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Background. Allergic rhinitis (AR) is characterized by tissue and blood eosinophilia. Previous studies showed enhanced
eosinophilia in allergic rhinitis patients with obesity, suggesting an association between obesity and eosinophilia. However,
the interaction and mechanism between obesity and eosinophilia is still unclear. Methods. We recruited thirty AR children
and 30 controls in this study. Expression of leptin and osteopontin (OPN) proteins in serum was detected, and correlation
analysis with eosinophilia was performed. The effect of leptin or OPN on eosinophil apoptosis, adhesion, migration, and
activation of eosinophil was examined. Ovalbumin-sensitized mice were established to prove the role of obesity on
eosinophil regulation by leptin and OPN. Results. We found that upregulated serum and nasal leptin and OPN expression
in AR were positively correlated with eosinophilia and eosinophil cationic protein levels. Leptin or OPN inhibited
eosinophil apoptosis, demonstrated as inhibited DNA fragmentation and phosphatidylserine (PS) redistribution (P < 0 05).
Leptin and OPN promote expression of cluster of differentiation 18 (CD-18) and intercellular adhesion molecule 1
(ICAM-1) and inhibit expression of ICAM-1 and L-selectin by eosinophils, which contribute to the adhesion of
eosinophils. Leptin and OPN mediated migration and activation of eosinophil through phosphatidylinositol-3-OH kinase
(PI3K) pathway. Obese AR mice presented with more severe eosinophilia and symptoms compared with nonobese AR
mice or control mice. Immunochemistry staining of leptin and OPN of nasal turbinate in obese AR mice was also
stronger than those in nonobese AR mice or control mice. Anti-OPN, anti-leptin, and anti-α4 treatments reduce nasal
eosinophilia inflammation and clinical symptoms in model mice. Conclusion. Our results suggested that in an obese state,
upregulation of leptin and OPN regulates apoptosis, adhesion, migration, and activation of eosinophils, and this process
may be mediated by the PI3K and anti-α4 pathways.

1. Introduction

Tissue and blood eosinophilia is a common feature in
allergic airway diseases such as allergic rhinitis (AR), nasal
polyposis, and bronchial asthma [1]. Delayed eosinophil
apoptosis contributes to eosinophilia, and the infiltration
and subsequent activation of eosinophils in the airways
result in the secretion of specific granule proteins, synthe-
sis, and release of lipid mediators, inflammatory cytokines,
chemokines, and growth factors [2, 3]. Through these
mediators, eosinophils contribute to the perpetuation and
amplification of airway inflammation [4]. Previous studies

have shown an association between obesity and eosino-
philia [5, 6]. However, the interaction and mechanism
between obesity and eosinophilia are still unclear.

Leptin, an adipokine of the obesity (ob) gene, has been
shown to regulate food intake and energy expenditure via
a hypothalamic-mediated effect [7, 8]. Leptin’s functional
receptor (ObRb) is expressed in the hypothalamus and
various immune cells including T and B lymphocytes, nat-
ural killer cells, monocytes, and eosinophils [9, 10]. Previ-
ous study showed that serum leptin level is related to body
fat percentage and body fat mass [11]. Most recently,
Conus et al. reported that human eosinophils can express
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Ob-Rb and delay spontaneous eosinophil apoptosis [12].
Besides, leptin has been shown to upregulate surface adhe-
sion molecules, induce the release of inflammatory cyto-
kines, and stimulate migration of eosinophils [13].

Osteopontin (OPN) is an extracellular matrix protein
with a wide range of functions. It contains arginine-glycine-
aspartate (RGD) and SVVYGLR domains that bind various
integrins and promote adhesion and migration of inflamma-
tory cells [14, 15]. Osteopontin is also expressed in human
eosinophils and is increased after granulocyte-macrophage
colony-stimulating factor (GM-CSF) and IL-5 activation
[16]. Besides, recombinant OPN promotes eosinophil che-
motaxis in vitro, and this effect is mediated by α4β1 integrin
binding [16].

In view of the similar roles of OPN and leptin in the reg-
ulation of eosinophil, we postulated that there may be an
interplay between OPN and leptin in AR. In this study, we
aimed to explore the correlation between leptin and OPN
in eosinophilia of AR children with obesity.

2. Materials and Methods

2.1. Patients. We recruited thirty AR children (5–10 years
old) from the Department of Otolaryngology, Guangzhou
Women and Children’s Medical Center, from January 2016
to October 2016. Local ethics committee boards approved
the study and informed consent was signed by the parents.
Perennial AR was diagnosed according to disease history,
nasal examination, and specific IgE values according to the
Allergic Rhinitis and its Impact on Asthma (ARIA) guide-
line (2010) [17]. The common inhalant allergens (dust mites,
pets, molds, cockroach, etc.) were assessed by the measure-
ment of specific IgE (Phadia AB, Uppsala, Sweden) with
values greater than or equal to 0.35 kIU/L as positive. Thirty
healthy children (5–10 years old) were recruited as controls.

Children with other allergic diseases (atopic dermatitis,
allergic asthma, etc.), purulent nasal infection, any infection
within the past 2 weeks, and recent use of drugs (systemic
or topical corticosteroids, sodium cromoglycate, and hista-
mine H1 antagonist) were excluded from this study.

Body weight and height were measured using an elec-
tronic weighing scale, and body mass index (BMI) was calcu-
lated. BMIs greater than the 95th percentile were considered
as obesity according to a local population survey [18].

2.2. Symptom Scores. Nasal symptoms including sneezing,
rhinorrhea, itchy nose, and nasal congestion were recorded
and assessed as follows: 0, none; 1 point, mild; 2 points, mod-
erate; and 3 points, severe. The total nasal symptom score
(TNSS) was calculated accordingly. The nasal symptoms
were averaged in an 8-week observation period.

2.3. Blood Sample Collection. Fasting venous blood samples
were collected between 6 am and 8 am. The samples were
centrifuged at 1000g for 15 minutes at 4°C and stored at
−80°C for further measurement.

2.4. ELISA and Eosinophil Cationic Protein (ECP) Detection.
The serum levels of leptin and OPN were measured in dupli-
cate and averaged using ELISA kits (R&D, Minneapolis,

USA) according to the manufacturer’s instructions. Total
serum IgE level was tested by an ELX-800 system. ECP level
was detected using Unicap system (Phadia AB, Uppsala,
Sweden). The detection limits of the assays were as follows:
leptin (22 pg/mL), OPN (312.5 pg/mL), and ECP (2.0 ng/
mL). Results were from three independent experiments.

2.5. Isolation of Human Blood Eosinophils from Buffy Coat
and Eosinophil Culture. Human eosinophils were purified
from the venous blood of children by MACS-negative
immunomagnetic isolation kit (Miltenyi Biotec, Bergisch
Gladbach, Germany) according to the instructions pro-
vided by the manufacturer. The purity of eosinophils was
98–100% (Giemsa staining) and the viability was larger
than 98% (Trypan blue staining). The isolated eosinophils
were cultured in RPMI 1640 medium supplemented with
10% FBS and 20mM HEPES (Gibco, New York, USA).

2.6. Leptin and OPN Delay Cell Death and Apoptosis and
Induce Adhesion, Migration, and Activation of Eosinophil.
Eosinophil death was assessed based on uptake of 1mM
ethidium bromide and flow cytometric analysis (FACS
Calibur, BD, New Jersey, USA) described as previously
[12]. DNA fragmentation and redistribution of phosphati-
dylserine (PS) were also detected to determine whether
cell death was apoptosis as previously described [12]. Oli-
gonucleosomal DNA fragmentation, characteristics of
apoptosis, was assessed by flow cytometry. In brief, eosin-
ophils suspended in 0.3mL hypotonic fluorochrome solu-
tion (50 μg/mL propidium iodide, 0.1% sodium citrate,
0.1% Triton X-100) for 10 hours in the dark at 4°C.
Then, the relative amounts of apoptotic eosinophils were
determined by discrimination of hypodiploid and diploid
cells through flow cytometry. PS appears on the external
leaflet in apoptotic cells, and Annexin V is a PS-binding
protein used for detecting apoptotic cells. Therefore, a
commercial apoptosis detection kit (R&D, Minneapolis,
USA) was used for evaluating the appearance of PS
assessed by flow cytometry. All results were from three
independent experiments.

In the adhesion assay, 96-well plates (Maxisorp, Nunc,
Roskilde, Denmark) were prepared by coating individual
wells with 60μL of fibronectin overnight at 4°C. The
eosinophil suspension was then incubated for 30 minutes
at 37°C (5% CO2) with different concentration of leptin
or OPN. After incubation of treated cells, the nonadhered
cells were removed, and the remaining cells were washed
twice with PBS. The eosinophil adhesion was calculated
by measuring the residual eosinophil peroxidase (EPO)
activity of adherent cells as described previously [19]. In
brief, EPO substrate (Sigma Chemical, Missouri, USA)
was incubated with cell suspension for 30min at room
temperature. After the reaction was terminated by
H2SO4, the absorbance was determined at 490nm in a
microplate reader (Multiscan MS; Labsystems, Helsinki,
Finland). The adherence was calculated by comparing
the absorbance of the samples to standard curve. Expres-
sion of surface adhesion molecule was analyzed using
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flow cytometry as median fluorescence intensity (MFI).
Results were from three independent experiments.

Different concentrations of recombinant OPN (R&D
systems, 0.1–1μg/mL), leptin (R&D systems, 0.1–1μg/
mL), or inhibitors were incubated with eosinophil (105/
mL) treated with or without anti-OPN antibody (R&D sys-
tems, 1μg/mL) in 24-well transwell system. Recombinant
eotaxin (R&D systems) was used as positive control of
chemotaxis analysis. After incubation, the number of
migrated cells was determined by Giemsa staining.
Migrated cells were counted in 10 fields using light micros-
copy at a magnification of 400x. ECP level in the superna-
tant was measured using the Unicap system. Results were
from three independent experiments.

2.7. Animal Models. Sixty male C57BL6/J mice of four-week-
old were raised and fed with standard diet (carbohydrate:
70%; protein: 20%; and fat: 10%) or a high-fat diet (HFD)
(carbohydrate: 29%; protein: 16%; and fat: 55%) for ten
weeks. The mice were randomly grouped as control (10
mice), OVA (10 mice), OVA+obese (10 mice), and interven-
tion groups (20 mice).

On day 0, all the mice were injected with 100mg
(0.4mL) of ovalbumin (OVA) (grade V; Sigma-Aldrich,
Missouri, USA) mixed with 1.6mg Al(OH)3 in 0.9% NaCl
subcutaneously. On day 7, a second subcutaneous injection
of 100mg OVA was given. The control mice received only
a subcutaneous injection of Al(OH)3. From day 14 to day
18, the mice were challenged nasally by the administration
of 10mg of OVA in 40mL of PBS (20mL per nostril) or
saline for controls. The mice were anaesthetized and
exsanguinated one day after the final challenge, and the
peripheral blood was obtained from the abdominal vena
cava. Serum total cholesterol (TC), high-density lipopro-
tein (HDL), and triglycerides (TGs) were tested using
commercially available kits. Epididymal fat mass was
weighed and nasal turbinate were sampled for morpholog-
ical study. Nasal symptoms were evaluated by counting the
frequency of nasal rubbing and sneezing during a 15-
minute observation period.

The 100μg of recombinant mouse anti-leptin, anti-OPN
protein, or anti-α4 integrin (R&D Systems, Minneapolis,
USA) in 40mL of PBS was given intranasally 2 hours before
each OVA challenge in different subgroups, respectively.

2.8. Morphological Study. Nasal turbinate sections (4 to
5μm) were prepared through deparaffinization xylene
and rehydration alcohol. After incubation with 0.3%
H2O2 and pretreated by autoclave heating in citrate buffer
(pH6.0) for 20 minutes, the haematoxylin–eosin (HE)
staining was performed. For immunohistochemistry
(IHC), the section was treated with rabbit polyclonal anti-
body against OPN (Zhongshan Golden Bridge, Beijing,
China) (1 : 200) or rabbit polyclonal antibody against lep-
tin (Thermo Fisher Scientific, Fremont, CA, USA) over-
night at 4°C. Twenty-four hours later, the sections were
incubated with secondary biotinylated goat anti-mouse/
rabbit IgG antibody and then with avidin-peroxidase com-
plex. Isotype-matched IgG was selected as negative control.

2.9. Statistical Analysis. All data are presented as the
medians and interquartile ranges. The Kruskal-Wallis H
test and the nonparametric Mann–Whitney U test were
performed using the SPSS21 software. Spearman rank cor-
relation analysis was done for assessment of correlations
between various parameters. A P value of less than 0.05
was considered as significant.

3. Results

3.1. Upregulated Serum Leptin and OPN Levels in AR
Children and Its Correlation with Eosinophils. The demo-
graphic characteristics of all children are summarized in
Table 1. The subgroups had comparable age, sex ratio, and
age (P > 0 05). The AR children with obesity had higher
TNSS score compared with AR children without obesity.
Our data indicated that serum leptin and OPN levels were
significantly higher in AR children compared with controls,
especially in obese children (P < 0 05) (Figure 1). The upreg-
ulated serum leptin and OPN levels were also positively cor-
related with eosinophil counts (r = 0 66, P < 0 01; r = 0 59,
P < 0 01) and ECP concentration (r = 0 71, P < 0 01; r =
0 62, P < 0 01) in AR children, suggesting that leptin and
OPN levels may be involved in eosinophil infiltration and
activation (Figure 1).

3.2. Leptin/OPN Expression and Function Analysis of
Eosinophils. Leptin and OPN delayed spontaneous eosino-
phil death in a dose-dependent manner (Figure 2(a)) similar

Table 1: Demographic characteristic of AR children and controls.

Groups AR without obesity group AR with obesity group Obesity control Control

Number 15 15 15 15

Sex (male : female) 7 : 8 7 : 8 8 : 7 9 : 6

Age (months) 92.1± 31.2 87.3± 25.6 85.3± 27.6 93.5± 29.6
BMI 16.6± 1.6 24.1± 1.8∗ 23.9± 1.6∗ 16.1± 1.5
TNSS score 8.1± 2.5 9.9± 2.7# — —

Nasal steroid 10 (67%) 12 (75%) — —

Nasal antihistamine 12 (75%) 10 (67%) — —

Oral antihistamine 11 (73%) 9 (60%) — —
∗Compared with control group, p < 0 05. #Compared with AR without obesity group, p < 0 05.
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to GM-CSF, and the effect was enhanced when leptin and
OPN were given together. Our results showed that leptin
reduced DNA fragmentation, which featured by apoptotic
eosinophils (Figure 2(b)). We also found that leptin and
OPN significantly blocked apoptosis, whereas anti-Fas stim-
ulation resulted in increased PS redistribution (Figure 2(c)).
Interestingly, all the above effects were inhibited when leptin
and anti-OPN were added, suggesting that the antiapoptotic
effect was mainly mediated by OPN.

Leptin and OPN also promote eosinophil adhesion to
human fibronectin (Figure 2(d)), and the effect was enhanced
when leptin and OPN were given together. Our results also
show that either of leptin and OPN induced the surface
expression of cluster of differentiation 18 (CD-18) and inter-
cellular adhesion molecule 1 (ICAM-1), while downregulated
those of ICAM-3 and L-selectin (Figures 2(e)–2(h)),

especially when the two were given together. Interestingly,
all the above effects were inhibited when anti-leptin or anti-
OPN was added, suggesting that the adhesion effect was
mediated by leptin and OPN together.

To prove the stimulatory effects of leptin on the chemo-
tactic behavior of eosinophils, Transwell analysis was per-
formed. We examined the effects of leptin and OPN on
isolated eosinophils from AR patients in a Transwell system
in vitro. We found that leptin and OPN significantly
enhanced eosinophil chemotaxis, as well as activated eosino-
phils as indicated by increased ECP level, especially when the
two were given together (Figures 3(a) and 3(b)). These effects
were significantly inhibited by anti-OPN, anti-leptin, and a
PI3K specific inhibitor, LY294002, suggesting that leptin
and OPN are able to specifically attract and activate eosino-
phils through PI3K signaling pathway.
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Figure 1: Elevated serum leptin (a) and OPN (b) expression in AR children compared with controls, especially in patients with obesity. (c–f)
The positive associations between leptin or OPN and serum eosinophil counts and ECP levels in patients with AR; ∗P < 0 05. The N number
of Figures 1(a) and 1(b) is 53 (normal control, 12; obese control, 11; and AR, 30). TheN number of Figures 1(c)–1(f) is 53 (normal control, 12;
obese control, 11; and AR, 30).
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3.3. HFD Promote Airway Eosinophilic Inflammation and
Nasal Leptin/OPN Expression. High-fat diet mice presented
with heavier body weight, heavier subcutaneous and visceral
fat pad weight, and higher serum levels of TC and LDL

compared with controls. The TGs and HDL levels had no dif-
ferences between groups (Table 2).

HE staining indicated that the number of eosinophils in
the nasal mucosa of OVA-challenged obese mice was
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Figure 2: The relative ratio of eosinophil death (a), DNA fragmentation (b), PS distribution (c), and adhesion (d) after leptin and/or
OPN stimulation. The expression of adhesion molecules such as CD18 (e), ICAM-1(f), ICAM-3 (g), and L-selectin (h) are shown as
MFI. ∗P < 0 05, compared with the control group.
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significantly higher than that of OVA-challenged nonobese
and control mice (P < 0 05, Figures 4(a)–4(c)). The OVA-
specific IgE, the count of eosinophils, and the times of nasal
rubbing and sneezing in obese AR mice were significantly
higher than those in nonobese AR mice (P < 0 05,
Figure 4). We also found that the block of leptin, OPN, or
α4 integrin alleviates inflammation in the models, showed
as milder symptoms and eosinophil inflammation (P < 0 05).

In nasal tissues, IHC staining showed that leptin and
OPN-positive cells included epithelial cells, interstitial cells,
and glandular cells. The number of OPN and leptin-
positive cells per high power field (HPF, 400x) in obese AR
mice was significantly higher than that of nonobese AR mice
and normal controls (P < 0 05, Figure 5).

4. Discussion

In the present study, we demonstrated that the expression of
OPN and leptin was significantly increased in AR children,
especially those with obesity. We also established a clear rela-
tionship between apoptosis, adhesion, and activation of

eosinophils and leptin/OPN axis. We also provided evidence
that α4 integrin and PI3K were involved in the process. These
results suggested that leptin and OPN may be used as a
promising biomarker for eosinophilia in AR patients.

In this study, we first found that upregulation of leptin
and OPN in obese children with AR was correlated with
the count and activation (ECP level) of eosinophil inflam-
mation compared with nonobese children with AR or con-
trols, suggesting that obesity may be involved in the
regulation of eosinophil through leptin and OPN. Leptin
is one of the energy-regulating hormones, and serum lep-
tin is positively correlated with body fat mass. Our and
previous studies had proved that both leptin and OPN
are upregulated during AR and involved in Th2 response.
Moreover, it has been reported that serum OPN levels are
correlated with obese state and may be reduced by loss of
fat mass. Therefore, the elevated level of leptin and OPN
in our study was consistent with previous reports [20–23].

Next, we performed in vitro experiments using purified
eosinophils. Our data showed that leptin and OPN delayed
spontaneous eosinophil death in a dose-dependent man-
ner, which is consistent with Conus et al.’s study [12].
We also found that the efficacy of leptin and leptin to
block eosinophil apoptosis was similar to that of GM-
CSF. Interestingly, when anti-OPN antibody was added,
the leptin-mediated antiapoptotic effect on eosinophils
was blocked significantly. However, anti-leptin has no
obvious effect on OPN-mediated antiapoptotic effect on
eosinophils. These results suggested that OPN may play
a central role in the process of eosinophil apoptosis, and
leptin affects eosinophil apoptosis through the regulation
of OPN expression.

As for adhesion to fibronectin, our results showed that
leptin and OPN promoted adhesion synergistically and either
anti-leptin or anti-OPN can block the adhesion. The
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Figure 3: OPN and leptin significantly enhanced EOS chemotaxis (a) and activation (b) after stimulation for 12 h; this effect was enhanced
when OPN and leptin were added together and inhibited when LY294002 was added. ∗P < 0 05, compared with the control group.

Table 2: Anthropometric and lipid profiles of obese and control
mice.

Control mice Obese mice

Body weight (g) 24.1± 0.23 39.2± 0.33∗

Epididymal fat (g) 0.28± 0.04 1.26± 0.06∗

TC (mg/L) 912± 52 1265± 91∗

LDL (mg/L) 211± 35 537± 58∗

HDL (mg/L) 501± 29 578± 36
TGs (mg/L) 711± 45 788± 53
∗Compared with control group, p < 0 05.
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interaction of ICAM-1 and integrins has been shown to be
essential for the recruitment and trans-endothelial migration
of eosinophils [24]. The upregulation of both ICAM-1 and
CD18 expressions is therefore essential for the recruitment
and transmigration of eosinophils into inflammatory sites
[13, 25]. On the other side, ICAM-3 is highly expressed on
resting eosinophil surface [26]. Consistently, our results sug-
gested leptin and OPN synergistically promoted ICAM-1

and CD18 and inhibited ICAM-3 expression. In addition,
we found that L-selectin expression was also significantly
suppressed by leptin and OPN. This finding concurs with
several other studies showing that activated eosinophils
could downregulate L-selectin [27, 28].

In eosinophil migration assay, we found that both lep-
tin and OPN may promote migration of eosinophils,
which was similar to that of eotaxin. Our results suggested
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Figure 4: (a–c) HE staining showed that eosinophils in the nasal mucosa of OVA-challenged obese mice were significantly higher than those
in OVA-challenged nonobese and control mice. The times of nasal rubbing and sneezing (d, e), the count of eosinophils (f), and OVA-specific
IgE (g) were significantly higher in obese ARmice and block of leptin, OPN, or α4 integrin alleviate inflammation in obese ARmice. ∗P < 0 05,
compared with the control group. Ten mice were included in each group. The arrow shows representative cells.
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that eosinophils preincubated with leptin and/or OPN
showed significantly enhanced eosinophil chemotaxis and
activation through PI3K pathway, manifested as eosinophil
migration and upregulation of ECP. Consistently, Wong
et al. [13] also found that leptin-induced eosinophil migra-
tion is associated with MAPK activation. Takahash et al.
and Puxeddu et al. reported that OPN plays a role in
the migration of eosinophils, and it was mediated via
interaction between the RGD and SVVYGLR domains on
OPN and α4 integrin expressed on the surface of eosino-
phils [16, 29]. These above results suggested that leptin
and OPN regulate eosinophil chemotaxis and activation
through different pathways.

In the mice model, we found that enhanced eosinophil
inflammation and disease severity in obese-OVA mice com-
pared with OVA and control mice. The local expression of
leptin/OPN by nasal tissues in obese-OVA mice was also sig-
nificantly higher compared with that in OVA and control
mice. Since the α4 integrin has been demonstrated to be

highly expressed on eosinophils and primarily responsible
for eosinophil trafficking in the airways, reduced nasal
inflammation by blockade of α4 integrin suggested that lep-
tin and OPN may mediate eosinophil inflammation through
α4 integrin receptor on OPN [30]. Similarly, the inhibitory
effects of anti-α4 integrin antibody on the development of
allergic airway inflammation have been reported in an ani-
mal model [31, 32], and this effect is mediated by the inhibi-
tion of migration of eosinophils into the airway [32].

5. Conclusions

In summary, our results confirmed that upregulation of lep-
tin and OPN in AR regulates apoptosis, adhesion, migration,
and activation of eosinophils, which is mediated by the PI3K
and anti-α4 pathways. Future studies were needed to prove
the detailed interaction between leptin and OPN under obese
and allergic state.
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Figure 5: The distribution of leptin and OPN-positive cells in the nasal mucosa of OVA-challenged obese mice (c, g), OVA-challenged
nonobese, and control mice (a, e). The count of leptin-positive cells (d) and OPN-positive cells (h) in nasal tissues was significantly higher
compared with normal controls (The arrow shows representative cells).
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