPC1-dependent, breast
cancer-associated pathways.

Interestingly, TRPC1 interaction with and activation by
STIM1 confers a central role to this channel in the SOCE
response contributing to the generation of the Store-Operated
Currents (ISOC) (79). Moreover, TRPC1 interacts with several
proteins that are implicated in the regulation of intracellular and
ER Ca2+ concentrations, such as ORAI channels (80, 81), the
Frontiers in Oncology | www.frontiersin.org 4
SERCA pump (82, 83), PMCA (84), IP3R (82, 85), NCS-1 (86),
and FKBP4 (87). Since Ca2+ signals are crucial for a myriad of
cellular processes, it is not surprising that all these TRPC1-
associated proteins have been proposed to play a role in breast
cancer progression (88–93).

As the data suggests, the understanding of the dynamic
cooperation between TRPC1-associated proteins mentioned
above might shed light on the design and development
of targeted therapeutics to selectively disrupt one or more of
these interactions, depending on the differential features of
the tumors.

TRPC5
TRPC5 is a nonselective cation channel permeable to Ca2+ with a
reported PCa/PNa/PCs = 14.3/1.5/1, that can be activated
following stimulation of receptors coupled to PLC in an
intracellular Ca2+ dependent manner (94, 95). In cancer, this
channel is mainly involved in angiogenesis and chemoresistance
(96). Moreover, TRPC5 has been proposed as a predictive
biomarker of chemoresistance in breast and colorectal cancer
(97, 98). The expression of this ion channel is up-regulated
together with P-glycoprotein, an efflux pump in Adriamycin-
resistant breast cancer cells (MCF-7/ADM) (99, 100). In
addition, the activation of this channel evokes Ca2+ currents,
which induce P-glycoprotein over-expression, promoting
chemoresistance (100). Moreover, TRPC5 was proposed as an
exosome biomarker in breast cancer, which was demonstrated to
have the capacity to transfer their chemoresistant phenotype to
neighbor cells (101). Interestingly, this channel has been involved
in Adriamycin resistance, mediating autophagy through the
CaMKKb/AMPKa/mTOR pathway (102).

TRPC5 interacts with several actin cytoskeleton regulators,
such as Rac1 and several F-actin binding proteins such as Myosin
X, a-actinin I, a -actinin IV and Neurabin II (103, 104). All these
proteins have been involved in breast cancer progression. For
instance, Myosin X is overexpressed in breast cancer tissue and
breast cancer cell lines (MCF-7, BT-549 and MDA-MB-231) but
not in non-cancerous breast cell lines (MCF-10A), promoting
invadopodia formation, and metastasis in a Rac1-dependent
manner (105). Rac1 is activated by TRPC5-mediated Ca2+

entry, promoting cell migration (103). Moreover, Rac1 is
overexpressed and activated in the plasma membrane of tumor
cells in aggressive breast cancer samples (106). These results
suggest that TRPC5 interacts with Myosin X and Rac1, where the
activation of Rac1 by TRPC5 or Myosin X might promote
metastasis. Therefore, the disruption of these interactions
could be beneficial for patients. On the other hand, a-actinin I
and IV are actin binding proteins which localize in cell-cell
adhesions, cell-matrix contact sites and in cellular protrusions,
stabilizing these structures and linking membrane receptors with
the cytoskeleton (107). The binding of a-actinin to Ca2+ reduces
their affinity for actin (108). Moreover, the loss of a-actinin I in
cell contact sites of TNBC cell lines (MDA-MB-231) promotes
cell migration, whereas the same was reported for a-actinin IV in
ER+/HER2- cell lines (MCF-7 cells) (109, 110). These results
suggest that a-actinin I and IV act as tumor suppressor proteins,
June 2021 | Volume 11 | Article 621614
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while their Ca2+-dependent delocalization promotes migration
in breast cancer cells. Although we cannot attribute these
proteins’ delocalization only to TRPC5-dependent Ca2+ entry,
promoting the localization of a-actinin I and IV to cell contact
structures or disrupt their binding to Ca2+ could be useful in
breast cancer treatment.

TRPC5 interacts with other proteins that modulate Ca2+

signaling, such as TRPC1, TRPC6, IP3R3 and STIM1.
Moreover, all of these TRPC channels interact with the IP3R3
and STIM1 (111, 112), which could be an intrinsic characteristic
of Store Operated Channels (SOC). Interestingly, the interaction
between TRPC1, STIM1 and IP3R3 is relevant in Ca2+ signaling
for cancer progression (55). Although the role of TRPC5 in
cellular signaling through Ca2+ is still unclear, it is accepted that
TRPC5-mediated Ca2+ entry activates CaMKIIb inducing its
phosphorylation in T287 (113), modification that has been
described as increased in breast cancer tissue and metastasis
(114). In addition, in vitro studies in MDA-MB-231 cells
reported that CaMKIIb promotes cell invasion (114).
Therefore, the activation of CaMKIIb through TRPC5-
mediated Ca2+ entry might promote breast cancer progression,
making of this interaction an interesting therapeutic target. In
summary, although the mechanism by which TRPC5-mediated
Ca2+ entry could promote cancer progression requires further
investigation, the data suggests that disrupting interactions
between TRPC5 and others SOC components (including
IP3R3) involved in Ca2+ signaling could become a therapeutic
strategy in breast cancer.

Stathmin1 is a protein which active or non-phosphorylated
form mediates depolymerization of microtubules in late mitosis
(115). Interestingly, it has been reported that tumors with high
levels of this protein show enhanced proliferation, angiogenesis
and immune response evasion, mainly in basal like subtypes of
breast cancer (116). Moreover, increased expression of
Stathmin1 correlates with poor prognosis for patients with
breast cancer (117). Moreover, Stahmin1 is inhibited through
CaMKII-mediated phosphorylation in a Ca2+-dependent
manner, which in turn is activated by TRPC5 (113, 118).
These results suggest that TRPC5, CaMKII and Stathmin1
could be part of a complex and a novel pathway to study as a
therapeutic target.

TRPC6
TRPC6 is a non-selective Ca2+ permeable channel with a
PCa/PNa ~ 5, tightly receptor-operated and shows little basal
activity (119). The main regulatory mechanism of TRPC6 is its
activation by diacylglycerol (DAG) in response to the activation
of G protein-coupled receptors. Additionally, other modulation
mechanisms include regulation by Ca2+/Calmodulin (CaM) and
binding of phosphoinositides (120). In humans, this channel is
highly expressed in the lungs, placenta, ovary and spleen. It has
important roles in regulating the heart and cardiopulmonary
vasculature, podocyte functioning in the kidney, several neuronal
processes, and several neoplastic diseases (121). In this context,
TRPC6 was found upregulated in several types of cancer biopsies
such as glioma, hepatocellular, gastric, esophageal and breast
Frontiers in Oncology | www.frontiersin.org 5
cancer, where it promotes migration invasion and proliferation
(122–126). Specifically in breast cancer, studies in breast cancer
cell lines showed high expression of TRPC6 in MCF-7 and
MDA-MB-231 cells, whereas no expression was found in
MCF-10A cells (122). Consistently, TRPC6 is the most
overexpressed of all TRP channels in samples of human breast
ductal adenocarcinomas compared to normal tissue. However,
no correlation between TRPC6 expression and clinical
parameters such as histological grade, tumor size, proliferation
or invasiveness has been described (57). Although a precise role
for TRPC6 in breast cancer has not been defined yet, there are
studies relating to TRPC6 expression and activity with breast
cancer progression in in vitro models. Moreover, TRPC6
promotes cell proliferation, migration and invasion in MCF-7
and MDA-MB-231 cell lines, an effect that is partially mediated
by the modulation of surface expression of ORAI1 and ORAI3
Ca2+ channels (127). Recent studies showed that TRPC6
interacts and participates in conjunction with STIM2 to
maintain cytosolic and endoplasmic reticulum Ca2+

concentrations in MCF-7 cells. Moreover, inhibition of TRPC6
activity leads to endoplasmic reticulum stress and caspase-3
activation (128). Conversely, TRPC6 associates with Large-
Conductance Ca2+-Activated K+ (BKCa) channels, modulating
their surface expression in podocytes (129). Interestingly, BKCa
channels have been proposed as possible oncogenes in several
types of cancer, including breast cancer, with augmented Ca2+

sensitivity, promoting shifts in the membrane potential that
might promote tumor growth (130, 131). Thus, TRPC6-
mediated BKCa modulation might contribute to tumor
proliferation in breast cancer. TRPC6 also interacts with Fyn
and Src tyrosine kinases, which positively regulate the activity of
the channel through phosphorylation (132) and which have been
reported as overexpressed in breast cancer cell lines and tissue
(133, 134). Thus, Fyn and Src interaction with TRPC6 might be
an important promoter of its activity and pro-tumoral effects in
breast cancer. Moreover, TRPC6 activity is positively regulated
by its interaction with the human myxovirus resistance protein 1
(MxA) (135), whose expression is higher in TNBC tumors than
in other subtypes and is associated with a higher histologic grade
(136). This data suggests that at least in TNBC, MxA-mediated
TRPC6 increased activity might be a pro-tumoral mechanism
promoting breast cancer progression. Another interesting
interactor of TRPC6 is the actin-binding protein Drebrin,
which, as we discuss previously, promotes the formation of cell
protrusions in motile cells (104). Although a functional role for
this interaction was not described, Drebrin interacts with and
helps to localize and stabilize CaMKIIb at actin filaments (137),
which is a known positive regulator of TRPC6 activity (138),
suggesting an interplay between Drebrin, CaMKIIb and TRPC6,
resulting in regulation of channel activity. Given the importance
of both TRPC6 and Drebrin, this interaction and subsequent
increase in TRPC6 activity might be one of the mechanisms by
which Drebrin exerts its effects on breast cancer development,
posing this interaction as an interesting and potential therapeutic
target. Furthermore, TRPC6 interacts with several other TRPC
familymembers of ion channels, such as TRPC1 and TRPC5 (139),
June 2021 | Volume 11 | Article 621614
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downregulating the activity of the channel. As we mentioned
above, these channels have also been reported as dysregulated in
breast cancer. Thus, modulating the interplay between these
TRPC channels might reduce Ca2+ influx and a subsequent
reduction of tumor progression-associated processes.

TRPM4
TRPM4 channel, is a non-selective cation calcium-activated
channel permeable to monovalent ions, mainly Na+ and K+,
with a permeability ratio PNa/PCa = 11, which is activated by
intracellular Ca2+ (140–142). TRPM4 is broadly expressed in
several tissues (141) and modulates several cell functions,
including insulin secretion (143), immune response (144), cell
migration and contractility (145, 146). TRPM4 also plays an
important role in disease and several evidences has emerged
linking the expression of TRPM4 with the increase of migration,
invasion and proliferation of certain cancers, such as lymphoma
(147), cervical (148), colorectal channel, prostate cancer (149–
151) and others (152). Moreover, upregulation of this channel is
associated with poor prognosis in large B cell lymphoma, breast
cancer and endometrial carcinoma, while its overexpression
increases the recurrence risk in prostate cancer (153–156).
Recently, independent groups showed that TRPM4 is
overexpressed in breast cancer samples of ER+/PR+ and triple-
negative subtypes compared with normal breast tissue (153, 157).
Moreover, TRPM4 expression is increased in IIB, IIIA, and IV
stages and higher lymph node spread (N1–N2), according to the
TNM classification (153, 157). In addition, TRPM4 gene was
significantly associated with the expression of estrogen response
and epithelial–mesenchymal transition (EMT) gene sets (157).
As such, the identification of TRPM4 interactions might allow us
to understand the biological role of TRPM4 in breast cancer and
to broaden the search for molecular targets for its treatment.
KCTD5 (Potassium Channel Tetramerization Domain-
containing protein 5) interacts with TRPM4, regulating cell
migration and contractility, by acting as a positive regulator of
TRPM4 activity. Interestingly, KCTD5 mRNA is significantly
upregulated in breast cancer tumors versus normal breast tissue
samples (153), consistent with transcriptomics data in public
databases (158). These data suggest that the increased expression
of KCTD5 could be a key determinant of the malignancy and
aggressiveness of these types of tumors, by interacting with
TRPM4, enhancing the activity of the channel and thus,
promoting TRPM4-dependent cell migration. Along the same
lines, another interactor that acts as a positive regulator of
channel activity is CaM which modulates the NFAT and Akt
pathway promoting survival, proliferation and migration in
several breast cancer cell lines in a Ca2+ dependent manner
(159, 160). TRPM4 contains five CaM-binding sites and that by
eliminating any three sites at the C-terminal, it strongly alters the
activation current by decreasing Ca2+ sensitivity and modifying
its voltage-dependent activation (161). Therefore, in the context
of breast cancer, increased activity, and channel sensitivity due to
TRPM4–CaM interaction could promote cell migration and
contractility of tumor cells.

Another interesting interactor is sulfonylurea receptor-1
(SUR1), which forms a functional channel with TRPM4,
Frontiers in Oncology | www.frontiersin.org 6
present ing b iophys ica l proper t i e s o f TRPM4 and
pharmacological properties of SUR1. Woo et al. showed that
this TRPM4-SUR1 co-assembly has double affinity and
sensitivity for CaM and Ca2+, respectively (162). SUR1 is a
subunit of the inward-rectifier potassium ion channels Kir6.X
(Kir6.1 and Kir6.2), whose association forms the KATP channels
(163). SUR1 has been reported as overexpressed in lung cancer
(164) and breast cancer (165). Studies using glibenclamide, a
drug that binds SUR1, have shown a cytostatic effect on MDA-
MB-231 cells, inhibiting cell cycle progression (166).
Interestingly, recent studies suggest that this drug acts as an
antagonist of the TRPM4–SUR1 interaction (167). Therefore, the
interruption of this interaction might decrease cell migration and
cell cycle progression, possibly through phosphorylation of
CaMKII and decreased nuclear translocation of NFAT (168),
which have also been implicated in cancer progression (169).

In the context of trafficking mechanisms and binding
partners, two interesting TRPM4 interactors have been
involved in the progression of breast cancer. First, EB1 and
EB2 proteins that regulate the trafficking, surface expression and
activity of TRPM4 (170). Interestingly, EB1 promotes the
proliferation of cancer cells and have implicated EB1 in the
tumorigenesis of breast cancer (171–173). For instance, EB1
expression correlates with higher histological grade, and the
incidence of lymph node metastasis (171). Since the TRPM4–
EB1 interaction has been shown to decrease FA turnover, and
cell migration and invasion in murine melanoma cell lines (B16-
F10 cells) (170), the disruption of the TRPM4–EB1 interaction
might reduce the aggressiveness and metastatic capacity of breast
cancer cells. Conversely, 14-3-3g increases the surface expression
of TRPM4 in HEK293T cells (174). The 14-3-3 protein family
binds to the phosphorylated Ser/Thr motifs of its target proteins,
regulating them through different mechanisms (175). Recently,
the role of this family in age related-diseases such as
neurodegenerative diseases and cancer, has been demonstrated
(176). In breast cancer 14-3-3g localizes in pseudopodia of
MDA-MB-231 cells, where 14-3-3g knockdown diminishes
pseudopodia formation and cell migration (177). In summary,
the TRPM4-14-3-3g interaction could promote the expression
of the channel on the surface, increasing its activity, which,
given the data, could have a synergistic effect on cell migration of
breast cancer cells. Therefore, interrupting the TRPM4-EB and
TRPM4-14-3-3g interactions could be favorable for breast cancer
patients, reducing cancer cells’ migration and potential metastasis.

TRPM7
TRPM7 is a member of the TRP family that permeates both Ca2+

and Mg2+. Moreover, free intracellular Mg2+ blocks this channel
whereas ATP promotes its activation (178). In addition, TRPM7
possesses a unique C-terminal domain, which contains an active
kinase domain (179). Interestingly, excision of the kinase domain
enhances the TRPM7 ion channel activity (180). TRPM7 is
broadly expressed in different tissues (181), and its ion channel
function and kinase activity has been related to migration, cell
proliferation and cell death in immune, hepatic, and different
tumor cells (182). In the context of cancer, TRPM7 expression
and activity has been associated with different types of cancer
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such as retinoblastoma (183), gastric cancer cells (184), head and
neck carcinoma (185), and neuroblastoma (186, 187). In
addition, TRPM7 expression is elevated in several histological
subtypes, such as invasive ductal, invasive lobular (188) and in
ER- adenocarcinoma (189). Moreover, TRPM7 expression
correlates with breast cancer progression and diminished
survival of patients (190). Interestingly, the TRPM7 kinase
domain directly phosphorylates the myosin heavy chain
(MHC) (191, 192), an effect that was corroborated in MDA-
MB-231 cells (189). Moreover, overexpression of TRPM7
increases migration in MCF-7 and MDA-MB-213 cells, while a
truncated version that lacks the kinase domain has no effect on
cell migration (189). TRPM7 silencing in MDA-MB-231 cells
induces a redistribution of the actin cytoskeleton, promoting cell
contraction (190). These data suggest that TRPM7 might
regu la te ce l l migra t ion in breas t cancer through
phosphorylation of the MHC, facilitating invasiveness and
metastasis. Thus, disrupting the interaction of TRPM7 with
MHC, preventing its phosphorylation, may be a novel target to
reduce metastasis formation in breast cancer.

Another TRPM7 phosphorylation target is the lipid-binding in
a Ca2+-dependent manner protein Annexin 1A (193).
Phosphorylation of Annexin 1A by TRPM7 stabilizes its
interaction with membrane lipids (194). Interestingly, Annexin
1A is related to the pathogenesis of several cancer types (195),
including breast cancer, where it has been proposed as an indicator
of poor prognosis (196, 197). Annexin 1A promotesmigration and
metastasis in the highly invasive cell lines MDA-MB-231 and 4T1
(murine TNBC cell line) cells (196, 198). Interestingly, Annexin
1A depletion in MCF-7 cells increases the formation of focal
adhesions and stress fibers, promoting a contractile phenotype,
which is related to the effects observed when TRPM7 was absent.
All together, these results suggest that TRPM7might modulate cell
migration and invasion of breast cancer through the regulation of
Annexin 1A activity, suggesting this interaction as a possible
therapeutic target against breast cancer.

Smad2 is a transcriptional regulator related to TGF-ß -induced
EMT in several cancer types (199). Interestingly, Smad2
phosphorylation was reduced upon TRPM7 silencing (200).
High levels of Smad2 phosphorylation are proposed as a marker
of poor prognosis in breast cancer (201). Thus, TRPM7 inhibitors
could decrease the levels of Smad2 phosphorylation, ameliorating
the prognosis of patients.

In summary, the TRPM7 kinase activity is a novel
pharmacological target to modulate invasiveness and
metastasis of breast cancer, through the indirect regulation of
the activity of its phosphorylation targets such as MHC, Annexin
1A or even Smad2.

TRPM8
TRPM8 is a nonselective cationic ion channel with higher
permeability for Ca2+ with a PCa/PNa ~1 (202). Notably,
TRPM8 is a cold sensitive channel and is activated by cooling
compounds such as menthol (203). Since TRPM8 is activated by
cold temperatures, this channel is considered the molecular
entity responsible for cold transduction in peripheral nerves
(204). In the context of cancer, TRPM8 has been strongly
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involved in prostate cancer wherein it is related to tumor
staging (205, 206). Moreover, this channel was found
overexpressed in others types such as glioblastoma (207),
pancreatic cancer (208), melanoma (209) and breast cancer
(210). In breast cancer, TRPM8 expression is mainly
upregulated in ER+ grade I adenocarcinomas (57, 211).
Comparative analysis of TRPM8 mRNA levels shows higher
expression in the highly invasive MDA-MB-231 cell line. Despite
the precise analysis of TRPM8 expression in the different
classifications of breast cancer, little is known about the
participation of TRPM8 in the tumor pathology. For instance,
TRPM8 silencing decreases migration and invasion in MDA-
MB-231 cells, reducing the expression of EMT-related markers
such as Akt, GSK-3ß phosphorylation and Snail expression.
Conversely, TRPM8 overexpression in the low aggressive
MCF-7 cell line increases invasion, migration and promotes
EMT (212). The analysis of TRPM8 interacting proteins helps
to hypothesize possible roles for this channel in the pathology of
breast cancer. For instance, TRPM8 interacts with the Serotonin
receptor 5-HT1B, enhancing the response of the channel to its
agonists (213). In breast cancer, the 5-HT7 receptor is
upregulated in triple negative cell lines such as the MDA-MB-
231, HCC-1395, and Hs578T cells, increasing its invasion and
proliferation through the PI3K/Akt pathway (214), an effect
similar to that of TRPM8 (212), which suggests that 5-HT
receptors might be a downstream effectors of TRPM8 activity.

TRPV1
TRPV1 is a ligand-gated non-selective channel whose activation
allows the influx of Ca2 + and Na+ PCa/PNa = 9.6 (215, 216) and
its selectivity depends on the nature and concentration of the
agonist (217). TRPV1 can be activated by capsaicin and its
analogues as well as by temperature, and pH changes (215)
among others (216, 218–221). TRPV1 activity can be modulated
by PKA (222) , PKC (223) and CaMKII-dependent
phosphorylation (224). Additionally, CaM and Inositol-4,5-
biphosphate (PIP2) (225) binding have been reported to
activate it. TRPV1 has been involved in processes such as
thermoregulation and inflammatory nociception and is widely
expressed in brain tissue, primary and secondary sensory
neurons, arteriolar smooth muscle cells (226), skeletal muscle
(227) and urothelium (228). TRPV1 has been associated with
different diseases, including different types of cancer such as
tongue squamous cell and prostate carcinoma (229, 230),
hepatocellular carcinoma (231) and bladder carcinoma (232),
skin cancer (233) and others (234–236). Although most studies
report a tumor-suppressor role for TRPV1, its exact function in
tumorigenesis is not clear. Increased expression of TRPV1 has
been observed in all subtypes based on the molecular profile in
breast cancer (237). In addition, TRPV1 expression pattern
varies between cytoplasmic/membranous (165, 238) to a
pattern in aggregates at the ER/Golgi, which was associated
with a more aggressive tumoral stage (238).

Multiple studies have linked TRPV1 activity with an
antitumoral role in breast cancer, promoting cell death (237,
239, 240) and decreased cell proliferation. Additionally, the
activation of TRPV1 with agonists, modulators (MRS1477) and
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chemotherapeutic agents such as cisplatin induces cell death by
apoptosis through depolarization of the mitochondrial
membrane, ROS production and caspase activation (239, 240).
Similarly, melatonin, in conjunction with the chemotherapeutic
agent DOX, promotes apoptosis in MCF-7 cells through the
activation of TRPV1 (241). Moreover, activation of TRPV1 using
low doses of capsaicin may induce apoptosis in tumor cells, while
higher doses of capsaicin activate necrosis (242). Wu et al. also
determined that in MCF-7 cells, the expression levels of TRPV1
are decisive for capsaicin-induced cell death (243). Therefore, the
use of TRPV1 agonists can be a complementary treatment to
those currently used, promoting the sensitization of therapy-
resistant tumors to cell death.

Fas-associated factor 1 (FAF1) is an adaptor protein for the
Fas receptor and has been described to interact with TRPV1,
reducing its response to capsaicin, heat and acid (244). A study
performed in fibrosarcoma cells suggest that FAF1 acts as a
negative regulator of cell death mediated by capsaicin-dependent
activation of TRPV1. Moreover, FAF1 silencing increases
fibrosarcoma cells susceptibility to apoptosis when cells were
treated with capsaicin (245). However, in breast cancer, several
studies have reported a tumor suppressor activity for FAF1,
where this protein antagonizes Wnt signaling by stimulating b-
catenin degradation (246). Additionally, FAF1 destabilizes TbRII
on the cell surface limiting excessive TGF-b response, an effect
that could supress metastasis formation (247). Furthermore, Xie
et al. showed that there is a positive correlation between the
survival of patients with metastasis-free breast cancer and the
expression of FAF1. Therefore, the design of a drug to prevent
the TRPV1/FAF1 interaction without affecting FAF1 tumor
supressing activity could be a powerful tool in the treatment of
breast cancer.

Another interesting interactor of TRPV1 is g-aminobutyric
acid type A (GABAA) receptor associated protein (GABARAP)
where GABARAP increases TRPV1 expression, clustering at the
cell surface and modulates TRPV1 gating and sensitivity (248).
Moreover, GABARAP has been described as a tumor suppressor
in breast cancer (249), where its mRNA and protein expression
levels were significantly downregulated in invasive and ductal
lobular carcinomas compared to normal breast tissue. Therefore,
the design of a peptide that functionally emulates GABARAP
that could promote its tumor suppressive role and increases the
traffic of TRPV1 without altering its activity, could contribute to
the treatment of breast cancer. Therefore, further studies into
this interaction might represent an interesting new
therapeutic approach.

TRPA1 is a nonselective cation channel permeable to Ca2+,
Na+, and K+. TRPA1 detects a wide range of hazardous stimuli
and is also involved in noxious cold and mechanical sensation
(250). Different studies have demonstrated functional interaction
between TRPA1 and TRPV1 (251, 252). Direct interaction of
TRPV1 with TRPA1 exerts a Ca2+-dependent modulation on
certain intrinsic properties of TRPA1 (253). Recently, it has been
observed up-regulated expression of TRPA1 in breast cancer
cells, promoting tolerance to oxidative stress in tumor cells. On
the other hand, TRPA1 inhibition reduces tumor growth and
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improves sensitivity to chemotherapies (254). Interestingly, cell-
permeable peptide that mimics the C-terminal of Tmem100-3Q,
a modulator of the interaction between TRPA1 and TRPV1,
selectively inhibit TRPA1-mediated activity in a TRPV1-
dependent manner, generating a promising therapy for pain
(255). Therefore, the design of peptides that promote the
interaction of TRPV1–TRPA1 that might induce channel
inhibition could be a potential treatment as has been observed.

TRPV2
TRPV2 is a non-selective cation channel showing Ca2+

permeability, with a PCa/PNa ~3, and can be activated by high
temperatures (>52 °C) (256), hypoosmolality (257), cell
stretching (258), cannabinoids (259), among others (260, 261).
TRPV2 is mainly expressed in the central and peripheral nervous
system (256, 262–264) and at the subcellular level it is present in
intracellular membranes (265, 266) and plasma membrane (267).
TRPV2 act as a mechanosensor, osmosensor (257) and
contributes to nociception and thermoregulation. However,
studies performed in TRPV2 knock out mice suggest that it
might participate in other activities (262), such as neurogenesis
and gliomagenesis (268). TRPV2 has been involved in
pathological processes, such as the development of
cardiomyopathies (269) and cancer (270). In the context of
cancer, the overexpression of channel is associated with well
differentiated tumours and an increase of the survival in
hepatocellular carcinoma, glioma and glioblastoma, while the
opposite effect was observed in oesophageal carcinoma,
urothelial carcinoma and gastric cancer (271–276). Increased
TRPV2 expression has been observed in breast cancer samples,
especially in TNBC subtype patients, where TRPV2 activation
improved DOX uptake by tumor cells and was associated with
better prognosis (277). Different studies have shown the
formation of heteromers between TRPV1 and TRPV2 (278–
280). Even though there are no studies directly linking their co-
expression in breast cancer as indicated in the previous section,
TRPV1, as well as TRPV2 have been described as markers of
good prognosis. Therefore, enhancing their interaction and
activation might be an interesting therapeutic approach.

Another interactor of TRPV2 is Acyl-CoA binding domain
containing 3 (ACBD3), which mediates the TRPV2–PKA
interaction and subsequent PKA-mediated phosphorylation (281).
ACBD3 is involved in the maintenance of Golgi structure and
function through its interaction with the integral membrane
protein. However, a recent study shows that ACBD3
overexpression correlates with poor prognosis in breast cancer,
where this protein promotes tumorigenesis by activating theWnt/b-
catenin signaling pathway (282). Although more studies are
required on how the TRPV2–ACBD3 interaction might
contribute to the modulation of channel activity or downstream
signaling pathways in breast cancer contexts, it represents a novel
and interesting therapeutic target to prevent disease progression.

TRPV4
TRPV4 is a non-selective cationic channel with a reported
relative permeability of PCa/PNa ~7 (283, 284). This channel is
June 2021 | Volume 11 | Article 621614

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Saldı́as et al. TRP Channels Interactome and Breast Cancer
activated by multiple stimuli, such as osmotic changes,
mechanical stretching, warm temperatures and arachidonic
acid metabolites (285). It participates in several physiological
processes such as vascular tone modulation, endothelial
permeability, nociception and inflammatory responses in
multiple organs (283, 285). Its expression has been reported in
sensory and brain neurons, skeletal and smooth muscle as well as
in epithelial tissue of several organs including the trachea,
bladder, cornea, bile ducts and breast (283).

In the context of cancer, decreased TRPV4 expression has
been reported in basal cell carcinoma, whereas an increase in its
expression has been associated with poor survival in colorectal
cancer (286, 287). Moreover, overexpression of this ion channel
has been detected in breast cancer samples from human patients
in comparison with normal tissue (288, 289). In this context,
significantly higher expression was found in metastatic lesions
compared with intraductal carcinomas (289) and in ER-negative
compared with ER-positive samples (288). Moreover, TRPV4
expression has been associated with decreased survival of distant
metastasis-free patients and enhanced EMT progression. This is
consistent with its established role in non-metastatic murine
breast cancer cell line (i.e. 4T07 cells), which involves the
phosphorylation-dependent activation of Akt (289), pivotal
kinase for EMT during breast carcinogenesis (290). Ca2+

signaling mediated by TRPV4 lead to phosphorylation-
dependent Akt activation, causing a decrease of E-Cadherin
expression (289). Interestingly, in keratinocytes it has been
observed that TRPV4 forms a protein complex with b-catenin
and E-cadherin in E-cadherin-dependent junctions, where
TRPV4-mediated Ca2+ signals favours the maturation of these
structures (291). This discrepancy might be explained
by differences in the cellular model or due to alterations of
regulatory mechanisms proper from neoplastic cells.
Despite this, the presented data highly suggest that
TRPV4 has an important role in breast cancer EMT
progression via E-Cadherin regulation. Further studies are
needed to unveil the possible functional association between
these proteins in the context of breast cancer, which might grant
valuable information for therapeutic approaches.

TRPV4 also interacts with Fyn and Src tyrosine kinase (292),
protein associated with the progression and malignant features of
diverse types of cancer (293). Similar to TRPV4, Fyn promotes
EMT progression in breast cancer (294). Interestingly, Fyn-
mediated phosphorylation of TRPV4 Tyr-253 residue is
necessary for hypotonicity-induced Ca2+ entry, suggesting that
Fyn is a positive regulator of TRPV4 (292). AQP5 associates with
TRPV4 and is crucial for TRPV4-dependent Ca2+ influx
promoted by hypotonic stimulus. AQP5 has been associated
with breast cancer cells proliferation and migration (295)
possibly by accelerating volume changes of the leading edge,
contributing to actin cytoskeleton dynamics and cell shape
changes during this process (296–298). Additionally, TRPV4
interaction with the Ca2+-activated Cl- channel TMEM16A is
also involved in volume regulation. Different studies show that
TRPV4-mediated Ca2+ influx promotes TMEM16A activation,
leading to Cl− outward currents and subsequent water efflux
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(299, 300). It has been reported that TMEM16A is overexpressed
in 78% of human breast cancer samples and that it modulates
breast cancer progression through promotion of EGFR signaling
in breast cancer cell lines (301). Thus, a possible interplay
between Fyn, TRPV4, TMEM16A and AQP5 might occur
during breast cancer progression and contribute to volume
regulation during cell migration, leading to the development of
a metastatic phenotype.

We previously mentioned the participation of IP3R3 and
Caveolin-1 in breast cancer and their association with TRPC1.
Interestingly, TRPV4 interaction with these proteins has been
reported (302–304). Indeed, TRPV4 forms functional
heterotetramers with TRPC1 (303) and is suggested to
participate in SOCE (305). Moreover, the functional
interaction between TRPC1 and TRPV4 participates in Ca2+

homeostasis of endothelial cells (305, 306). Thus, TRPV4 is
crucial for the migration of breast cancer endothelial cells, an
essential process for angiogenesis during tumor growth (307). In
conclusion, the association of TRPV4 and TRPC1 could
modulate tumor angiogenesis and involve Caveolin-1 and the
IP3R3. Functional analysis of these interactions and their cellular
outcomes remains to be explored to address this as a possible
therapeutic target.

TRPV6
TRPV6 is a Ca2+ channel with a PCa/PNa ~130 (308), regulated by
intracellular Ca2+ in a Ca2+ and Ca2+/CaM-dependent manner
(309). TRPV6 channels are widely expressed in absorptions
epitheliums, exocrine glands, placenta, epididymal epithelium
and in vestibular and cochlear tissues, where it mediates
transcellular transport and maintains physiological levels of
Ca2+ (310–313). In neoplastic diseases, TRPV6 channel has
been reported as overexpressed in breast, colon, ovary, prostate
and thyroid carcinomas promoting proliferation (314).
Moreover, increased levels of this channel have been associated
with high survival rates and better prognosis in cervical and
oesophageal carcinomas, whereas the opposite effect has been
reported in pancreatic cancer (315–317). In breast cancer,
TRPV6 mRNA increased levels have been reported in tumor
tissue and its expression has been correlated with poor prognosis
for patients (57, 318). In vitro analysis has shown that TRPV6
silencing reduces breast cancer cell proliferation and promotes
apoptosis (318). Interestingly, TRPV6 expression is promoted by
the activation of vitamin D3, estrogen and androgen receptors.
This induced overexpression increases the basal intracellular
levels of Ca2+ in breast cancer cells, positively regulating gene
expression via the CaM/Calcineurin/NFAT pathway, which
modulates proliferation and apoptosis (314). Interestingly, this
channel interacts with several proteins with important roles in
breast cancer.

CaM, is a Ca2+ -sensing protein that regulates intracellular
Ca2+ levels and has the capability to activate or inactivate several
target proteins in a Ca2+-dependent manner (319). CaM induced
the slow inactivation of TRPV6 channel by direct interaction
(320) and modulates positively the NFAT and Akt pathways,
promoting survival, proliferation and migration in several breast
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cancer cell lines in a Ca2+-dependent manner (159, 160). These
results suggest that CaM inactivates TRPV6, reducing Ca2+

entry. Interestingly, in breast cancer, rises in Ca2+ levels might
activate the NFAT and Akt pathways. Thus, uncoupling the
TRPV6–CaM interaction could promote Ca2+ influx and activate
those pathways. Thus, promoting this interaction could be
beneficial for patients.

TRPV6-dependent Ca2+ currents are regulated by
phosphorylation of the channel in tyrosine residues. For
example, Fyn and Src are tyrosine kinases, members of the Src
family, which regulate several processes, such as cell
proliferation, survival, differentiation, motility and angiogenesis
(321). Although Fyn interaction with TRPV6 was reported, the
specific residues phosphorylated by Fyn remain unknown,
whereas Src phosphorylates TRPV6 specifically in residues
Y161 and Y162, promoting Ca2+ entry (322). In breast cancer,
Fyn has been described as a predictive biomarker of tamoxifen
response, participating in tamoxifen resistance (323). Moreover,
this protein is involved in maintaining a mesenchymal
phenotype in MDA-MB-231 cells (294). Interestingly, Src
promotes cell growth and survival in MDA-MB-468, while in
the MCF-7 cells, this protein promotes spreading and motility.
Moreover, a gain of function of this protein promotes bone
metastasis in mice models (324). Thus, these results suggest that
tyrosine phosphorylation in TRPV6 promotes its activity, which
could enhance breast cancer malignancy. For this reason,
disruption of the interaction between these kinases and TRPV6
channels could be a therapeutic alternative in breast cancer.

TRPV6 also forms a complex with tumor suppressor proteins
with relevance in cancer development such as Numb1 and
phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase
(PTEN). Numb1 is a cell fate determinant protein, which
stabilizes p53, preventing its ubiquitination. This protein
interacts with TRPV6, decreasing cell Ca2+ influx, although its
mechanism in unclear. Moreover, it has been described that in
MCF-7 cells, Numb1 knockdown increases the expression of this
channel, whereas TRPV6 knockdown increases Numb1
expression (325). On the other hand, PTEN is a protein
phosphatase with tumor suppressor activity which mediates
the PI (3–5) P3 to PI (4, 5) P2 conversion, promoting inhibition
of the PI3K/Akt pathway (326). Interestingly, this phosphatase
forms a complex with TRPV6 and Numb1 in the prostate cancer
cell lines (DU145). Moreover, knockdown of PTEN causes a
positive regulation between Numb1 and TRPV6 expression in
DU145 cells (327). In breast cancer, the absence of Numb
correlates with reduced disease-free survival in patients (328). A
meta-analysis of generated data about PTEN suggests that the loss
of this protein could predict more aggressive forms of breast
cancer and worse prognosis for patients (329). Thus, these results
suggest that loss of Numb and PTEN correlate with worse
prognosis in breast cancer. For this reason, promoting the
interaction between TRPV6, NUMB1 and PTEN could be
useful as a therapeutic approach in breast cancer.

TRPV6 also interacts with accessory proteins with reported
activity in breast cancer. For example, cyclophilin B is a peptidyl-
prolyl cis-trans isomerase which promotes changes in protein
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conformation. This chaperone was identified as a TRPV6
accessory protein, promoting TRPV6-dependent Ca2+ influx
(330). Moreover, the knockdown of cyclophilin B in ER+/
HER2− cell lines (T47D cells) downregulates the expression of
several elements involved in cell proliferation, such as the
progesterone and estrogen receptors (331). Another interesting
protein is regulator of G-protein signaling 2 (RGS2) which
corresponds to a negative regulator of G-protein coupled
receptors (GPCR), increasing GTPase activity of Ga subunits
and regulating several signaling pathways (332). This protein
interacts with TRPV6 reducing its Na+ and Ca2+ currents, in a
GPCR-independent manner (333). Interestingly, RGS2 is
downregulated in MCF-7 cells but not in MCF-10A. Moreover,
overexpression of this protein in MCF-7 cells reduces its
proliferation (332). These results indicate that knockdown of
cyclophilin B reduces TRPV6 currents and breast cancer cell
proliferation. Moreover, overexpression of RGS2 reduces TRPV6
currents and breast cancer cell growth. Thus, we hypothesize that
promoting these interactions could serve as a therapeutic
approach in breast cancer.

An important component of TRPV6 trafficking machinery is
Rab11. This protein regulates the budding, movement, and
delivery of transport vesicles along different trafficking routes
(334). Interestingly, Rab11 interacts with TRPV5 and TRPV6
mediating the trafficking of these proteins to the plasma
membrane. Moreover, silencing of Rab11a promotes a decrease
in membrane expression of both channels (309). In breast cancer
cell lines, it has been described that Rab11a knockdown reduces
proliferation, migration and invasion in an Akt-dependent
manner (335, 336). These results reveal that downregulation of
Rab11a reduces TRPV6-dependent Ca2+ currents and breast
cancer cell malignancy. Thus, inhibiting the interaction
between Rab11a and TRPV6 might constitute an interesting
new target for breast cancer treatment.

TRP Channels and STIM/ORAI Complex
As we described above, TRP channels exert multiple effects on
breast cancer cells, at least in part, through the modulation of Ca2+

signaling. The SOCE response is crucial for Ca2+ homeostasis, and
represents the main path for its influx in non-excitable cells. This
response is triggered after endoplasmic reticulum Ca2+ depletion
through the establishment of the STIM1/ORAI1 protein complex.
The coupling between these proteins promotes the gating
mechanism of the highly selective Ca2+ channel ORAI1, which
leads to the establishment of Ca2+ Release-Activated Ca2+ Currents
(ICRAC) (337). Although this current was the first associated to
SOCE, other non-selective currents were identified as part of this
homeostatic response as well, broadening the concept to ISOC (338).
This current has been associated with ORAI1 activity and with
specific TRP channels, in particular with TRPC1 (80). Interestingly,
SOCE has been widely associated with several types of cancer such
as cervical, esophageal, breast, lung cancer and others (339).
Moreover, a gain of function of this response has been related
with a poor prognosis, bigger tumour size and poor differentiation
(339). In addition, SOCE has been widely associated to breast cancer
progression (340, 341). The expression of essential components of
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SOCE, such as ORAI1 and STIM1 are essential in mammary gland
physiology during lactation, and also in breast cancer progression
and invasion (342, 343). In addition to ORAI1, other ORAI
isoforms have been linked to breast cancer. For instance, ORAI3
is a tumor promoting agent during cancer progression in ER+
malignant cells (344). Interestingly, increased levels of STIM1,
TRPC1, ORAI1 and ORAI3 are correlated with poor prognosis of
patients with aggressive basal breast cancer types, such as triple
negative molecular subtypes (59, 345, 346). Although the exact
mechanisms by which they could promote tumor progression are
still not understood in detail, they might represent potential novel
prognosis biomarkers in breast cancer.

In addition to TRPC1, other TRP channels have been related to
SOCE and its signaling pathways. Several studies have described the
physical and functional interaction between TRP channels and
ORAI and STIM proteins (347). TRPC subfamily members are
the most represented TRP channels forming complexes with SOCE
components. In this context, TRPC3 (348) and TRPC6 (349) are
proposed to interact with STIM1/ORAI1 complexes and promote
Ca2+ entry by ISOC and the subsequent activation of signaling
pathways related to cancer progression (350). TRPC1/STIM1/
ORAI1 complex activity might participate in metabolic regulation
through Ca2+ dependent control of mitochondrial function and
autophagy (351, 352). Other TRP subfamilies are also involved in
Ca2+ entry through SOCE. TRPA1 interacts with the STIM1/
ORAI1 complex, interfering with complex assembly, and
decreasing the SOCE response (353). On the other hand, TRPV1,
although it does not physically interact with ORAI1, exerts a
functional modulation on this channel, particularly by promoting
the Ca2+ dependent inactivation of ORAI1, leading to a decreased
Ca2+ entry (354). Since these TRP channels and SOCE components
have been previously proposed as prognosis biomarkers (56), its
physical and functional interactions could be a potential target for
the modulation of breast cancer progression. Other SOCE
components are also related physically and functionally with TRP
channels. STIM2 has been reported to interact with TRPC1 and
TRPC6 in MCF-7 cells, modulating the resting Ca2+ content
through SOCE activation (81, 128). TRPC1 and TRPC4 are
activated by a longer isoform of STIM1, STIM1L. These
interactions have different effect to that observed in the activation
of SOCE related channels (355). While ORAI1 is preferentially
activated by STIM1, TRPC1 is preferentially activated by STIM1L
(356). Additionally, SOCE-Associated Regulatory Factor (SARAF),
which is the main negative modulator of SOCE, interacts with either
STIM1/ORAI1 complex and/or TRPC1 (357) decreasing in Ca2+

influx. Since several TRP channels interact with STIM1 and ORAI1,
these could be considered a signaling hub in which TRP and ORAI
channels’ activity might converge. Furthermore, since these physical
and functional interactions between TRP channels and several
SOCE components are reported to modulate Ca2+ entry and
subsequent activation of pro-oncogenic processes in breast cancer
cells, interrupting these interactions could be an exciting and novel
strategy to attenuate cancer progression. TRPC channels and STIM/
ORAI expression and interaction have been proposed as potential
breast cancer prognosis biomarkers as proposed (56, 339). Further
studies to explore the role of TRP channels and STIM1/ORAI1
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complexes and how these are related to prognosis and their
potential utility as biomarkers are necessary.
FUTURE PROSPECTS FOR OTHER
POSSIBLE INTERACTIONS OF ION
CHANNELS AS THERAPEUTIC TARGETS

As we previously discussed, the TRP channels interactome could be
used as a novel therapeutic target in breast cancer by promoting or
interrupting the discussed interactions, thus modulating channel
activity and associated signaling pathways. As with others proteins,
TRP channels can also be regulated by a plethora of post-
translational modifications (PTM), which provide spatial–
temporal control of several processes such as ion channel
inactivation, activation, trafficking, endocytosis, and degradation
(358–360). Interestingly, in several pathological conditions,
including cancer, have been reported a dysregulation in the PTM
balance. This dysregulation in PTM balance leads to several
pathologies due to a gain or loss of function in crucial proteins
(361–363). For example, tumor suppressors such as Rb, P53, and
PTEN are targets of several PTM that mediated their inactivation or
degradation, which promotes carcinogenesis (362). Although the
relevance of PTM in cancer and TRP channels, further investigation
is still required to identify new residues targets, the role of the
modification in the channel, and the enzyme that mediates the PTM
(359). Interestingly, only a few modifying enzymes have been
reported as molecular partners of TRP channels such as Fyn, Src,
PTEN, and KCTD5. However, all these presented relevant
contributions in breast cancer and therefore could be exciting
targets in molecular therapies (153, 294, 323, 324, 329). Further
investigations are needed to identify more modifying enzymes and
new putative targets in breast cancer and several others pathologies.
MODULATION OF PPIS AS A
THERAPEUTIC STRATEGY FOR
BREAST CANCER

Almost all breast cancer patients will receive at some point
chemotherapy as either first-line treatment or as adjuvant/
neoadjuvant, which will bring with it serious side effects for the
patient (364). Given the systemic nature of the treatment and its
low cell specificity and toxicity, chemotherapy can affect almost
every organ in the body, including the heart, lungs, brain and
kidneys (365, 366). These side effects, along with the fact that
most times chemotherapy does not have a curative effect on
breast cancer, but only prolongs the patient’s life and alleviates
the disease-associated symptoms (365, 367) makes the discovery
of new therapies that will only affect tumor cells an important
field of research. As was described in the previous sections, there
is a myriad of TRP channels that have been associated with
several clinical parameters and diverse aspects of breast cancer
progression, making them interesting therapeutic targets.
Moreover, several interactors of these channels have also been
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described as important regulators in the development of breast
cancer. The fact that the expression of both the TRP channels
and their interactors are highly dysregulated in breast cancer
suggests that the modulation of these interactions might provide
new specific and selective targets for therapeutic interventions in
the field of breast cancer research. Since peptides to modulate
PPIs are highly specific in regards to their targets, affecting only
the cellular pathways associated with a specific interaction and in
cells where both the channel and the interactor are expressed,
they are attractive candidates for in vivo treatment due to their
minimal off-target effects (368). Nevertheless, compared to the
targeting of enzymes or receptors, the therapeutic intervention of
PPIs has been more challenging, partly due to the large and less
structured interface of these interactions (369–372). Despite that,
some of the current methods for PPIs modulation have been
used as therapeutic strategy in breast cancer (Figure 2).
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One of the main challenges that PPI modulators have faced is
that most interactions encompassed relatively large contact
areas. Nevertheless, subsequent research lead to the description
of "hotspots," which are a small subset of amino acid residues
contributing most of the binding free energy in PPIs (373). These
hotspots are rich in Tyr, Trp, Leu, Ile, Phe, and Arg, where the
amino acids Trp, Arg, and Tyr promote hydrogen bonds forming
between the interacting proteins, contributing to p-interactions
and binding free energy (373). This definition of hotspots has led
to the design of small molecules or peptides that target this small
number of amino acids to modulate PPIs. An early example of
this was the design of Tirofiban, a mimetic of the Arg-Gly-Asp
tripeptide epitope of fibrinogen that binds to the aIIbb3 integrin
approved by the FDA (374).

Another therapeutic challenge that these molecules might
have is their poor cell/tissue specificity and membrane
FIGURE 2 | Modulation of ion channel-associated PPIs as therapeutic tool. Graphical representation of the modulation options for Ion channel-associated PPI, either
through stabilizers or inhibitors of the interactions. All these strategies could constitute a useful complementary therapeutic tool contributing to increasing existing or
personalized therapies.
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penetration capacity. In this context, the use of cell-penetrating
peptides (CPPs) has provided an important tool to improve these
aspects. CPPs are short peptides (less than 30 residues) with low
cytotoxicity that have the ability to cross biological membranes,
which can be coupled to bioactive molecules to transport them
inside cells (375, 376). Interestingly, it has been demonstrated
that several of these peptides have tumor homing capacities or
might be modified to discriminate between tumoral and non-
tumoral cells, thus, when coupled to PPIs-modulators, they
would reduce undesired off-target effects and improve their
cellular uptake (377–380). Several methods have been
developed to provide CPPs with tumoral specificity, such as
the use of peptides that naturally bind to tumor-specific cell
surface molecules (380, 381), peptides that are inactive until
modified by a cancer-associated protease or by properties of the
tumoral microenvironment (382, 383) and those that take
advantage of cellular mechanisms dysregulated in tumoral cells
(384). As we can see, the use of CPPs is a major tool to provide
PPI-modulators with tumoral specificity and low side effects.

Several small molecules have been designed and are being
used for the targeting of pro-tumoral PPIs in breast cancer.
Eribulin and Ixabepilone both interfere with the tubulin-a–
tubulin-b interaction inhibiting microtubule growth,
ultimately causing G2-M phase cell cycle arrest and cell
death through apoptosis, have been used for years in the
treatment of metastatic breast cancer patients (385–388).
LCL161 and Birinapant are two among several SMAC
mimetics being used in breast cancer treatment, which are
modeled after the N-terminal AVPI tetrapeptide of Smac,
which binds to the BIR domains of the inhibitor of apoptosis
(IAP) proteins, thus interfering with this interaction (389,
390). These are just examples of PPIs and drugs used to target
them in breast cancer treatment. Further discovery of small
molecules is guaranteed by using current techniques, such as
High Throughput/virtual Screening and Fragment-based
methodologies (391). These approaches will be relevant to
the discovery and development of new drugs targeting ion
channel-associated PPIs. In this context, although modulators
of TRPC channels-associated PPIs have not been approved for
human treatment yet, several studies using in vivo models
have shown the efficacy of using systemically-administered
peptides to disrupt ion channels-associated PPIs to treat
diseases with no observed side effects, and high specificity
for their targets (392–395).

Despite their positive characteristics, small peptides do have
several limitations, such as a lack of stability, relatively low
affinity, poor cell-penetrability and short plasma half-life (396,
397). Given this, the use of antibodies has become an essential
tool to interrupt PPIs and the fastest-growing and most
successful class of therapeutic biologics, given their intrinsic
ability to interact potently with proteins along a broader
surface spectrum and various epitopes and their inherent
stability (398). In this context, daclizumab is an FDA-approved
antibody that blocks the interaction between IL-2 and its
receptor, which has shown clinical success in patients with
metastatic breast cancer when applied in combination with
Frontiers in Oncology | www.frontiersin.org 13
immune therapy (399). Atezolizumab is a monoclonal
antibody against programmed death ligand-1 (PD-L1), which
blocks its interaction with Programmed cell death protein 1 (PD-
1) (400). In a recent study, the treatment with Atezolizumab plus
nab-paclitaxel prolonged progression-free survival among
patients with metastatic TNBC (401). Moreover, in a pilot
study in women with early-stage breast cancer, the use of
ipilimumab and FDA approved (for melanoma treatment)
monoclonal antibody against CTLA-4, which blocks the
interaction with its ligand CD86, showed potentially favorable
intratumoral and systemic immunologic effects in combination
with cryoablation (402). Although the use of antibodies to
modulate PPIs has become a new and exciting tool to
modulate PPIs, we acknowledge the relative difficulty of using
them in the context of ion channels and their interactors due to
the inability of antibodies to cross the plasma membrane, which
is where most of the interactions in ion channels occur. The use
and generation of recombinant antibodies might improve those
difficulties. Additionally, the development of nanobodies, small
single-domain antigen-binding antibody fragments, has helped
to improve many of the problems that normal monoclonal
antibodies have. The smaller size of nanobodies helps them to
better penetrate deeper into the tumor and have a more precise
targeting than normal IgGs (403–405). Moreover, nanobodies
can be conjugated to CPPs to overcome their inability to
penetrate the plasma membrane and thus be able to modulate
pro-tumoral PPIs occurring inside the cell with great specificity
without affecting the functionality of the involved proteins in
other signaling pathways (404, 406, 407).

The more broadly used (and FDA approved) approaches to
modulate PPIs are the small molecules and antibodies. However,
other methods are being proved and improved to make them
more suitable for clinical use, such as peptidomimetics, long
peptides with a structure derived from existing peptides or
protein domains. These molecules tend to mimic natural
interaction and conserve a protein-like structure (391, 408).
Although no peptidomimetics have been approved for breast
cancer treatment, the major advances in the field of cell-
penetrating peptides (CPPs), will encourage the development
of therapeutic peptides and help to overcome some of the
shortcomings that these molecules have as possible
therapeutics (375, 409). Moreover, in the field of antibodies,
nanobodies’ discovery and use should promote more stable and
simpler molecules (410, 411). Also, aptamers can also be used to
modulate PPIs (412, 413). Finally, the combination of several of
these methods, such as the conjugation of peptides with small
molecules, oligoribonucleotides, or antibodies as a possible
alternative to overcome each type’s disadvantages, has gained
interest in the last years, especially in oncology (396).
CONCLUDING REMARKS

Cancer is a multifactorial disease, which progression depends on
the dysregulation of several pathways involved in processes such
as cell metabolism, immune evasion, avoiding cell death,
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inflammation, migration, and invasion. Interestingly, Ca2+

signaling is involved in many, if not all, of these processes. In
this context, ion channels, especially TRP channel family
members, are interesting proteins given their regulatory role
on intracellular Ca2+ levels. Indeed, TRP channels expression
and activity of several of them have been found commonly
dysregulated in several types of cancer, including breast cancer.
Hence, several TRP channels have been proposed as potential
biomarkers of tumor progression and response to breast
cancer treatment.

Interestingly, several proteins that interact with TRP channels
have been reported as dysregulated in breast cancer, and thus,
proposed as biomarkers for cancer progression. In this article, we
have extensively reviewed the main TRP channels that might
have a role in breast cancer progression, focusing on how their
interaction with other reported biomarkers might constitute
novel and exciting targets for intervention as possible therapies
in this disease. Furthermore, we have presented several
mechanisms by which these interactions might be regulating
several aspects of breast cancer progression. However, although
there are strong evidence and literature to support the
interactions presented here, we are aware that most of them
are based on reports in non-cancer models. Thus, further studies
are needed to confirm these interactions and their possible
pathological role in breast cancer. In conclusion, the
identification and confirmation of new TRP-interactions, their
role in breast cancer, and the development of drugs to modulate
those interactions might provide new alternatives to help in the
treatment of breast cancer patients, especially in those cases
where there are no current treatments available or where
treatments are non-selective and carry dangerous secondary
effects with them.
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5. Godone RLN, Leitão GM, Araújo NB, Castelletti CHM, Lima-Filho JL,
Martins DBG. Clinical and Molecular Aspects of Breast Cancer: Targets and
Therapies. BioMed Pharmacother (2018) 106:14–34. doi: 10.1016/
j.biopha.2018.06.066

6. Wahba HA, El-Hadaad HA. Current Approaches in Treatment of Triple-
Negative Breast Cancer. Cancer Biol Med (2015) 12(2):106–16. doi: 10.7497/
j.issn.2095-3941.2015.0030

7. Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The
Evolution of Calcium-Based Signalling in Plants. Curr Biol (2017) 27(13):
R667–R79. doi: 10.1016/j.cub.2017.05.020
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75. Pillé JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, et al. Anti-
RhoA and anti-RhoC siRNAs Inhibit the Proliferation and Invasiveness of
MDA-MB-231 Breast Cancer Cells In Vitro and In Vivo.Mol Ther (2005) 11
(2):267–74. doi: 10.1016/j.ymthe.2004.08.029

76. Daubriac J, Han S, Grahovac J, Smith E, Hosein A, Buchanan M, et al. The
Crosstalk Between Breast Carcinoma-Associated Fibroblasts and Cancer
Cells Promotes RhoA-Dependent Invasion Via IGF-1 and PAI-1.Oncotarget
(2018) 9(12):10375–87. doi: 10.18632/oncotarget.23735

77. Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T,
Tiruppathi C, et al. RhoA Interaction With Inositol 1,4,5-Trisphosphate
Receptor and Transient Receptor Potential Channel-1 Regulates Ca2+ Entry:
Role in Signaling Increased Endothelial Permeability. J Biol Chem (2003) 278
(35):33492–500. doi: 10.1074/jbc.M302401200

78. Chung HK, Rathor N, Wang SR, Wang JY, Rao JN. Rhoa Enhances Store-
Operated Ca2+ Entry and Intestinal Epithelial Restitution by Interacting
With TRPC1 After Wounding. Am J Physiol Gastrointest Liver Physiol
(2015) 309(9):G759–67. doi: 10.1152/ajpgi.00185.2015

79. Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Smani T, Rosado JA. Trpc
Channels in the SOCE Scenario. Cells (2020) 9(1). doi: 10.3390/cells9010126

80. Cheng KT, Liu X, Ong HL, Ambudkar IS. Functional Requirement for Orai1
in Store-Operated TRPC1-STIM1 Channels. J Biol Chem (2008) 283
(19):12935–40. doi: 10.1074/jbc.C800008200
Frontiers in Oncology | www.frontiersin.org 16
81. Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA.
Capacitative and Non-Capacitative Signaling Complexes in Human
Platelets. Biochim Biophys Acta (2012) 1823(8):1242–51. doi: 10.1016/
j.bbamcr.2012.05.023

82. Redondo PC, Jardin I, Lopez JJ, Salido GM, Rosado JA. Intracellular Ca2+
Store Depletion Induces the Formation of Macromolecular Complexes
Involving hTRPC1, hTRPC6, the Type II IP3 Receptor and SERCA3 in
Human Platelets. Biochim Biophys Acta (2008) 1783(6):1163–76. doi:
10.1016/j.bbamcr.2007.12.008

83. Redondo PC, Salido GM, Pariente JA, Sage SO, Rosado JA. SERCA2b and 3
Play a Regulatory Role in Store-Operated Calcium Entry in Human Platelets.
Cell Signal (2008) 20(2):337–46. doi: 10.1016/j.cellsig.2007.10.019

84. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS. Calmodulin Regulates Ca2
+-Dependent Feedback Inhibition of Store-Operated Ca2+ Influx by
Interaction With a Site in the C Terminus of Trpc1. Mol Cell (2002) 9
(4):739–50. doi: 10.1016/S1097-2765(02)00506-3

85. Rosado JA, Sage SO. Activation of Store-Mediated Calcium Entry by Secretion-
Like Coupling Between the Inositol 1,4,5-Trisphosphate Receptor Type II and
Human Transient Receptor Potential (hTrp1) Channels in Human Platelets.
Biochem J (2001) 356(Pt 1):191–8. doi: 10.1042/bj3560191

86. Hannan MA, Kabbani N, Paspalas CD, Levenson R. Interaction With
Dopamine D2 Receptor Enhances Expression of Transient Receptor
Potential Channel 1 At the Cell Surface. Biochim Biophys Acta -
Biomembranes (2008) 1778(4):974–82. doi: 10.1016/j.bbamem.2008.01.011
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