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Subarachnoid hemorrhage (SAH) is a complicated clinical syndrome, which is caused by
several kinds of cerebrovascular disorders, with high morbidity, disability and mortality
rate. In recent years, several studies have shown that early brain injury (EBI) is an
important factor leading to the poor prognosis of SAH. A major cause of EBI has been
attributed that hematoma components invade into the brain parenchyma, resulting in
neuronal cell death. Therefore, the clearance of hematoma components is essential in
the clinical outcome of patients after SAH. Here, in the review, we provide a summary of
the current known hematoma components clearance mechanisms and simultaneously
propose a new hypothesis for hematoma components clearance.

Keywords: subarachnoid hemorrhage, early brain injury, hematoma components clearance, Virchow-Robin
space, hemoglobin

INTRODUCTION

Subarachnoid hemorrhage (SAH) is a serious cerebrovascular condition caused by bleed in
the subarachnoid space. SAH may be caused by head injuries or ruptured cerebral aneurysms.
Intracranial aneurysm rupture is the most important cause of SAH. SAH accounts for about 5%
of all stroke types (Shah et al., 2019). Generally, the incidence rate of SAH is about 6–7/100,000
person/year (Linn et al., 1996; Anderson et al., 2000). However, Finland and Japan have higher
incidence rates, about 20/100,000 person/year (Linn et al., 1996). The incidence rate of SAH in
China has been reported to be 2/100,000 person/year (Anderson et al., 2000). The mortality rate of
SAH ranges between 32 and 67% (Ingall et al., 2000; Nadeau et al., 2019).

Recent researches show that early brain injury (EBI) is a major factor for high mortality and
disability after SAH. EBI refers to the period from initial bleeding to the onset of delayed cerebral
vasospasm (within 72 h after SAH) (Broderick et al., 1994). The pathophysiological mechanisms for
EBI include increased intracranial pressure (ICP), insufficient cerebral blood flow, oxidative stress,
inflammation, neuronal apoptosis, necrosis, and autophagy (Chen et al., 2014; Rass and Helbok,
2019). When SAH occurs, ICP sharply elevates, and the increase rate is indicative of the severity of
the initial bleed. Increased ICP will cause decreased cerebral blood flow and cerebral ischemia. After
SAH, hematoma components invade brain parenchyma with cerebrospinal fluid (CSF), causing
series of destructive reactions that lead to neuronal cell death. Hematoma components are mainly
composed of red blood cells (RBCs), hemoglobin (Hb) and its lysate, etc. Hb and its lysis have
strong cytotoxic effects that have been demonstrated to cause neuronal cell death (Zille et al., 2017).
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Hence, the removal of hematoma components plays a crucial
role in the outcome of SAH patients. In clinics, the removal of
hematoma is a treatment option including external ventricular
drainage and lumbar cistern drainage. And these treatments have
been proved to reduce mortality, improve survival, and enhance
the life quality of patients after SAH.

NEUROTOXICITY OF HEMATOMA
COMPONENTS

Degradation of RBCs after SAH results in the release of Hb.
Hb consists of four globin chains (α1, α2, β1, β2), with each
containing a heme group (Figure 1). The heme group consists
of a porphyrin ring that coordinates with an iron (Fe) atom in
the Fe2+ or Fe3+ oxidative state. Released Hb can be oxidized
to oxyHb. Released Hb cleavage produces free heme, which is
considered to be more toxic than released Hb because of its
lipophilic properties that enable its insertion into membranes
(Balla et al., 1991). Moreover, free heme accelerates tissue damage
through peroxidative reactions and activation of inflammatory
cascades (Ma et al., 2016). Therefore, after SAH onset, the
hematoma components are mainly composed of RBCs, oxyHb
and free heme (Figure 2).

The toxicity of released Hb is manifested in four aspects:
oxidation, inflammation, nitric oxide (NO) clearance, and
edema (Bulters et al., 2018). Heme-mediated oxidation is in
its ferrous (Fe2+) and iron (Fe3+) states, and heme can react
with hydrogen peroxide or endogenous lipid hydroperoxide to
form a highly reactive ferryl iron (Fe4+) (Bulters et al., 2018).
The generation of these free radicals results in the dramatic
modification of membranes, lipids, proteins, nucleic acids, and
so on, which severely alters cell morphology and function
(Marnett et al., 2003). Molecular markers of the oxidation
process have been detected in the CSF after SAH, including
covalently modified proteins and oxidized lipids (Suzuki et al.,
1983; Reeder et al., 2002). Hb and heme are ligands of the Toll-
like receptor 4 (TLR4), expressed by microglia and macrophages.
Activation of TLR4 causes microglia and macrophages to secrete

FIGURE 1 | A hemoglobin molecule comprises two alpha (α1,α2) and two
beta (β1,β2) subunits. Between each subunit fold is a hydrophobic pocket
containing a heme group. Due to its four subunits, Hb molecules can
reversibly bond with four O2 molecules.

tumor necrosis factor (TNF), which triggers nuclear factor-κB
activation, inflammation, and necrosis (Figueiredo et al., 2007;
Kwon et al., 2015). Free heme can also activate the nucleotide-
binding domain, leucine rich family and pyrin, leading to the
synthesis of interleukin-1β (IL-1β) and interleukin-1α (IL-1α)
by glial cells, leading to inflammation and neuronal cell death
(Greenhalgh et al., 2012; Liu et al., 2019).

After SAH, ferrous Hb reacts with NO to produce
methemoglobin and nitrate, thus losing its ability to bind
and transport oxygen. On the other hand, NO is also consumed
by oxygen free radicals (Joshi et al., 2002; Kajita et al., 1994). NO
is a vasodilator produced by endothelial cells, neuronal cells, and
glial cells in the brain. In cerebral blood vessels, NO regulates
vascular tone and inhibits platelets adhesion (Faraci et al., 1994;
Voetsch et al., 2004). In studies involving both human and
animal models, it has been reported that NO depletion after
SAH causes the dysfunction of coagulation system, which leads
to thrombosis and is closely related to poor clinical outcomes
(Suzuki et al., 1990; Stein et al., 2006; Friedrich et al., 2012).
Hb and its lysate have been reported to induce brain edema as
well. A study reported that intracerebral injection of Hb and its
lysate resulted in increased sodium levels in the brains of rats
(Huang et al., 2002). In another study, Hb injection into the rat
brains resulted in the upregulation of matrix metalloproteinase-9
(MMP-9) and subsequent destruction of the blood-brain barrier
(Katsu et al., 2010). Therefore, the occurrence of perivascular
edema after SAH can be associated with Hb and its lysate.

As discussed above, the neurotoxicity of the hematoma after
SAH gradually increases with the lysing of Hb. Therefore, the
early clearance of hematoma has great significance. Hence,
achieving hemoglobin clearance as early as possible and within
a small range can greatly reduce neuronal cell death and have a
positive impact on clinical outcomes.

PROGRESS OF THE HEMATOMA
COMPONENTS REMOVAL MECHANISM

Currently, some research progress had been made regarding
the mechanism of hematoma components clearance. Three
approaches for the elimination of hematoma components have
been reported and confirmed (Figures 3, 4):

Erythrophagocytosis
Erythrophagocytosis is the clearance of abnormal RBCs.
CD36 is an integral macrophage/microglia cell membrane
protein and also a type II scavenger receptor expressed on
macrophages and monocytes. Abnormal RBCs can exteriorize
phosphatidylserine, and macrophages/microglia recognize
exposed phosphatidylserine via cluster of differentiation CD36,
leading to erythrophagocytosis (Fadok et al., 1998; Zhao
et al., 2015). This shows CD36 play an key role in mediating
recognition and phagocytosis. Erythrophagocytosis seems to be
an effective clearance mechanism; however, once macrophages
engulf more than two RBCs, they will undergo cell death,
and lead to the release of deleterious heme and iron into the
extracellular matrix. The role of CD47 in erythrocyte clearance
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FIGURE 2 | Rupture of intracranial blood vessels causes blood flow into the subarachnoid space to form subarachnoid hemorrhage (SAH). Then hematomas are
formed after SAH. Hematoma components include intact red blood cells (RBCs), free hemoglobin (Hb), oxygenated Hb, free heme, and etc. RBC lysis produces free
Hb. On the one hand, Hb can bind with oxygen molecules (up to four oxygen molecules) to form oxyhemoglobin; on the other hand, it could be lysed to produce free
hemes.

FIGURE 3 | Activated macrophages and microglia play a crucial role in the clearing of hematoma components after subarachnoid hemorrhage (SAH). Three
pathways have been reported on removal of hematoma components in patients with SAH. (1) Red blood cells (RBCs) are directly phagocytosed by
macrophages/microglia after being recognized by CD36 receptors on macrophages/microglia membrane, and CD47 has an inhibitory effect on erythrophagocytosis;
(2) The RBC cleavage product hemoglobin (Hb), firmly binds to haptoglobin (Hp) to form a haptoglobin-hemoglobin (Hp-Hb) complex by covalent binding.
Subsequent recognition of the (Hp-Hb) complex by CD163 on the macrophage/microglia membrane mediates endocytosis of the complex; (3) Further lysing of Hb
leads to the production of a large amount of heme or haem, which then binds to Hpx. This complex is transported into macrophages/microglia via CD91.
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FIGURE 4 | In the phagolysosome period, hemoglobin (Hb) is broken down to release heme or haem. Free heme is degraded to biliverdin, carbon monoxide (CO)
and ferrous iron by the endoplasmic reticulum enzymes, haem oxygenase-1 or haem oxygenase-2. Biliverdin is reduced to bilirubin by biliverdin reductase. Similarly,
free extracellular heme transported into macrophages/microglias is also broken down to produce free iron, biliverdin (bilirubin), and CO.

is still under investigation. CD47 is an integrin-associated
transmembrane protein that is expressed on lots of cell types
including microglia, oligodendrocytes, and erythrocytes. It was
reported that CD47 positively impacts on erythrocyte lifespan
by inhibiting phagocytosis via signal regulatory protein alpha,
which expressed on the surface of normal erythrocytes (Kondo
et al., 1988; Ni et al., 2016; Tao et al., 2020). Further research
is necessary to decipher the exact role of CD47 in erythrocyte
clearance after SAH.

The fates of macrophages after phagocytosis of RBCs following
SAH have not been thoroughly studied. Also, the possibility
of hyperphagocytosis (involving more than two RBCs) by
macrophages has not been studied in patients with SAH.
Hence, erythrophagocytosis is not considered to be an ideal
clearance mechanism.

Haptoglobin and CD163
Erythrocyte cleavage produces Hb dimers that are immediately
and irreversibly bound by haptoglobin (Hp), one of the strongest
naturally occurring non-covalent interactions (Nagel and Gibson,
1971). A crystal structure analysis of the haptoglobin-hemoglobin
(Hp-Hb) complex revealed active iron and pro-oxidative tyrosine
residues on the Hp-Hb surface. Structural features of the Hp-Hb
explain the ability of Hp to prevent Hb auto-oxidation and delay
heme release (Andersen et al., 2012). Exposure of the epitope

on the β-chain of Hp by the binding of Hb to Hp, allows the
Hp-Hb complex to be recognized by CD163 on macrophages
and initiates endocytosis. After internalization, heme is degraded
by heme oxygenase 1 or 2 (HO-1 or HO-2) to biliverdin, iron,
and carbon monoxide (Nielsen et al., 2007; Etzerodt et al., 2013;
Schallner et al., 2015).

Haptoglobin is mainly synthesized by the liver and the
reticuloendothelial system. Hp has been shown to diffuse from
the blood into the CSF (Chamoun et al., 2001). It is worth noting
that the amount of cell-free Hb is about 250 times greater than the
amount of Hp in each milliliter of intracranial blood (Meng et al.,
2020). Hp is the primary Hb-binding protein which can attenuate
the adverse biochemical and physiological effects of extracellular
Hb. Recent evidence indicated two major functions of the Hp-
Hb complex: inhibition of Hb auto-oxidation (Buehler et al.,
2009; Cooper et al., 2013; Arba et al., 2019) and Hb clearance
(Kristiansen et al., 2001). There are two alleles and several known
rare variants of Hp in humans (Kazmi et al., 2019). The two
alleles are responsible for three kinds of possible genotypes
with structural polymorphism: homozygous (1-1 or 2-2) and
heterozygous (2-1) (Blackburn et al., 2018). Hp is cleaved into
two subunits α and β, which are joined by a disulfide bond. Both
alleles of Hp share the same β chain (Goldenstein et al., 2012). The
β chain is responsible for the binding of Hb; thus, both genotypes
have similar Hb binding affinity (Asleh et al., 2005). Clinical
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FIGURE 5 | The pia mater becomes tapered and forms a capillary. The Virchow-Robin space (VRS) is the extravascular space around the small arteries and is full of
cerebrospinal fluid (CSF). Astrocytes form gap junctions at the outer layer of the VRS, while the endothelial cells from the inner layer of the VRS. Astrocytes are
sufficient to express aquaporin-4. The gap junctions facilitate the exchange of CSF and ISF. Substances in the CSF can enter the brain parenchyma through the VRS.

studies in patients with SAH indicated that Hp 2-2 patients may
have high risk for hemorrhage-related complications and poor
outcome (Blackburn et al., 2018).

Some studies had provided evidence that astrocytes (Lee et al.,
2002) and oligodendrocytes (Zhao et al., 2009) express Hp under
pathological conditions. CD163 is a phagocytic marker and Hb
scavenger receptor, whose expression is thought to be exclusive
to the perivascular and monocyte-macrophage system (Fabriek
et al., 2005). Excessive levels of Hb upregulated the expression
of Hp and the Hb-Hp receptor CD163 in neurons both in vivo
and in vitro (Garton et al., 2016). CD163 mediates the delivery of
Hb to macrophages/microglia after SAH. Macrophage/microglia
endocytosis the Hp-Hb complex through CD163 when free

Hb binds to Hp. Once the Hp-Hb complex is endocytosed
by macrophages/microglia, the anti-inflammatory response may
be fueled because of heme metabolites having potent anti-
inflammatory effects (Moestrup and Moller, 2004).

CD163 is a single membrane-pass protein with nine
extracellular domains, and also a member of the scavenger
receptor cysteine-rich superfamily (Onofre et al., 2009). CD163
is involved in anti-inflammatory signaling following the binding
of certain forms of Hp. This anti-inflammatory signaling
includes the triggering of interleukin-10 (IL-10) responses via
phosphatidylinositol-3 kinase-dependent Akt signaling (Galea
et al., 2012; Landis et al., 2013; Wang et al., 2018). However, pro-
inflammatory signals such as TNF-α, interferon-γ, transforming
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growth factor-β, and lipopolysaccharide could lead to decreased
levels of CD163 expression.

Some researchers believed that CD163-mediated
internalization of the Hp-Hb complexes into macrophages
is vital in Hb clearance. However, some studies have shown
that most of the Hb in the CSF after SAH does not bind to Hp
(Galea et al., 2012). In addition, the Hp-CD163 pathway is not
very effective in clearing Hb due to the scarcity of Hp. More
importantly, it has been reported that neuronal cells also express
CD163 under pathological conditions and mediate Hp-Hb
endocytosis, leading to neuronal cell death (Chen-Roetling and
Regan, 2016). In the absence of sufficient Hp reserve, the Hb
structure is often modified by oxidation, thus reducing the ability
of CD163 to bind to the Hp-Hb complex (Vallelian et al., 2008). It
was reported that the level of Hp in the CSF of patients with SAH
increased rapidly after blood was injected into the subarachnoid
space. However, the Hp levels then decreased, possibly due to the
clearance of the Hp-Hb complex. Subsequently, an increase in
Hp levels accompanied by a parallel increase in Hb was observed,
thus indicating a CD163-mediated clearance pathway saturation
(Durnford et al., 2015; Przybycien-Szymanska et al., 2016). In
summary, this pathway does clear Hb; however, reports from
some studies have indicated that this pathway maybe is not the
best one. Further research is needed to verify its role.

Hemopexin and CD91
Hemopexin (Hpx) is a plasma glycoprotein, capable of binding
heme with a high affinity and is expressed by neurons and glia
(Morris et al., 1993; Paoli et al., 1999). A study reported that
about 90% of Hpx in the brain is produced intrathecally under
healthy conditions (Paoli et al., 1999). However, the level of Hpx
in the CSF is ten times lower than that in the general circulation,
indicating that its ability to bind to Hb in the brain is relatively
low (Garland et al., 2016). The hemopexin-heme complex is
endocytosed by cells expressing the low-density lipoprotein
receptor-related protein-1 (LRP1)/CD91 receptor (Garland et al.,
2016). LRP1 is a transmembrane receptor, which is expressed
on macrophages, hepatocytes, neurons, vascular endothelial cells,
pericytes, smooth muscle cells, and astrocytes (Paoli et al., 1999;
Garland et al., 2016). The hemopexin-heme complex becomes
internalized via endocytosis into cells upon binding to LRP1.
The hemopexin-heme complex is then dissociated by lysosomal
activity inside the cell. Heme is catabolized by heme oxygenase
into biliverdin, carbon monoxide, and iron (Hvidberg et al.,
2005). Study reported free Hb was still detected in the CSF after
SAH (Garland et al., 2016), indicating that the hemopexin-CD91
system is not sufficient for SAH. In another study, one-third of
the SAH patients had elevated levels of heme-binding proteins
in the CSF, at an average of 133.8 µg/mL (Hvidberg et al., 2005).
Patients with elevated levels of Hpx often have a higher incidence
of delayed cerebral ischemia and worse functional outcomes
compared with patients of normal heme-binding protein levels
(Hvidberg et al., 2005). Thus, further investigation of this system
is needed to despite its neuroprotective effects.

In addition to the above discovery, new research has shown
that LRP1 can regulate the polarization of microglia through
the Shc1/PI3K/Akt pathway during inflammation and oxidative

damage (Peng et al., 2019). This causes microglia to become more
responsive or pro-inflammatory, which is referred to as microglia
priming. This means that LRP1 can promote the removal of
hematoma components (including RBC and tissue debris), and
inhibit the inflammatory response, thereby reducing damage to
brain tissue after SAH.

OUR HYPOTHESIS

We have proposed a possible Hb clearance pathway, which
is effective and work in a small range. The details are
introduced below.

Virchow-Robin Space
Fluid-filled canals surrounding perforating arteries, capillaries,
and veins in the brain parenchyma are referred to the Virchow-
Robin space (VRS) (Nakada et al., 2017; Plog and Nedergaard,
2018; Rasmussen et al., 2018). VRS was named after the first
two scientists who described the structures in detail, Rudolph
Virchow and Charles Philippe Robin. Then numerous studies
were devoted to the deep understanding of the VRS. Research
had shown that CSF (from the subarachnoid space) flows into
the brain tissue through the perivascular spaces of the large
leptomeningeal arteries (Iliff et al., 2013; Aspelund et al., 2015).
Pial arteries in the subarachnoid space become smaller arteries
that penetrate into the brain parenchyma (Ma et al., 2017;
Pizzo et al., 2018). The space around the penetrating arteries
which is filled with CSF is termed as the VRS (Zeppenfeld
et al., 2017; Hannocks et al., 2018; Figure 5). In the VRS, CSF
flows between blood vessels and glial cells, thus ensheathing
the cerebral vasculature (Iliff et al., 2013). Some studies have
suggested that astrocytes densely express aquaporin-4, which
helps the CSF to flow into the brain parenchyma and mix with the
interstitial fluid (ISF) for material exchange (Carare et al., 2008).
A recent study reported that small volumes of soluble tracer
injected into the ISF of the gray matter of the mouse striatum or
hippocampus, led to the initial diffusion of the tracer through the
extracellular spaces of the brain. However, within 5 min the tracer
entered the basement membranes in the walls of the capillaries
and cerebral arteries and drained out of the brain. The tracer was
not retained within the brain parenchyma after injecting larger
volumes of the tracer, suggesting that the tracer may have passed
into the CSF in the ventricles (Morris et al., 2016). It is clear
that substances within the CSF may potentially access and spread
along the VRS to various extents throughout the cerebrovascular
tree (Benveniste et al., 2017; Goulay et al., 2019). For example,
large, full-length antibodies immunoglobulin G (IgG) have been
shown to access the VRS of arterioles, capillaries, and venules
following intrathecal infusion in rats (Kumar et al., 2018). It has
been reported that solutes with molecular weights smaller than
100 kDa can leave the perivascular spaces by passing through
the 50 nm clefts that separate the vascular endfeet of astrocytes
(Jessen et al., 2015). Some studies have shown that perivascular
macrophages and endothelial cells exist in the VRS (Iliff et al.,
2012). In addition, the latest research found that CSF flows into
the brain after stroke, causing acute tissue swelling (Mestre et al.,
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FIGURE 6 | After subarachnoid hemorrhage (SAH), free Hb enters the VRS, and monocytes also enter VRS through recruitment. ADAM17 responds rapidly to
thrombin stimulation, and CD163 is cleaved to produce a free form of CD163 (sCD163). After binding to hemoglobin (Hb), sCD163 inhibits the autoxidation of Hb on
the one hand, and furtherly forms a complex with IgG on the other hand. The complex is recognized by macrophages, endothelial cells, and monocytes via the FcγR
to achieve Hb clearance.

2020). Intracranial microvessel contraction and diffuse ischemia
lead to an expansion of the VRS, and increases the flow rate of
cerebrospinal fluid (Mestre et al., 2020).

In summary, since its discovery, an increasing amount of
evidence have suggested that the VRS may play an important role
in material transportation, waste removal (Iliff et al., 2012) and
acute brain pathologies. However, the specific mechanism has not
been elaborated yet.

sCD163 and ADAM17
As discussed above, CD163 is an endocytic receptor for
Hp-Hb complexes and is expressed on macrophages and
monocytes. The extracellular portion of CD163 circulates in
the blood as a soluble protein (sCD163) in healthy people.
During inflammation and macrophage activation, sCD163
levels increase due to metalloproteinase-mediated cleavage
(Etzerodt et al., 2010). However, the molecular mechanisms
responsible for CD163 shedding are not fully understood. TNF
α-converting enzyme (ADAM17/TACE) has been identified to
cleave CD163 using metalloproteinase inhibitors and siRNA-
mediated knockdown (Boretti et al., 2009). ADAM17, originally
named TACE, is a membrane-anchored metalloproteinase, and
expressed on macrophages and responds to thrombin and
lysophosphatidic acid (Roy-O’Reilly et al., 2017). A study
reported that sCD163 is elevated in the serum of patients

with intracerebral hemorrhage (ICH) compared with healthy
controls (Etzerodt et al., 2017). sCD163 synthesized intrathecally
in patients with ICH, and accumulated in the subacute phase.
The early serum levels of sCD163 in these patients were
associated with hematoma and edema expansion following
ICH (Etzerodt et al., 2017). Other studies have shown that
sCD163 retains the ability to bind to the Hp-Hb complex
and exert anti-inflammatory effects (Subramanian et al., 2013;
Mohme et al., 2019).

A Potential Pathway for Hemoglobin
Clearance
In the early stages of SAH, hematoma components enter the
CSF and flow into the VRS. In the VRS, the hematoma
component thrombin promotes ADAM17 activation, which
further cleaves CD163 to produce sCD163 (Boretti et al.,
2009), which forms a complex with Hb that inhibits the
oxidation of Hb to oxyhemoglobin (Subramanian et al., 2013).
Subsequently, the Hb-sCD163 complex binds to IgG to form
the Hb-sCD163-IgG complex (Subramanian et al., 2013). On
the one hand, the sCD163-Hb-IgG complex induces paracrine
transactivation of neighboring endothelial cells, and causes them
to upregulate HO-1 and secrete cytokines for systemic defense
against Hb (Chen et al., 2010; Jovic et al., 2010). On the other
hand, the sCD163-Hb-IgG complex elicits an autocrine loop
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of endocytosis via FcγR on perivascular macrophages (Chen
et al., 2010; Jovic et al., 2010), whereas the internalized Hb
is catabolized by HO-1. Also, due to the molecular weight of
the Hb-sCD163-IgG complex being much larger than 100 KDa,
it enters the brain parenchyma slowly through the VRS. This
slow pace of the Hb-sCD163-IgG complex provides sufficient
time for the recruitment of monocytes. Monocytes express FcγR
(Subramanian et al., 2013), which enables them participate in the
clearance of Hb as well (Figure 6).

However, our hypothesis has certain limitations. For example,
the stability of the VRS is unknown after SAH. Moreover,
brain edema, inflammatory reaction, and the blood-brain barrier
are destroyed in the latter stages (Bosche et al., 2020). More
importantly, astrocytes that form in the space around the VRS
express aquaporin-4. Although its function is still controversial,
it is likely to have a certain impact on the outcome of SAH.
However, our hypothesis has great potential to remove Hb in the
early stages following SAH. Moreover, it is likely to play a role in
the clinical treatment of EBI following SAH.

CONCLUSION

Removal of hematoma after SAH is important for the reduction
of mortality and disability. The existing hematoma components
clearance pathways have some limitations that cannot be

overlooked. Therefore, it is essential to elaborate an effective
hematoma components clearance pathway, which may provide
new clinical treatment options for SAH. Thus, further research
is required to provide more insights into the mechanism of
hematoma clearance after SAH. Our perspective is that early,
rapid, efficient, and low-toxic hematoma components clearance
pathways should be clarified to benefit clinical treatment for SAH
and improve the outcomes of patients.
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