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Abstract: Global competition among businesses imposes a more effective and low-cost supply chain
allowing firms to provide products at a desired quality, quantity, and time, with lower production
costs. The latter include holding cost, ordering cost, and backorder cost. Backorder occurs when
a product is temporarily unavailable or out of stock and the customer places an order for future
production and shipment. Therefore, stock unavailability and prolonged delays in product delivery
will lead to additional production costs and unsatisfied customers, respectively. Thus, it is of
high importance to develop models that will effectively predict the backorder rate in an inventory
system with the aim of improving the effectiveness of the supply chain and, consequentially, the
performance of the company. However, traditional approaches in the literature are based on stochastic
approximation, without incorporating information from historical data. To this end, machine learning
models should be employed for extracting knowledge of large historical data to develop predictive
models. Therefore, to cover this need, in this study, the backorder prediction problem was addressed.
Specifically, various machine learning models were compared for solving the binary classification
problem of backorder prediction, followed by model calibration and a post-hoc explainability based
on the SHAP model to identify and interpret the most important features that contribute to material
backorder. The results showed that the RF, XGB, LGBM, and BB models reached an AUC score
of 0.95, while the best-performing model was the LGBM model after calibration with the Isotonic
Regression method. The explainability analysis showed that the inventory stock of a product, the
volume of products that can be delivered, the imminent demand (sales), and the accurate prediction
of the future demand can significantly contribute to the correct prediction of backorders.

Keywords: prediction models; post-hoc explainability; inventory backorder prediction; inven-
tory management

1. Introduction

Backorder occurs when a product is temporarily unavailable or out of stock and the
customer places an order for future production and shipment [1]. Backorders are noticed
mainly in case of product unavailability due to excessive demand or future release on the
market. For instance, COVID-19 and lockdown measures raised the need for antiseptic
products and indoor domestic activities that led to a mass wave of online purchases.
This trend led to the bullwhip effect, or else the Forrester effect, for many industries
and companies that had not succeeded on predicting the increase demand. The stock of
products proved insufficient; however, due to products’ low availability and alternative
solutions, the customers were willing to wait for their order. Another recent example is
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the early announcement of the upcoming release in the market of a new product from a
famous company. In that case, the company accepts backorders from customers, since
the initial production quantity will be insufficient to cover the expected demand for the
popular product [1]. The ability of a company to address backorders impacts significantly
the company’s revenue, share market price, and customers’ trust [2].

The backorders of products play a crucial role in the management of the inventory,
since they affect the total production costs of the whole supply chain. In the literature,
various studies addressing the Economic Order Quantity (EOQ) and Economic Produc-
tion Quantity (EPQ) have been published, taking into account backorders [3–6]. These
approaches include: (i) the coordination and minimization of total costs of the supply
chain with backorders [7,8] among other factors, such as with stochastic supply distri-
bution [9,10]; (ii) the inventory problem addressed with backorders [11–14] and safety
stocks [15], multi-objective optimization formulations with fixed backorder, and time-
weighted backorder [16], stochastic demand and price discount [17,18], the integration of
human errors [19], customers’ preferences [20], or customers’ behavior [21], and from the
energy-efficient perspective with the aim to minimize carbon emissions [22]; (iii) fuzzy logic
to model the demand or the order quantity for finding the optimal stock quantity [23–25];
(iv) heuristic approaches for optimizing the inventory systems [26–28].

Due to the importance of backorders and their impact on the whole supply chain
costs, studies have been focused on the prediction of inventory backorders. To address
the issue of backorders prediction, artificial intelligent techniques have been employed
to deal with imbalanced data issues, since the number of products going on backorder is
much lower than that of those that are on stock [29]. A machine learning approach was
proposed [30] to maximize the expected profit of backorder decisions by integrating the
profit-based measure into the prediction model and optimizing the decision threshold. In
this context, various machine learning models were evaluated, such as Logistic Regression
(LR) and k-Nearest Neighbor (KNN) classifiers, Decision Tree, Support Vector Machine
(SVM), and Multi-Layer Neural Network (NN). Another machine learning approach based
on Distributed Random Forest and Gradient Boosting Machine learning techniques was
presented for predicting the probable backorder scenarios in the supply chain [2]. Unsu-
pervised learning was used to predict backorders by using Deep Autoencoder [29]. Deep
neural networks for imbalanced data were proposed for backorder prediction [1]. A case
study on the Danish Craft Beer Breweries was presented by using machine learning models
for predicting the backorders [31].

The above studies employed machine learning methods to address the backorder
prediction problem, whether a product would be backordered or not. However, none
of these aimed to explain and interpret the impact of features on the prediction output.
To this end, this study focused on developing an explainable machine learning pipeline
for: (i) evaluating the performance of well-known machine learning models to predict
backorders as a binary classification problem and (ii) interpreting the results by using a
post-hoc explainability model (SHAP) on the best performing model. Special notice was
given to the treatment of the imbalanced dataset by using an undersampling technique.

2. Materials and Methods
2.1. Dataset

In this study, the publicly available dataset ‘Predict Product Backorders. Can you
predict product back orders?’ (https://www.kaggle.com/c/untadta/data (accessed on 1
October 2021)), that was initially created for a competition, was used. In total, 23 features
are included in the dataset. Out of the 23 features given in the dataset (Table 1), 15 are
numerical, and 8 (including the target variable “went on back order”) are categorical
features. The data consisted of 9714 products that were backordered and 1,038,860 that
were not.

https://www.kaggle.com/c/untadta/data
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Table 1. Dataset description.

Feature Name Description Type

national inv Current inventory level of component Numerical
lead time Transit time Numerical

in transit qty Quantity in transit Numerical

forecast x month Forecast sales for the net 3, 6, 9 months, where x
represents the months Numerical

sales x month Sales quantity for the prior 1, 3, 6, 9 months,
where x represents the months Numerical

min bank Minimum recommended amount in stock Numerical
potential issue Indictor variable noting potential issue with item Categorical
pieces past due Parts overdue from source Numerical

perf x months avg Source performance in the last 6 and 12 months,
where x represents the months Categorical

local bo qty Amount of stock orders overdue Numerical
X17–X22 General Risk Flags

deck risk, oe constraint, ppap
risk, stop auto buy, rev stop Different Flags (Yes or No) set for the product Categorical

went on back order Product went on backorder Categorical

2.2. Mehtodology

The presented dataset was used in a machine learning (ML) pipeline to predict pos-
sible backorders in the inventory management system. The steps integrated in the ML
pipeline were the following (Figure 1): (i) data preprocessing to handle the missing data
and the categorical values; (ii) feature selection via a state-of-the-art method, called Boost-
ARoota [32,33]; (iii) a comparative evaluation of popular machine learning models, such as
Random Forest (RF), LightGBM (LGBM), XGBoost (XGB), Balanced Blagging (BB), Neural
Networks (NN), Logistic Regression (LR), Support Vector Machines (SVM), and K-Nearest
Neighbors (KNN); (iv) an explainability analysis with the use of the SHAP model applied
to the best-performing prediction model in (iii).
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Figure 1. Methodology steps.

For the preprocessing of the dataset, we deleted the rows with missing values, so that
we had the maximum possible real information. In addition, we normalized the data set to
[0,1]. Finally, to address the problem of imbalanced data, we reduced the samples of the
majority class to reach the number of samples in the minority class.

Regarding the feature selection process, the state-of-the-art selection method BoostA-
Roota was used. It is a fast XGBoost wrapper feature selection algorithm that follows the
Recursive Feature Elimination approach. It operates similarly to Boruta utilizing XGBoost
as the base model. BoostARoota returns an optimal subset of features by eliminating up
to 10% of the initial set of features. Its effectiveness has been proven in various appli-
cations [32,33]. A 10-fold cross validation was performed for the selection of the most
important features.
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The comparative evaluation included 8 popular and commonly used classifiers, such
as Random Forest (RF) [34], K-Nearest Neighbor (KNN) [35], Neural Networks (NN) [36],
Logistic Regression (LR) [37], Balanced Blagging (BB) [38], Support Vector Machines
(SVM) [39], XGBoost [40], and LightGBM [41]. A 70/30% validation strategy was em-
ployed to generate the training and testing sets with an integrated cross validation strategy
that employed grid search for the hyperparameter tunning to avoid overfitting and bias
error. In Table 2, a description of the employed hyperparameters is presented. For the
performance evaluation of the models, the accuracy, recall, f1-score, precision, AUC metrics
were used.

Table 2. Hyperparameters of the selected ML models.

Classifiers Hyperparameters

RF criterion: [gini, entropy], n estimators: [10, 15, 20, 25, 27, 30], min samples
leaf: [1, 2, 3, 4, 5], min samples split: [2, 3, 4, 5, 6, 7]

KNN n neighbors: [3, 4, 5, 7, 9, 12, 14, 15, 16, 17], leaf size: [1, 2, 3, 5], weights:
[uniform, distance], algorithm: [auto, ball tree, kd tree, brute]

NN hidden layer sizes: [(2, 5, 10), (5, 10, 20), (10, 20, 50)], activation: [tanh, relu],
solve: [sgd, adam], alpha: [0.0001, 0.05], learning rate: [constant, adaptive]

RL penalty = [11, 12], C: [0, 1, 2, 4, 6, 8, 10]

SVM C: [0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], kernel:
[linear,sigmoid,rbf,poly]

XGB max depth: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], min child weight: [1, 2, 3, 4, 5, 6, 8,
10], gamma: [0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

LGBM n estimators: range (200, 600, 80), num leaves: range (20, 60, 10)

BB n estimators: [10, 50, 100, 300, 500, 1000, 1100, 1200, 1300, 1400, 1500]

Following the results from the validation of the models, the classifiers with similar
performance were calibrated to increase their performance and identify the best one.
Calibration is a post-processing operation, which improves the probability estimation
of a model [42,43]. To calibrate the models, the Platt Scaling (sigmoid) [44] and Isotonic
Regression [45,46] (isotonic) methods were adopted.

A post-hoc explainability was finally applied on the best performing model based on
the SHapley Additive exPlanations (SHAP) model to explain the predictive model and the
contribution of the most important features. SHAP is a game theory approach typically
employed to explain the output of any machine learning model. It connects optimal credit
allocation with local explanations using the classic Shapley values from game theory and
their related extensions [47–49].

3. Results

In this section, the results of each step of the ML methodology are presented.

3.1. Feature Selection

The BoostARoota algorithm selected the following features as important in random
order of appearance:

• national inv
• lead time
• in transit qty
• forecast_3_month
• forecast_6_month
• forecast_9_month
• sales_1_month
• sales_3_month
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• sales_6_month
• sales_9_month
• min bank
• pieces past due
• perf_6_month_avg
• perf_12_month_avg
• local bo qty
• deck risk
• ppap risk

3.2. Classification
3.2.1. Validation

In this subsection, the results from the comparative evaluation of the ML models are
presented. Table 3 shows the best metric scores of each classifier used in this study with
their hyperparameters tuning. Furthermore, the roc curves and AUC scores are presented
in Figure 2.

Table 3. Best metric scores of each ML model and the selected hyperparameters of each model.

Classifiers Accuracy
(%)

Recall
(%)

F1-Score
(%)

Precision
(%) Confusion Matrix Hyperparameters

RF 88.82 89.94 89.01 88.10
0 1 Criterion = entropy, min samples

leaf = 1, min samples split = 5,
n estimators = 30

0 2432 342

1 283 2531

KNN 75.93 79.82 76.96 74.30
0 1 algorithm = auto, leaf size = 1, n

neighbors = 3, weights = distance0 1997 777

1 568 2246

NN (MLP) 85.68 85.54 85.75 85.96
0 1 activation = tanh, alpha = 0.0001,

hidden layer sizes = (10, 20, 50),
learning rate = constant, solver = adam

0 2381 393

1 407 2407

LR 70.22 74.09 71.48 69.04
0 1

penalty = l2, C = 10.00 1839 935

1 729 2085

SVM 72.39 85.86 75.80 67.85
0 1

C = 15, kernel = rbf0 1629 1145

1 398 2416

XGBoost 88.53 90.26 88.80 87.38
0 1 gamma = 0.7, max depth = 9, min child

weight = 10 2407 367

1 274 2540

LightGBM 87.78 89.02 88.00 87.01
0 1

n estimators = 520, num leaves = 500 2400 374

1 309 2505

BB 88.85 90.69 89.12 87.61
0 1

n estimators = 11000 2413 361

1 262 2552
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3.2.2. Calibration

Here, the results from the calibration process are shown. Figure 3 depicts the calibra-
tion plots for each of the best performing models that achieved similar performance (RF,
LGBM, XGB, and BB). In each plot, the perfectly calibrated line (dot line), the initial model,
and the model calibrated with the Platt’s method (sigmoid) and the Isotonic Regression
(isotonic) method are presented. For each model, the best calibrated one that best fitted the
dot line was then used for a comparison, illustrated in Figure 4. Figure 5 shows the Roc
curve of the best overall calibrated model (LGBM + Isotonic).
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In this section, the results of the SHAP analysis are presented. Figure 6 illustrates the
summary plot of LGBM calibrated with the Isotonic Regression method, while in Figure 7,
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the beeswarm plot for the backordered class is shown. Furthermore, Figures 8 and 9 show
two examples for products that were classified correctly as backordered and non-backordered,
respectively.
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4. Discussion

The BoostARoota feature selection method selected 17 out of 23 features that formed
the initial dataset. These features were used to form the final dataset for training, validation,
and testing of the proposed ML pipeline in this study. They were relevant to inventory
stock, transit information, sales forecast, and sales quantity (Section 3.1).

Eight machine learning models were used for a comparative evaluation (Table 3).
Among these models RF, XGB, LGBM, and BB presented similar performance based on
the AUC score (0.95, Figure 2). Specifically, Table 3 summarizes the metric scores, the
confusion matrixes, and the selected hyperparameters of the employed ML models for this
binary problem. The majority of the employed classifiers achieved accuracy up to 88.85%
in comparison with KNN, LR, and SVM which achieved lower accuracy (up to 75.93%).
The RF, XGB, LGBM, and BB models also achieved high performances in the remaining
metrics such as recall (up to 90.69%), f1-score (up to 89.12%), and precision (up to 88.10%)
scores. From the confusion matrixes of the aforementioned ML models, it turned out that
the ML models work satisfactorily in this task.

The RF, XGB, LGBM, and BB models that achieved comparative performance were
calibrated based on isotonic and sigmoid methods. Figure 3 illustrates the initial models
and their calibration with the aforementioned calibration methods. The results showed that
for RF, XGB, and LGBM, the calibration with the Isotonic Regression method reached better
results, while for the BB classifier, the Platt Scaling (Sigmoid) method presented better
performance. From the comparative evaluation, depicted in Figure 4, the LGBM classifier
calibrated with the Isotonic Regression method presented the best overall performance, as
it is asymptotically closer to the dotted line that represents the perfectly calibrated model
(Figures 4 and 5).

Figure 6 presents the features’ impact on the output of the best model (LightGBM +
Isotonic) for the proposed dataset. The features were sorted by the mean absolute value
of the SHAP values which represent the SHAP global feature importance. Furthermore,
the most important features that significantly affected the prediction output of the model
were the national_inv, the in_transit_qty, the forecast_3_month, the sales_1_month, and the
forecast_6_month. The national inv concerns the current inventory level of components.
The feature in transit qty describes the quantity in transit, and the sales_1_month concerns
the sales quantity in the prior month. The features forecast_3_month and forecast_6_month
relate to the forecast sales for the next 3 and 6 months.

Figure 8 shows that the topmost influential features n_bank, perf_6_month_avg, in
transit, national_inv, sales_1_month, forecast_6_month, sales_3_month, and loval_bo_qty
led to the prediction value of 0.35, which was transformed to 1. The features that are
indicated with red color influenced positively, which means that they dragged the value
closer to 1, while the features in blue color had the opposite effect. Similarly, for an example
of a backordered product, Figure 9 shows the values of the top influential features that
pushed the product to the backordered class. It is observed that lower values of inventory
stock, products’ quantity received, and source performance of the last 6 months and higher
values of forecasts and sales pushed the output prediction to the non-backordered class.

To interpret the results from a managerial perspective based on the beeswarm plot
illustrated in Figure 7, a product with low stock and high short-term and mid-term future
demand will probably be backordered, since the inventory stock will not be able to satisfy
the customers’ demand, and at the same time, the expected quantity of products to be
delivered to the inventory is also low (Figure 7). Therefore, it is shown that an optimal



Sensors 2021, 21, 7926 10 of 12

management of an inventory system that can handle and prevent the forthcoming backo-
rders of products incorporates: (i) accurate predictions on future demands of products, so
appropriate decisions can be made on the inventory stock of the product and on product
production on time; (ii) increase of the products’ quantity in transit and/or decrease of the
transit time by re-scheduling on time the transportation planning and logistics; (iii) the
product performance, which means that if the product’s quality satisfies the customers’
requirements, the demand of this product is expected to be increased.

5. Conclusions

Businesses target to increase their profit by retaining low production costs trying
in parallel to provide quality service for customer satisfaction. An important part of the
production costs is related to the inventory management system. Therefore, it is of high
importance to effectively and accurately predict various issues that could occur, leading
to additional costs and causing a negative impact on the inventory management system
and business operation. One of these issues is product backorder. When a product is
backordered, the production should be rescheduled in order to address the demand. This
adds additional costs to the business operation. To deal with the backorder issue, this
study considered two key aspects: (i) the development of an accurate prediction model
for product backorder via a comparative evaluation of popular classifiers and model
calibration, and (ii) a post-hoc analysis to explain and interpret the major contributing
factors that lead to product backorder.

Specifically, this study tackled the problem of predicting products that will be back-
ordered in an inventory management system. This problem is usually evaluated as a
highly imbalanced binary classification problem. Due to the large volume of data, an
under-sampling approach was initially adopted to solve this issue. A machine learning
pipeline, based on a comparative evaluation of eight popular classifiers, was then adopted,
followed by a calibration process applied to the models with similar performance and
an explainability analysis of the best-performing model. The results showed that four
models achieved almost comparable performance based on AUC scores and other metrics
(Table 3). Specifically, the RF, XGB, LGBM, and BB models reached an AUC score of 0.95
(Figure 2). These models were calibrated with the Platt’s and Isotonic Regression methods.
The LGBM model calibrated with the Isotonic Regression method presented a slightly
better calibration for our data (Figure 4). For this model, post hoc explainability based on
the SHAP model showed that the features most contributing to the prediction output of the
model relevant to the current inventory level of the component were the quantity in transit
and the short-term and mid-term sales quantity and forecast sales (Figure 6). Backorders
impact the costs that are linked to production, since the production schedule should be
altered in order to deal with the demand of backordered products. Therefore, from the
above analysis, it is shown that the decisions that will be made regarding the inventory
stock of a product can significantly contribute to the optimal operation of an inventory
management system. This decision should be made based on the volume of products that
can be delivered, the imminent demand (sales), and the accurate prediction of the future
demand.

A limitation of this study is the use of resampling techniques to cope with imbalanced
data. To this end, future work will include the use of Siamese neural networks that have
proven effective in case of imbalanced datasets.
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